[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN101718774A - Diagnostic method for validity of online collected water quality data - Google Patents

Diagnostic method for validity of online collected water quality data Download PDF

Info

Publication number
CN101718774A
CN101718774A CN200910185421A CN200910185421A CN101718774A CN 101718774 A CN101718774 A CN 101718774A CN 200910185421 A CN200910185421 A CN 200910185421A CN 200910185421 A CN200910185421 A CN 200910185421A CN 101718774 A CN101718774 A CN 101718774A
Authority
CN
China
Prior art keywords
water quality
quality parameter
parameter
monitoring
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910185421A
Other languages
Chinese (zh)
Other versions
CN101718774B (en
Inventor
周杏鹏
王东升
何绍明
管伟民
华伟
张璐
孟庆彬
陈玲瑚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2009101854215A priority Critical patent/CN101718774B/en
Publication of CN101718774A publication Critical patent/CN101718774A/en
Application granted granted Critical
Publication of CN101718774B publication Critical patent/CN101718774B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

The invention discloses a diagnostic method for online collected validity of water quality data in an unmanned water quality monitoring station. Via statistical analysis of the historical monitoring data of main water quality parameter of raw water in multitude water quality monitoring stations, the regression curve between every two different water quality parameters is fitted by a linear regression model, the linear correlated coefficient between the parameters is calculated, and another water quality parameter with the maximum correlated coefficient (greater than or equal to 0.7) is defined as the mutual correlated water quality parameter of the water quality parameter. The diagnostic method for the validity of collected water quality data in the unmanned water quality monitoring station has good practical and promotional values and has auxiliary effect for diagnosing and maintaining the fault of the water quality parameter measuring instrument in the unmanned raw water quality monitoring station.

