CN101726251A - 基于支持向量机的苹果采摘机器人果实自动识别方法 - Google Patents
基于支持向量机的苹果采摘机器人果实自动识别方法 Download PDFInfo
- Publication number
- CN101726251A CN101726251A CN200910235083A CN200910235083A CN101726251A CN 101726251 A CN101726251 A CN 101726251A CN 200910235083 A CN200910235083 A CN 200910235083A CN 200910235083 A CN200910235083 A CN 200910235083A CN 101726251 A CN101726251 A CN 101726251A
- Authority
- CN
- China
- Prior art keywords
- color
- apple
- image
- fruit
- vector machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000013399 edible fruits Nutrition 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012706 support-vector machine Methods 0.000 title claims abstract description 33
- 239000013598 vector Substances 0.000 claims abstract description 41
- 238000003709 image segmentation Methods 0.000 claims abstract description 11
- 239000002420 orchard Substances 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims description 16
- 238000000605 extraction Methods 0.000 claims description 11
- 239000003086 colorant Substances 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000012935 Averaging Methods 0.000 claims 1
- 238000004040 coloring Methods 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 7
- 238000013528 artificial neural network Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 5
- 238000012567 pattern recognition method Methods 0.000 abstract description 5
- 238000007781 pre-processing Methods 0.000 abstract description 5
- 241000220225 Malus Species 0.000 description 60
- 230000006870 function Effects 0.000 description 23
- 238000002474 experimental method Methods 0.000 description 9
- 230000011218 segmentation Effects 0.000 description 7
- 235000010724 Wisteria floribunda Nutrition 0.000 description 4
- 235000021016 apples Nutrition 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000004438 eyesight Effects 0.000 description 3
- 238000003909 pattern recognition Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000207199 Citrus Species 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 230000004456 color vision Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Abstract
本发明公开了一种基于支持向量机的苹果采摘机器人果实自动识别方法,先采集自然光照下的苹果果园彩色图像,用矢量中值滤波对苹果彩色图像进行预处理,预处理后采用区域生长和颜色特征相结合的方法进行图像分割,分别提取分割后苹果彩色图像的颜色特征和几何形状特征,再应用支持向量机的模式识别方法来识别苹果果实,最后准确定位果实。本发明综合颜色特征和形状特征的支持向量机识别方法对苹果果实识别的正确率高于只用颜色特征或形状特征的正确率,识别效果更好,并且算法实现简单,运行时间短,识别性能优于普遍采用的神经网络方法,对于小样本的学习表现出了优势。
Description
技术领域
本发明涉及农业果蔬采摘机器人,特别是苹果采摘机器人图像识别技术领域,基于支持向量机方法来对苹果果实进行自动识别。
背景技术
苹果采摘机器人视觉系统中,果实的识别和定位是其中的关键环节,能否快速、准确地识别出果实直接影响机器人的实时性和可靠性。大多数果园内的作业都是依赖于太阳光作为光源的,光线情况的变化会导致图像质量下降,导致不完全或不准确的目标提取,进而影响随后的图像处理环节;而且,在相同的时刻,由于果实位置的不同,果实获得光照也不同,这些因素都是机器视觉系统需要考虑的。
在对采摘机器人视觉相关的研究中,徐惠荣等(2005)提出了利用图像色差信号(R-B)对树上柑橘进行识别,并分别对顺光和逆光等光照条件下的水果进行了识别研究。赵杰文等(2004)提出了HIS颜色空间下基于色调统计的阈值分割和识别技术。Bu lanon DM等(2002)根据富士苹果在颜色与背景有较大的差异,利用照度和颜色模型对富士苹果进行检测,并用最佳阈值进行分割;孙明等(1997)通过对苹果果实、叶、枝等的色泽信号的直方图分析,利用色差信号(G-Y)和(R-B)分别对红色果实和黄绿果实的图像进行分割处理。但这些方法存在识别的准确率低和运行时间长等问题,在很大程度上制约自然环境下作业的苹果采摘机器人的实时性和多任务性。
支持向量机(Support Vector Machine,SVM)是20世纪90年代形成的一种新的模式识别方法,它通过结构风险最小化准则和核函数方法,较好地解决了模式分类器复杂性和推广性之间的矛盾。它将待解决的模式识别问题转化成为一个二次规划寻优问题,理论上保证了全局最优解,避免了局部收敛现象,特别是在解决模式识别中小样本、非线性及高维识别问题中表现出了独特的优势和良好的应用前景。
发明内容
本发明的目的是提供一种基于支持向量机的专门的针对自然光照条件下、复杂背景中的苹果果实识别方法,快速、准确地识别出苹果果实,进而提高机器人的实时性和可靠性。
本发明解决其技术问题所采用的技术方案是:先采集自然光照下的苹果果园彩色图像,用矢量中值滤波对苹果彩色图像进行预处理,预处理后采用区域生长和颜色特征相结合的方法进行图像分割,分别提取分割后苹果彩色图像的颜色特征和几何形状特征,再应用支持向量机的模式识别方法来识别苹果果实,最后准确定位果实,其中:所述矢量中值滤波法是将给定窗口中所有矢量取平均得到平均矢量,计算窗口中矢量到平均矢量的距离,将距离平均矢量最近的矢量作为窗口中心像元素的输出值;所述图像分割将图像像素投影到RGB模型的直方图上,求出概率较大的颜色,在这些颜色中选取几个像素作为备选生长点,设置生长阈值后选择出1个备选生长点,运用生长规则进行生长,判断颜色是否相近运用欧氏距离求得;图像颜色特征提取是将苹果果实图像HLS颜色空间的每一个点看作是HLS三维颜色空间的一个点,两个颜色的差异通过两个颜色点的欧氏距离计算衡量,采用HLS三维颜色空间中的H和S分量值作为苹果识别的颜色特征;图像几何形状特征提取是提取圆方差、椭圆方差、紧密度、周长平方面积比这4个苹果果实轮廓的特征量,作为每一个样本的特征向量,构造支持向量机进行训练和分类;所述图像识别是分别基于颜色信息、几何形状信息结合支持向量机进行苹果果实识别,并将其结果与综合采用颜色和几何形状信息的支持向量机结果进行比较,得出RBF支持向量机核函数。
本发明的有益效果是:综合颜色特征和形状特征的支持向量机识别方法对苹果果实识别的正确率高于只用颜色特征或形状特征的正确率,识别效果更好,并且算法实现简单,运行时间短,识别性能优于普遍采用的神经网络方法,对于小样本的学习表现出了优势。
附图说明
图1为苹果果实图像矢量中值滤波效果图像,其中,图1a为原始图像,图1b为滤波后的图像;
图2为图1所示苹果果实原始图像经过滤波、分割及形态学运算后的结果图像;
图3为苹果色度效果图;
图4为二维线性可分的最优分界面示意图;
图5为非线性可分问题经映射成线性可分问题图;其中,图5a为非线性可分问题图,图5b为映射后变成线性可分问题图。
具体实施方式
本发明由图像预处理、图像分割、图像特征提取、图像识别四步骤组成,采集自然光照下的苹果果园图片,采用矢量中值滤波对苹果彩色图像进行预处理;预处理后采用区域生长和颜色特征相结合的方法进行图像分割;分别提取分割后苹果彩色图像的颜色特征和几何形状特征,应用支持向量机的模式识别方法来识别苹果果实,最后准确定位果实。具体如下:
1、图像预处理
本发明采用采摘富士苹果的采摘机器人的实时视觉系统,这种机器视觉系统包括一个用来捕获果园中富士苹果图像的彩色CCD摄像头和一个处理已捕获图像的PC机。如图1,实际获得的图1a图像存在噪声干扰,需要进行滤波处理。常用的线性滤波(如最小均方滤波、平均值滤波等)算法简单,效果明显,缺点是使图像边缘细节模糊,特征淹没,给分析带来困难。而中值滤波是一种非线性的信号处理方法,与其对应的中值滤波器也是一种非线性的滤波器,它能够克服线性滤波的缺陷,而且对滤波脉冲干扰及图像扫描噪声最为有效。特别适合用在有很强的椒盐式或脉冲式的干扰时,因为这些干扰值与其邻近像素的灰度值有很大的差异,因此经排序后取中值的结果是强迫将此干扰变成与其邻近的某些像素的灰度值一样,因此本发明采用彩色图像矢量中值滤波法。
彩色图像矢量中值滤波法定义为:把RGB彩色二维图像的一个像素看成一个矢量X(i,j),记r(i,j),g(i,j),b(i,j)分别对应于RGB彩色图像像素的3个分量,像素矢量X(i,j)可表示为X(i,j)=[r(i,j),g(i,j),b(i,j)]T,则彩色图像像素的集合为X={X(i,j);i=1,…M;j=1,…N}(M为行数,N为列数)。上述RGB彩色模型中R代表红色(red),G代表绿色(green),B代表蓝色(blue)。
彩色图像矢量中值滤波法,是将给定窗口中矢量集合的中值作为窗口中心像元素的输出值。设原始图像集合X(i,j)的大小为M×N,用一个n×n窗口进行矢量中值滤波,其算法步骤如下:
(2)计算各矢量到平均矢量的距离Sij,比较Sij的大小,取得最小的Smin。
式中:||·||——矢量的1-范数或2-范数。
(3)用Smin所对应的像素Xmin作为该窗口的矢量中值,用它代替窗口中心像素矢量。
结果如图1b所示,采用彩色图像矢量中值滤波法,不仅能有效地去除噪声、突出前景苹果果实,同时克服了传统滤波方法不能保持图像边缘的缺陷,很好地保持了边缘和细节;并且,由于在滤波时,中心像素被窗口中距离矢量最小值所取代,而不是由R、G、B合成的矢量所取代,所以图像并不增加新颜色。
2、图像分割
对于在果园中自然光照下拍摄的苹果图像,背景通常包含大量枝叶噪声影响,是十分复杂的,因此只运用传统的图像分割算法难以达到预期效果。本发明针对复杂背景下的苹果果实图像,运用了区域生长算法和颜色特征相结合的方法来进行图像分割。
区域生长算法的分割效果主要由生长点的选择和生长规则来决定。图像是RGB模型的彩色图像,将图像像素投影到RGB模型的直方图上,求出概率较大的颜色,在这些颜色中选取几个像素作为备选生长点,接着,选取这些备选生长点所在的5×5像素区域,设置生长阈值,统计在这一区域内小于阈值的像素个数,如果个数大于20个,则认为像素周围是目标物体,即苹果果实;如果小于20个,则认为可能备选生长点正好选到了一些与目标颜色相近的孤立点,这样则舍弃这个备选生长点,选择新的备选生长点。最终选择出1个备选生长点,运用生长规则进行生长。