Description

The diagnostic method of online acquisition water quality data validity
Technical field
The present invention relates to a kind of diagnostic method of water quality data validity, especially be particularly related to a kind of unmanned water quality monitoring and stand in the diagnostic method that line is gathered water quality data validity.
Background technology
In recent years, the lasting expansion of the fast development of China's industrial or agricultural and cities and towns scale has caused serious water environment pollution, and the continuing of drinking water source ground water quality condition becomes bad, caused showing great attention to of compatriots especially.Environmental administration of governments at all levels is in order to improve the drinking water emergency mechanism that strick precaution, early warning and disposal combine of polluting, progressively (from the beginning) water factory sets up former water intake upstream the long-range monitoring water quality on line of unmanned station in this area, and nearly 20 kinds of main water quality parameters such as the PH of former water, temperature, turbidity, ammonia nitrogen, oxygen utilization, dissolved oxygen DO, total nitrogen, total phosphorus, chlorophyll, algae density are implemented continuous real time on-line monitoring.All online water quality parameter water quality datas that surveying instrument is gathered of long-range water quality monitoring station are all by wired or wireless mode, be sent to Running-water Company's water quality information management center server (some area is an environmental administration), use for relevant water factory of Running-water Company, as the important evidence of tap water production run control.Unmanned long-range water quality monitoring station and remote monitoring IT application in management system architecture thereof are as shown in Figure 1.
Gathering accurate raw water quality parameter changes control of tap water production process optimization and assurance effluent water quality most important.Be example now with the ammonia nitrogen parameter, be described as follows: the ammonia nitrogen in the former water can be used to characterize the contaminated degree of water body, it mainly relies on the bioprocess degraded, the existence of ammonia nitrogen can react with the chlorine that adds in the tap water production run, thereby the chlorine-throwed quantity that needing in the disinfection of tap water process to cause increases, and then generates more harmful to health DBPs.Ammonia nitrogen in the former water can be removed preferably by BAC process, but too high influent ammonia nitrogen can cause the accumulation of filter tank water outlet nitrous acid nitrogen, and influences biological activated carbon filter to removal effect of organic matter.
The large dead time, big inertia, the nonlinear feature that the significant impact and the potable water technological process of production of potable water production technology are had in view of each raw water quality parameter, usually wait when water factory's internal procedure measuring instrument detects raw water quality generation fluctuation even suddenly change this situation, operating personnel of water factory and robot control system(RCS) have lost the time of response in advance, even take emergency measures according to situation of change immediately, also can cause the water quality fluctuation even exceed standard in short-term of dispatching from the factory because of the characteristics of tap water production procedure large dead time, big inertia.After the long-range monitoring water quality on line of unmanned station is built up, can realize the main water quality parameter of former water is implemented continuous real time on-line monitoring, the waterworks can shift to an earlier date (more than about 5-10 hour) and accurately obtain the raw water quality situation of change, actively take counter-measure thereby can have, ensure water factory's production run safety than plenty of time.
Setting up of the long-range monitoring water quality on line of unmanned station perfect polluted the drinking water emergency mechanism that strick precaution, early warning and disposal combine, and improved the ability that potable water is produced solution of emergent event.But the water quality monitoring station is built up in remote place usually, and long-term work is in the unmanned state, though present environmental monitoring center, usually artificial on-site sampling is carried out once at the long-range monitoring water quality on line station of can sending someone weekly, the laboratory assay compare of analysis, with check water quality instrument operation irregularity whether, but this method cycle is oversize, if certain instrument breaks down, be difficult in time be found and get rid of fault by the people.
Because each water quality parameter surveying instrument of long-range water quality monitoring station, need long-term real-time online continuously to detect, and the suspended ring particle, the phycophyta that often have grain size to differ in the former water enter sampler through screen pack, if can not in time and effectively clean, then can stop up water quality instrument collection tube, adhere to the sampler phenomenon, thereby influence normal, the accurately measurement of water quality parameter surveying instrument; And reasons such as water quality measurement instrument electronic devices and components are aging, line fault very easily cause the water quality parameter surveying instrument to produce abnormal data.If the waterworks takes corresponding operating (because the big inertia that has of drinking water treatment technology, characteristics and water factory's adding equipment of large dead time are arranged to automatic running status usually according to this type of abnormal data, therefore, employee on duty is difficult in and finds and correct the faulty operation that adding equipment takes place automatically in the short time), bring serious harmful effect then may for tap water lean production and drinking water safety.
Summary of the invention
Technical matters: the invention provides and a kind ofly utilize correlativity between the raw water quality parameter long-range water quality monitoring stands in line and gathers the method that water quality data validity is diagnosed to unmanned, this method is on existing hardware condition basis, need not additionally to increase any hardware, can realize by software algorithm fully, statistical study by to the historical Monitoring Data of each main water quality parameter of monitoring station calculates the linearly dependent coefficient between per two kinds of different quality parameters.
Technical scheme: when certain water quality parameter Monitoring Data validity need be diagnosed, then diagnose: if similar fluctuation situation also appears in the comparison water quality parameter by best another water quality parameter situation of change in the identical time period of check and this water quality parameter correlationship, this time Monitoring Data is normal, effective then to be diagnosed as this water quality parameter, and this water quality parameter detecting instrument is working properly; Otherwise this time Monitoring Data is unusual, invalid then to be diagnosed as this water quality parameter, should abandon, and this water quality parameter detecting instrument operation irregularity, the while sends the fault alarm information of respective detection instrument to relevant department.