对于生长阈值的选择,基于如下规则:前面求得的备选生长点的颜色正好是苹果果实的主要颜色,所以可以将备选生长点的颜色与整个图像颜色平均值之差的绝对值作为区域生长过程中的阈值。实际图像中,苹果果实颜色和枝叶背景颜色有较大差异,所以阈值可以选的相对较大。
生长规则的选择决定了区域生长算法的可靠性及运算时间,是其中的关键环节。从备选生长点出发,考察8邻域内像素,若与中心点像素颜色差小于阈值则添加到备选生长区域内,否则不进行添加,考察完8邻域后,中心点标记为已处理,保证不会重复处理。直到生长不再有新的像素被添加到区域内,则生长结束。
对于彩色图像,判断颜色是否相近运用欧氏距离求得,即,在RGB模型下有两个像素p1(r1,g1,b1)和p2(r2,g2,b2),它们的距离d(p1,p2)为:
基于上述方法,可将苹果果实图像分割成果实和背景两个部分,这个图像将用来进行特征提取。但在分割过程中,图像中常有孤立的小点、毛刺和小空洞,为了减少这些噪声对后续识别工作的影响,采用数学形态学中的开、闭运算来消除噪声。具体采用开闭滤波器序列迭代执行。开始时,用开运算去除孤立的小点、毛刺,然后再用闭运算来填补小空洞,从而取得理想的图像效果,见图2-3。
3、图像特征提取
3.1苹果图像颜色特征提取
苹果图像是自然光照条件下悬挂在树上的果实图像。光照情况可分为4种:(a)向光;(b)背光;(c)果实在阴影中;(d)阴天。其中,情况(a)、(b)和(c)都取自晴天的条件下。由于光照情况的差异,所采集图像的质量肯定有所不同,这将直接影响下一步图像处理的结果,因此选择一种能适应所有光照条件的特征分量是非常必要的。经实验,色度几乎不受光照条件的影响,因此采用HLS颜色模型中色度分量进行处理。
HLS模型是一种常用的颜色感知模型,用色彩的三属性来描述颜色,其中,H为色调(Hue),L为明度或亮度(Lightness),S为色饱和度(Saturation)。与RGB模型相比,它与人对色彩的感觉较为一致,比较符合人们对颜色的描述习惯。这个模型基于两个重要的事实:1.L分量与图像的彩色信息无关;2.H和S分量与人感受颜色的方式紧密相联。HLS模型和常见的RGB模型之间的转换关系为:
式中:
由于在自然光照条件下光强变化较大,必须排除图像中的明暗对图像的影响,选取HLS颜色模型中与亮度无关的H和S通道进行特征提取,如附图3所示。将苹果果实图像HLS颜色空间的每一个点看作是HLS三维颜色空间的一个点,所以两个颜色的差异可通过两个颜色点的欧氏距离来计算衡量,2个像素p1(H1,S1)和p2(H2,S2),它们的距离d(p1,p2)即为色差,计算公式如下:
经实验,HLS颜色空间可直接进行颜色的比较,并能比较好地控制颜色和强度信息,故它在细微颜色差别的测量中特别有效,因此本发明采用HLS颜色空间中的H和S分量值作为苹果识别的颜色特征。
3.2苹果图像几何形状特征提取
物体的几何形状在物体的识别中占重要的地位,而不同种类的物体其形状的差别是很大的。苹果果实、树枝、树叶都有其特定的形状,且差异较大,因此可以对苹果果实的轮廓提取相应的特征,进一步运用支持向量机进行分类。
物体几何形状的最大特点即为它不因物体在图像上的位置、大小和与图像所处的角度而改变,所以应提取满足RST(旋转、比例、平移)不变性的特征向量。针对苹果果实图像的特点,圆方差、椭圆方差、紧密度、周长平方面积比等特征能很好地概括苹果果实的轮廓特征,因此提取这4个特征量。
要提取苹果果实的轮廓特征首先必须在图像上得到轮廓的位置,即得到边界像素在图像上的位置,这些量应用索贝尔算子(Sobel算子)、罗伯特算子(robert算子)很容易得到。得到边缘像素后,即可求取圆方差、椭圆方差、紧密度、周长平方面积比等特征值。
设轮廓边缘坐标为pi=[xi,yi]T,轮廓为N个随机向量的集合P,P={pi},i=1,2,…,N。
平均向量为μ,即目标的质心坐标为:
平均半径为μr:
圆方差σc反映了物体的外形与圆的相似程度,σc越小表示物体越像一个圆,定义为:
椭圆方差σe反映的是物体外形与以主轴为轴的椭圆的相似程度,σe越小与椭圆越相似,这个值主要应用于苹果果实有光照等噪声影响时,果实分割后不是呈现出完全的圆形情况,定义为:
式中:
协方差矩阵H为:
求出这4个特征值,作为每一个样本的特征向量,构造支持向量机进行训练和分类。
4、图像识别
支持向量机(Support Vector Machine,SVM)是vapnik等人在1992年提出了一种基于统计学习理论的模式识别方法,是一种新的解决模式识别问题的有效工具,近年来在其理论研究和算法实现方面都取得了突破性进展,开始成为克服“维数灾难”和“过学习”等传统困难的有力手段,在目标识别、文本分类、函数逼近和时间序列预测等许多实际应用中取得了成功。它根据有限的样本信息,构造一组嵌套的函数子集,使其VC维由内向外依次递增,然后在该嵌套子集中寻找能使经验风险和置信范围之和最小的子集,使得实际风险上界最小化,从而实现了结构风险最小化准则(Structural Risk Minimization,SRM)。
支持向量机数学形式简洁,并且具有全局最优性和良好的泛化能力,已成为解决分类、回归、概率密度估计等问题的一种有力工具,在形式上类似于多层前向网络,但却能克服多层前向网络的固有缺陷,因而被认为是人工神经网络方法的替代方法。
基于支持向量机的上述优点,本发明针对苹果果实图像特征数据,使用不同的核函数对SVM进行了分类测试,以判别SVM是否具有不同的分类性能,并确定哪种SVM更适合于苹果果实的识别,根据问题的不同支持向量机可以分为线性可分和非线性可分两大类。
如附图4所示,对于线性可分二分类问题,SVM的基本思路是在两个类别的样本集之间寻找一个最优分界面(Optimal Hyperplane,最优超平面),将两类分开,并使两类的分隔距离最大。以图1所示的二维空间为例,图中,用实心点和空心圈分别表示第一类和第二类训练样本,H是将两类分开的最优分界面,H1、H2与H平行。H1上的样本是第一类样本到H距离最近的点,H2上的样本则是第二类样本距H的最近点。H1与H2上的样本处在隔离带的边缘上(附加一个差号表示),这些点称为支持向量,由它们决定了分类的隔离带。
分类判断函数为:
式中:a*-Lagrange乘子
b*一分类阈值
SVM一个重要的优点是可以处理线性不可分问题。如附图5所示,在非线性可分的条件下,可以采用特征映射方法,将非线性可分的特征向量空间映射到线性可分的新的特征向量空间(特征向量空间的维数通常会增加很多)中,然后再利用线性可分的支持向量机进行分类。
当问题为线性不可分时,可以利用核函数K(x,xi)实现非线性变换,采用不同的核函数所得到的分类结果也不一样,目前主要有以下3种形式的核函数:
(1)多项式(Poly)形式的核函数:
K(x,xi)=((x·xi)+1)q (17)
(2)径向基函数(RBF)形式的核函数:
(3)Sigmoid函数形式的核函数:
K(x,xi)=tanh(α(x·xi)+β)(19)
当人工识别一个红色苹果时,可以看到的是红色的果皮(颜色信息)和近似于圆形的果实(形状信息),分别对仅基于颜色或几何形状特征的苹果果实图像和综合采用颜色特征和几何形状特征的苹果果实图像进行识别实验,并将三组实验结果进行对比,以此证明,采用颜色特征和几何形状特征结合后的综合信息来进行苹果果实识别,效果更好。
从苹果果实图像中选取640×480像素的子图像150幅作为训练样本,建立识别模型,再选取640×480像素的子图像50幅作为测试样本,用来验证模型的可靠性。实验中将每幅图像进行预处理和图像分割,然后结合支持向量机进行后续识别实验。
4.1基于颜色特征的苹果果实图像识别
对每个预处理后的苹果果实图像提取其颜色特征值。首先采用目前普遍选用的BP人工神经网络对样本集和测试集进行识别实验,然后分别选用3种不同核函数的SVM对相同的样本集和测试集进行识别实验,并对其识别性能进行了比较,识别结果如下表1所示。表中学习参数为C=1,ξ=0.001;多项式核函数中的q取3;径向基核函数中的σ2取3/2;Sigmoid核函数中α取3,β取-10;人工神经网络识别结果取10次较好实验结果的平均值。
表1
4.2基于形状特征的苹果果实图像识别
在进行仅基于形状特征的识别实验中,对预处理和分割后的每幅图像,提取其形状特征后结合支持向量机进行分类实验。表中学习参数为C=1,ξ=0.001,多项式核函数中的q取2,径向基核函数中的σ2取1,Sigmoid核函数中α取1/3,β取-1,结果如表2所示:
表2
4.3综合采用颜色和几何形状特征的苹果果实图像识别
对综合采用颜色特征和形状特征的苹果果实图像进行实验时,学习参数为C=1,ξ=0.001,多项式核函数中的q取3,径向基核函数中的σ2取6,Sigmoid核函数中α取1/6,β取-1,其结果如表3所示:
表3
识别后,将苹果果实进行定位,以便于后期采摘,由于苹果品种不同,生长环境有区别,体现为苹果颜色和生长过程保护措施不同,针对于此,特选择红色、黄色苹果图像,套袋、不套袋苹果图像进行处理,以验证算法的可行性和优越性。
Claims (4)
1.一种基于支持向量机的苹果采摘机器人果实自动识别方法,其特征是:先采集自然光照下的苹果果园彩色图像,用矢量中值滤波对苹果彩色图像进行预处理,预处理后采用区域生长和颜色特征相结合的方法进行图像分割,分别提取分割后苹果彩色图像的颜色特征和几何形状特征,再应用支持向量机的模式识别方法来识别苹果果实,最后准确定位果实,其中:
所述矢量中值滤波法是将给定窗口中所有矢量取平均得到平均矢量,计算窗口中矢量到平均矢量的距离,将距离平均矢量最近的矢量作为窗口中心像元素的输出值;
所述图像分割将图像像素投影到RGB模型的直方图上,求出概率较大的颜色,在这些颜色中选取几个像素作为备选生长点,设置生长阈值后选择出1个备选生长点,运用生长规则进行生长,判断颜色是否相近运用欧氏距离求得;
图像颜色特征提取是将苹果果实图像HLS颜色空间的每一个点看作是HLS三维颜色空间的一个点,两个颜色的差异通过两个颜色点的欧氏距离计算衡量,采用HLS三维颜色空间中的H和S分量值作为苹果识别的颜色特征;
图像几何形状特征提取是提取圆方差、椭圆方差、紧密度、周长平方面积比这4个苹果果实轮廓的特征量,作为每一个样本的特征向量,构造支持向量机进行训练和分类;
所述图像识别是分别基于颜色信息、几何形状信息结合支持向量机进行苹果果实识别,并将其结果与综合采用颜色和几何形状信息的支持向量机结果进行比较,得出RBF支持向量机核函数。
2.根据权利要求1所述的基于支持向量机的苹果采摘机器人果实自动识别方法,其特征是:所述生长阈值是将备选生长点的颜色与整个图像颜色平均值之差的绝对值,阈值设置相对较大的值。
3.根据权利要求1所述的基于支持向量机的苹果采摘机器人果实自动识别方法,其特征是:所述生长规则的选择方法是从备选生长点出发的8邻域内像素,将与中心点像素颜色差小于生长阈值的添加到备选生长区域内。
4.根据权利要求1所述的基于支持向量机的苹果采摘机器人果实自动识别方法,其特征是:在所述图像分割过程中,采用数学形态学中的开闭滤波器序列迭代消除噪声。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910235083A CN101726251A (zh) | 2009-11-13 | 2009-11-13 | 基于支持向量机的苹果采摘机器人果实自动识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910235083A CN101726251A (zh) | 2009-11-13 | 2009-11-13 | 基于支持向量机的苹果采摘机器人果实自动识别方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101726251A true CN101726251A (zh) | 2010-06-09 |
Family
ID=42447495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910235083A Pending CN101726251A (zh) | 2009-11-13 | 2009-11-13 | 基于支持向量机的苹果采摘机器人果实自动识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101726251A (zh) |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102013021A (zh) * | 2010-08-19 | 2011-04-13 | 汪建 | 基于颜色和区域生长的茶叶嫩芽分割和识别方法 |
CN102136077A (zh) * | 2011-03-29 | 2011-07-27 | 上海大学 | 基于支持向量机的口唇颜色自动识别的方法 |
CN102314176A (zh) * | 2010-07-01 | 2012-01-11 | 德国福维克控股公司 | 自动行驶装置及其定向方法 |
CN102445174A (zh) * | 2011-10-14 | 2012-05-09 | 华南理工大学 | 一种基于支持向量回归的多测点平面度评定方法 |
CN102506805A (zh) * | 2011-10-14 | 2012-06-20 | 华南理工大学 | 一种基于支持向量分类的多测点平面度评定方法 |
CN102521600A (zh) * | 2011-11-03 | 2012-06-27 | 北京农业信息技术研究中心 | 基于机器视觉的南美白对虾病害识别方法及系统 |
CN102760228A (zh) * | 2011-04-27 | 2012-10-31 | 中国林业科学研究院森林生态环境与保护研究所 | 基于标本图像的鳞翅目昆虫种类自动鉴别方法 |
CN102879101A (zh) * | 2012-08-22 | 2013-01-16 | 范迪 | 一种色差感知仪 |
CN103279762A (zh) * | 2013-05-21 | 2013-09-04 | 常州大学 | 一种自然环境下果实常见生长形态判定方法 |
CN104067781A (zh) * | 2014-06-16 | 2014-10-01 | 华南农业大学 | 基于虚拟机器人与真实机器人集成的采摘系统及方法 |
CN104751117A (zh) * | 2015-01-26 | 2015-07-01 | 江苏大学 | 一种用于采摘机器人的莲蓬目标图像识别方法 |
CN104764402A (zh) * | 2015-03-11 | 2015-07-08 | 广西科技大学 | 柑橘体积的视觉检测方法 |
CN105701812A (zh) * | 2016-01-12 | 2016-06-22 | 南京工程学院 | 适用于采棉机器人的视觉识别系统 |
CN105718945A (zh) * | 2016-01-20 | 2016-06-29 | 江苏大学 | 基于分水岭和神经网络的苹果采摘机器人夜间图像识别方法 |
CN106339715A (zh) * | 2016-08-03 | 2017-01-18 | 南阳理工学院 | 一种适应于采摘机器人的数据分类优化算法 |
CN106372635A (zh) * | 2016-08-24 | 2017-02-01 | 滁州学院 | 一种基于机器视觉的草莓外形品质判别方法 |
CN106951905A (zh) * | 2017-02-16 | 2017-07-14 | 江苏大学 | 一种基于tof相机的树上苹果识别与定位方法 |
CN107194320A (zh) * | 2017-04-26 | 2017-09-22 | 江苏大学 | 一种基于图像特征分析的温室青椒采摘机器人目标识别方法 |
CN107292353A (zh) * | 2017-08-09 | 2017-10-24 | 广东工业大学 | 一种果树分类方法及系统 |
CN107437254A (zh) * | 2017-06-28 | 2017-12-05 | 常州大学 | 一种果园邻接重叠形态果实判别方法 |
CN107833210A (zh) * | 2017-10-30 | 2018-03-23 | 俊杰机械(深圳)有限公司 | 一种基于神经网络的外观检测方法和系统 |
CN108257127A (zh) * | 2018-01-29 | 2018-07-06 | 佳木斯大学附属第医院 | 一种应用于急性中毒安全预评价的系统 |
CN108564601A (zh) * | 2018-05-07 | 2018-09-21 | 北京禾泽方圆智能科技有限公司 | 一种基于深度学习算法的果实识别跟踪方法和系统 |
CN108572174A (zh) * | 2018-04-25 | 2018-09-25 | 苏州农业职业技术学院 | 一种农产品品质指标无损检测方法 |
CN108710850A (zh) * | 2018-05-17 | 2018-10-26 | 中国科学院合肥物质科学研究院 | 一种适用性强的枸杞果实识别方法和系统 |
CN108846862A (zh) * | 2018-04-26 | 2018-11-20 | 杭州电子科技大学 | 一种颜色先验知识导向的草莓机器手目标定位方法 |
CN108961345A (zh) * | 2018-06-01 | 2018-12-07 | 沈阳普泽众康医药科技有限公司 | 一种尿液试纸中有效颜色的确定方法及确定装置 |
CN109284759A (zh) * | 2018-07-24 | 2019-01-29 | 五邑大学 | 一种基于支持向量机(svm)的魔方颜色识别方法 |
CN109359531A (zh) * | 2018-09-12 | 2019-02-19 | 仲恺农业工程学院 | 一种面向自然场景的果实采收区域自动定位方法 |
CN109522899A (zh) * | 2018-10-16 | 2019-03-26 | 江苏省无线电科学研究所有限公司 | 咖啡成熟果实的检测方法、装置及电子设备 |
CN109588114A (zh) * | 2018-12-20 | 2019-04-09 | 武汉科技大学 | 一种应用于水果采摘机器人的并行识别采摘系统及方法 |
CN109711317A (zh) * | 2018-12-21 | 2019-05-03 | 重庆理工大学 | 基于区域特征的成熟柑橘果实及枝叶的分割识别方法 |
CN110691676A (zh) * | 2017-06-19 | 2020-01-14 | 谷歌有限责任公司 | 使用神经网络和几何感知对象表示的机器人抓取预测 |
CN111360821A (zh) * | 2020-02-21 | 2020-07-03 | 海南大学 | 一种采摘控制方法、装置、设备及计算机刻度存储介质 |