The present invention is a kind of validity identification and diagnostic method that is used for the long-range raw water quality of unmanned monitoring station online acquisition water quality data, specifically may further comprise the steps:
1. it is the statistical study time period) with nearest a certain section time Δ t, choose PH, temperature, turbidity, COD, dissolved oxygen DO, ammonia nitrogen, total nitrogen, total phosphorus, chlorophyll and algae density parameter that water quality monitoring stands in main raw water quality in the Δ t time period, historical Monitoring Data is carried out statistical study, utilize the regression curve between the per two kinds of different quality parameters of linear regression model (LRM) match, and obtain the linearly dependent coefficient between them respectively;
2.) each water quality parameter of participation statistical study, definition is the simple crosscorrelation water quality parameter of this water quality parameter with another parameter of its related coefficient maximum;
3.) according to nearest twice subnormal Monitoring Data of each water quality parameter of real time record, renewal and monitoring time thereof, calculate the mean change speed in the nearest monitoring time section of each water quality parameter, and define this rate of change and be this water quality parameter reference change speed; When monitoring central station water quality information administrative center receives in the online acquisition data of the long-range raw water quality of certain unmanned monitoring station, a certain water quality parameter rate of change surpasses this water quality parameter reference change speed more than 2 times the time, then need to this water quality parameter this time Monitoring Data validity diagnose;
4. fluctuation appears as a certain water quality parameter A), when its Monitoring Data validity need be diagnosed, then by checking procedure 2) in simple crosscorrelation water quality parameter B situation of change in the identical time period of this water quality parameter of determining judge: if similar situation of change also appears in water quality parameter B, then diagnose water quality parameter A sudden change this time really since the sampling raw water quality occur due to the sudden change; Otherwise judge that then water quality parameter A sudden change this time is because this water quality parameter surveying instrument induced fault.
The statistical study time period is chosen as arbitrary time span in 1 to 3 year scope.Linearly dependent coefficient between each water quality parameter and its simple crosscorrelation water quality parameter must be more than or equal to 0.7.The water quality monitoring station is monitored main water quality parameter and is comprised at least: PH, temperature, turbidity, COD, dissolved oxygen DO, ammonia nitrogen, total nitrogen, total phosphorus, chlorophyll and algae density.
Beneficial effect: enforcement of the present invention, can quick and precisely must diagnose out the validity of online acquisition water quality data, eliminated the serious harmful effect that monitoring station exception water quality data bring for tap water lean production and drinking water safety, simultaneously can in time find the monitoring station instrument failure, and send corresponding water quality instrument warning message to the environmental monitoring center, ensured reliable, the effectively operation of water quality monitoring head of a station phase.The present invention has good practical and popularizing value, be not only applicable to the long-range water quality monitoring of unmanned and stand in the differentiation that line is gathered water quality data validity, equally also be applicable to other similar applications, as differentiation of the long-range air quality monitoring station of unmanned online acquisition data validity etc.
Description of drawings
Fig. 1 is unmanned long-range water quality monitoring station and remote monitoring IT application in management system architecture synoptic diagram thereof.
Embodiment
The present invention is a kind of method for distinguishing validity that is used for the long-range raw water quality of unmanned monitoring station online acquisition water quality data, on the existing hardware platform base of water quality monitoring station, utilize correlativity between each water quality parameter, realize that by software algorithm water quality monitoring is stood in line collection water quality data validity to be diagnosed, now elaborate this process, specifically comprise the steps: in conjunction with example
1), chooses nearest 3 years, the historical Monitoring Data of ten kinds of main raw water quality parameters in long-range raw water quality monitoring station (PH, temperature, turbidity, COD, dissolved oxygen DO, ammonia nitrogen, total nitrogen, total phosphorus, chlorophyll, algae density) is carried out statistical study, utilize the regression curve Y=kX+b between the per two kinds of different quality parameters of linear regression model (LRM) match, k, b can be tried to achieve by calculating, and obtain linearly dependent coefficient between them respectively, and carry out significance test, remain with the meaning correlationship.
2), participate in each water quality parameter of statistical study, definition is the simple crosscorrelation water quality parameter of this water quality parameter with (must satisfy 〉=0.7) another parameter of its linearly dependent coefficient maximum.
3), water quality parameter A, nearest two subnormal Monitoring Data are X A1, X A2, corresponding monitoring time is respectively t 1, t 2,
Calculate this water quality parameter at t 1To t 2Mean speed is V in time period 1=| X A2-X A1|/(t 2-t 1), and with V 1Be this water quality parameter reference change speed, i.e. V RF=V 1After nearest twice normal data of water quality parameter A upgraded, this parameter reference change speed then needed to recomputate.Monitoring central station water quality information administrative center receives the up-to-date image data X of A parameter A3, monitoring time t 3After, calculate it at t 2To t 3Mean speed is V in time period 2=| X A3-X A2|/(t 3-t 2), if V 2>2*V RF, then fluctuation by a relatively large margin appears in the A parameter, and this Monitoring Data validity need enter (4) and diagnose; Otherwise, think that then this Monitoring Data of A parameter is normal.
4) Monitoring Data (X fluctuation appears, as certain water quality parameter A, A3) when validity need be diagnosed, find out this parameter simple crosscorrelation water quality parameter B that determines in (2), the B parameter is Y in the corresponding Monitoring Data of identical monitoring time B3, by the A of (1) kind match, the linear regression curve Y=kX+b of B parameter and B parameter be Monitoring Data Y this time B3It is that 0.95 prediction is estimated that the A parameter is carried out confidence level, calculate fiducial interval for (m, n), if X A3(m n), then is diagnosed as water quality parameter A to ∈, B, this time Monitoring Data X A3, Y B3, when confidence level 0.95, satisfy the regression curve equation, promptly similar fluctuation situation appears in water quality parameter A, B, and this fluctuation is that A parameter this time Monitoring Data is normal, effective because raw water quality occurs belonging to normal variation due to the bigger variation; Otherwise, think that then similar situation of change does not appear in water quality parameter A, B, the A parameter fluctuation is because due to the instrument failure, A parameter this time Monitoring Data is an abnormal data, should abandon, and sends corresponding water quality instrument failure warning message to the environmental monitoring center simultaneously.