CN111783693A (zh) * | 2020-07-06 | 2020-10-16 | 深圳市多彩汇通实业有限公司 | 果蔬采摘机器人的智能识别方法 |
CN111814825A (zh) * | 2020-06-04 | 2020-10-23 | 济南大学 | 基于遗传算法优化支持向量机的苹果检测分级方法及系统 |
CN112136505A (zh) * | 2020-09-07 | 2020-12-29 | 华南农业大学 | 一种基于视觉选择注意机制的水果采摘顺序规划方法 |
CN112304224A (zh) * | 2020-09-22 | 2021-02-02 | 广东石油化工学院 | 一种橘红鲜果胚囊参数预测方法及系统 |
CN112329506A (zh) * | 2020-07-15 | 2021-02-05 | 宁夏工商职业技术学院(宁夏化工技工学校、宁夏机电工程学校、宁夏农业机械化学校) | 枸杞采摘机器人的果实识别方法及系统、定位方法及系统 |
CN113191347A (zh) * | 2021-05-25 | 2021-07-30 | 广东技术师范大学 | 一种基于圆形完整度修正的柑橘识别方法 |
CN113199483A (zh) * | 2015-07-31 | 2021-08-03 | 发那科株式会社 | 机器人系统、机器人的控制方法、机器学习装置及机器学习方法 |
CN114636618A (zh) * | 2022-05-13 | 2022-06-17 | 河南银金达新材料股份有限公司 | 一种性能稳定的pet膜制备工艺 |
-
2009
- 2009-11-13 CN CN200910235083A patent/CN101726251A/zh active Pending
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102314176A (zh) * | 2010-07-01 | 2012-01-11 | 德国福维克控股公司 | 自动行驶装置及其定向方法 |
CN106983449A (zh) * | 2010-07-01 | 2017-07-28 | 德国福维克控股公司 | 具有区域划分的测绘制图 |
CN106983449B (zh) * | 2010-07-01 | 2022-02-18 | 德国福维克控股公司 | 具有区域划分的测绘制图 |
CN102013021B (zh) * | 2010-08-19 | 2012-10-31 | 汪建 | 基于颜色和区域生长的茶叶嫩芽分割和识别方法 |
CN102013021A (zh) * | 2010-08-19 | 2011-04-13 | 汪建 | 基于颜色和区域生长的茶叶嫩芽分割和识别方法 |
CN102136077A (zh) * | 2011-03-29 | 2011-07-27 | 上海大学 | 基于支持向量机的口唇颜色自动识别的方法 |
CN102760228B (zh) * | 2011-04-27 | 2014-04-30 | 中国林业科学研究院森林生态环境与保护研究所 | 基于标本图像的鳞翅目昆虫种类自动鉴别方法 |
CN102760228A (zh) * | 2011-04-27 | 2012-10-31 | 中国林业科学研究院森林生态环境与保护研究所 | 基于标本图像的鳞翅目昆虫种类自动鉴别方法 |
CN102445174A (zh) * | 2011-10-14 | 2012-05-09 | 华南理工大学 | 一种基于支持向量回归的多测点平面度评定方法 |
CN102506805A (zh) * | 2011-10-14 | 2012-06-20 | 华南理工大学 | 一种基于支持向量分类的多测点平面度评定方法 |
CN102445174B (zh) * | 2011-10-14 | 2013-10-02 | 华南理工大学 | 一种基于支持向量回归的多测点平面度评定方法 |
CN102506805B (zh) * | 2011-10-14 | 2014-04-16 | 华南理工大学 | 一种基于支持向量分类的多测点平面度评定方法 |
CN102521600A (zh) * | 2011-11-03 | 2012-06-27 | 北京农业信息技术研究中心 | 基于机器视觉的南美白对虾病害识别方法及系统 |
CN102879101A (zh) * | 2012-08-22 | 2013-01-16 | 范迪 | 一种色差感知仪 |
CN103279762B (zh) * | 2013-05-21 | 2016-04-13 | 常州大学 | 一种自然环境下果实常见生长形态判定方法 |
CN103279762A (zh) * | 2013-05-21 | 2013-09-04 | 常州大学 | 一种自然环境下果实常见生长形态判定方法 |
CN104067781A (zh) * | 2014-06-16 | 2014-10-01 | 华南农业大学 | 基于虚拟机器人与真实机器人集成的采摘系统及方法 |
CN104067781B (zh) * | 2014-06-16 | 2016-05-18 | 华南农业大学 | 基于虚拟机器人与真实机器人集成的采摘系统及方法 |
CN104751117A (zh) * | 2015-01-26 | 2015-07-01 | 江苏大学 | 一种用于采摘机器人的莲蓬目标图像识别方法 |
CN104751117B (zh) * | 2015-01-26 | 2018-04-24 | 江苏大学 | 一种用于采摘机器人的莲蓬目标图像识别方法 |
CN104764402A (zh) * | 2015-03-11 | 2015-07-08 | 广西科技大学 | 柑橘体积的视觉检测方法 |
CN113199483A (zh) * | 2015-07-31 | 2021-08-03 | 发那科株式会社 | 机器人系统、机器人的控制方法、机器学习装置及机器学习方法 |
CN105701812A (zh) * | 2016-01-12 | 2016-06-22 | 南京工程学院 | 适用于采棉机器人的视觉识别系统 |
CN105701812B (zh) * | 2016-01-12 | 2021-09-07 | 南京工程学院 | 适用于采棉机器人的视觉识别系统 |
CN105718945A (zh) * | 2016-01-20 | 2016-06-29 | 江苏大学 | 基于分水岭和神经网络的苹果采摘机器人夜间图像识别方法 |
CN106339715B (zh) * | 2016-08-03 | 2021-09-10 | 南阳理工学院 | 一种适应于采摘机器人的数据分类优化方法 |
CN106339715A (zh) * | 2016-08-03 | 2017-01-18 | 南阳理工学院 | 一种适应于采摘机器人的数据分类优化算法 |
CN106372635A (zh) * | 2016-08-24 | 2017-02-01 | 滁州学院 | 一种基于机器视觉的草莓外形品质判别方法 |
CN106951905A (zh) * | 2017-02-16 | 2017-07-14 | 江苏大学 | 一种基于tof相机的树上苹果识别与定位方法 |
CN107194320A (zh) * | 2017-04-26 | 2017-09-22 | 江苏大学 | 一种基于图像特征分析的温室青椒采摘机器人目标识别方法 |
CN110691676A (zh) * | 2017-06-19 | 2020-01-14 | 谷歌有限责任公司 | 使用神经网络和几何感知对象表示的机器人抓取预测 |
US11554483B2 (en) | 2017-06-19 | 2023-01-17 | Google Llc | Robotic grasping prediction using neural networks and geometry aware object representation |
CN107437254A (zh) * | 2017-06-28 | 2017-12-05 | 常州大学 | 一种果园邻接重叠形态果实判别方法 |
CN107292353A (zh) * | 2017-08-09 | 2017-10-24 | 广东工业大学 | 一种果树分类方法及系统 |
CN107833210A (zh) * | 2017-10-30 | 2018-03-23 | 俊杰机械(深圳)有限公司 | 一种基于神经网络的外观检测方法和系统 |
CN107833210B (zh) * | 2017-10-30 | 2020-10-20 | 俊杰机械(深圳)有限公司 | 一种基于神经网络的外观检测方法和系统 |
CN108257127A (zh) * | 2018-01-29 | 2018-07-06 | 佳木斯大学附属第医院 | 一种应用于急性中毒安全预评价的系统 |
CN108572174A (zh) * | 2018-04-25 | 2018-09-25 | 苏州农业职业技术学院 | 一种农产品品质指标无损检测方法 |
CN108846862A (zh) * | 2018-04-26 | 2018-11-20 | 杭州电子科技大学 | 一种颜色先验知识导向的草莓机器手目标定位方法 |
CN108564601B (zh) * | 2018-05-07 | 2021-03-02 | 北京禾泽方圆智能科技有限公司 | 一种基于深度学习算法的果实识别跟踪方法和系统 |
CN108564601A (zh) * | 2018-05-07 | 2018-09-21 | 北京禾泽方圆智能科技有限公司 | 一种基于深度学习算法的果实识别跟踪方法和系统 |
CN108710850A (zh) * | 2018-05-17 | 2018-10-26 | 中国科学院合肥物质科学研究院 | 一种适用性强的枸杞果实识别方法和系统 |
CN108961345A (zh) * | 2018-06-01 | 2018-12-07 | 沈阳普泽众康医药科技有限公司 | 一种尿液试纸中有效颜色的确定方法及确定装置 |
CN108961345B (zh) * | 2018-06-01 | 2021-02-23 | 沈阳普泽众康医药科技有限公司 | 一种尿液试纸中有效颜色的确定方法及确定装置 |
CN109284759A (zh) * | 2018-07-24 | 2019-01-29 | 五邑大学 | 一种基于支持向量机(svm)的魔方颜色识别方法 |
CN109359531B (zh) * | 2018-09-12 | 2021-12-14 | 仲恺农业工程学院 | 一种面向自然场景的果实采收区域自动定位方法 |
CN109359531A (zh) * | 2018-09-12 | 2019-02-19 | 仲恺农业工程学院 | 一种面向自然场景的果实采收区域自动定位方法 |
CN109522899A (zh) * | 2018-10-16 | 2019-03-26 | 江苏省无线电科学研究所有限公司 | 咖啡成熟果实的检测方法、装置及电子设备 |
CN109522899B (zh) * | 2018-10-16 | 2021-10-15 | 航天新气象科技有限公司 | 咖啡成熟果实的检测方法、装置及电子设备 |
CN109588114B (zh) * | 2018-12-20 | 2021-07-06 | 武汉科技大学 | 一种应用于水果采摘机器人的并行识别采摘系统及方法 |
CN109588114A (zh) * | 2018-12-20 | 2019-04-09 | 武汉科技大学 | 一种应用于水果采摘机器人的并行识别采摘系统及方法 |
CN109711317A (zh) * | 2018-12-21 | 2019-05-03 | 重庆理工大学 | 基于区域特征的成熟柑橘果实及枝叶的分割识别方法 |
CN111360821A (zh) * | 2020-02-21 | 2020-07-03 | 海南大学 | 一种采摘控制方法、装置、设备及计算机刻度存储介质 |
CN111814825A (zh) * | 2020-06-04 | 2020-10-23 | 济南大学 | 基于遗传算法优化支持向量机的苹果检测分级方法及系统 |
CN111814825B (zh) * | 2020-06-04 | 2022-11-11 | 济南大学 | 基于遗传算法优化支持向量机的苹果检测分级方法及系统 |
CN111783693A (zh) * | 2020-07-06 | 2020-10-16 | 深圳市多彩汇通实业有限公司 | 果蔬采摘机器人的智能识别方法 |
CN112329506A (zh) * | 2020-07-15 | 2021-02-05 | 宁夏工商职业技术学院(宁夏化工技工学校、宁夏机电工程学校、宁夏农业机械化学校) | 枸杞采摘机器人的果实识别方法及系统、定位方法及系统 |
CN112136505A (zh) * | 2020-09-07 | 2020-12-29 | 华南农业大学 | 一种基于视觉选择注意机制的水果采摘顺序规划方法 |
CN112304224A (zh) * | 2020-09-22 | 2021-02-02 | 广东石油化工学院 | 一种橘红鲜果胚囊参数预测方法及系统 |
CN113191347A (zh) * | 2021-05-25 | 2021-07-30 | 广东技术师范大学 | 一种基于圆形完整度修正的柑橘识别方法 |
CN113191347B (zh) * | 2021-05-25 | 2022-03-08 | 广东技术师范大学 | 一种基于圆形完整度修正的柑橘识别方法 |
CN114636618A (zh) * | 2022-05-13 | 2022-06-17 | 河南银金达新材料股份有限公司 | 一种性能稳定的pet膜制备工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101726251A (zh) | 基于支持向量机的苹果采摘机器人果实自动识别方法 | |
Mao et al. | Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multi-feature fusion | |
Dias et al. | Apple flower detection using deep convolutional networks | |
Luo et al. | A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard | |
Pérez-Zavala et al. | A pattern recognition strategy for visual grape bunch detection in vineyards | |
CN105718945B (zh) | 基于分水岭和神经网络的苹果采摘机器人夜间图像识别方法 | |
Liu et al. | A detection method for apple fruits based on color and shape features | |
Liu et al. | A method of segmenting apples at night based on color and position information | |
Zhuang et al. | Computer vision-based localisation of picking points for automatic litchi harvesting applications towards natural scenarios | |
Liu et al. | Detection of citrus fruit and tree trunks in natural environments using a multi-elliptical boundary model | |
Puttemans et al. | Automated visual fruit detection for harvest estimation and robotic harvesting | |
Septiarini et al. | Image-based processing for ripeness classification of oil palm fruit | |
Silwal et al. | Apple identification in field environment with over the row machine vision system | |
CN101813475B (zh) | 远距离障碍的自适应检测方法 | |
Li et al. | Green apple recognition method based on the combination of texture and shape features | |
Wang et al. | Segmentation of crop disease images with an improved K-means clustering algorithm | |
CN111783693A (zh) | 果蔬采摘机器人的智能识别方法 | |
CN113255434B (zh) | 一种融合果实特征与深度卷积神经网络的苹果识别方法 | |
CN105574514A (zh) | 温室生西红柿自动识别方法 | |
Lv et al. | Recognition of fruits and vegetables with similar‐color background in natural environment: A survey | |
Carrijo et al. | Automatic detection of fruits in coffee crops from aerial images | |
Payne et al. | Machine vision in estimation of fruit crop yield | |
Rahman et al. | Identification of mature grape bunches using image processing and computational intelligence methods | |
Changhui et al. | Overlapped fruit recognition for citrus harvesting robot in natural scenes | |
Wang et al. | Application of support vector machine to apple recognition using in apple harvesting robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100609 |