Claims (4)

1. the diagnostic method of an online acquisition water quality data validity is characterized in that this method may further comprise the steps:
1. it is the statistical study time period) with nearest a certain section time Δ t, choose PH, temperature, turbidity, COD, dissolved oxygen DO, ammonia nitrogen, total nitrogen, total phosphorus, chlorophyll and algae density parameter that water quality monitoring stands in main raw water quality in the Δ t time period, historical Monitoring Data is carried out statistical study, utilize the regression curve between the per two kinds of different quality parameters of linear regression model (LRM) match, and obtain the linearly dependent coefficient between them respectively;
2.) each water quality parameter of participation statistical study, definition is the simple crosscorrelation water quality parameter of this water quality parameter with another parameter of its related coefficient maximum;
3.) according to nearest twice subnormal Monitoring Data of each water quality parameter of real time record, renewal and monitoring time thereof, calculate the mean change speed in the nearest monitoring time section of each water quality parameter, and define this rate of change and be this water quality parameter reference change speed; When monitoring central station water quality information administrative center receives in the online acquisition data of the long-range raw water quality of certain unmanned monitoring station, a certain water quality parameter rate of change surpasses this water quality parameter reference change speed more than 2 times the time, then need to this water quality parameter this time Monitoring Data validity diagnose;
4. fluctuation appears as a certain water quality parameter A), when its Monitoring Data validity need be diagnosed, then by checking procedure 2) in simple crosscorrelation water quality parameter B situation of change in the identical time period of this water quality parameter of determining judge: if similar situation of change also appears in water quality parameter B, then diagnose water quality parameter A sudden change this time really since the sampling raw water quality occur due to the sudden change; Otherwise judge that then water quality parameter A sudden change this time is because this water quality parameter surveying instrument induced fault.
2. the diagnostic method of online acquisition water quality data validity according to claim 1 is characterized in that the statistical study time period is chosen as arbitrary time span in 1 to 3 year scope.
3. the diagnostic method of online acquisition water quality data validity according to claim 1 is characterized in that the linearly dependent coefficient between each water quality parameter and its simple crosscorrelation water quality parameter must be more than or equal to 0.7.
4. the diagnostic method of online acquisition water quality data validity according to claim 1 is characterized in that the water quality monitoring station monitors main water quality parameter and comprise at least: PH, temperature, turbidity, COD, dissolved oxygen DO, ammonia nitrogen, total nitrogen, total phosphorus, chlorophyll and algae density.
CN2009101854215A 2009-11-09 2009-11-09 Diagnostic method for validity of online collected water quality data Expired - Fee Related CN101718774B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101854215A CN101718774B (en) 2009-11-09 2009-11-09 Diagnostic method for validity of online collected water quality data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101854215A CN101718774B (en) 2009-11-09 2009-11-09 Diagnostic method for validity of online collected water quality data

Publications (2)

Publication Number Publication Date
CN101718774A true CN101718774A (en) 2010-06-02
CN101718774B CN101718774B (en) 2012-11-28

Family

ID=42433378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101854215A Expired - Fee Related CN101718774B (en) 2009-11-09 2009-11-09 Diagnostic method for validity of online collected water quality data

Country Status (1)

Country Link
CN (1) CN101718774B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947690A (en) * 2010-06-22 2013-02-27 株式会社日立高新技术 Automatic analysis device
CN103175941A (en) * 2012-12-29 2013-06-26 聚光科技(杭州)股份有限公司 Analysis device data validity judgment device and method
CN103235096A (en) * 2013-04-16 2013-08-07 广州铁路职业技术学院 Sewage water quality detection method and apparatus
CN103398743A (en) * 2013-08-07 2013-11-20 广州中国科学院沈阳自动化研究所分所 Mobile water quality monitoring device, system and method
CN103728429A (en) * 2013-12-25 2014-04-16 力合科技(湖南)股份有限公司 Water quality online monitoring method and monitoring system
CN103743878A (en) * 2013-12-26 2014-04-23 力合科技(湖南)股份有限公司 Water quality monitoring data processing method and device
WO2018027517A1 (en) * 2016-08-09 2018-02-15 曹鸿鹏 On-site water source pollution monitoring method and system
CN108108889A (en) * 2017-12-18 2018-06-01 杭州电子科技大学 A kind of water monitoring data on-line processing method and device
CN108226437A (en) * 2018-04-09 2018-06-29 山东建筑大学 A kind of method of amendment water quality monitoring result applied to lake library water body
CN108665119A (en) * 2018-08-03 2018-10-16 清华大学 A kind of water supply network unusual service condition method for early warning
CN109520567A (en) * 2018-11-27 2019-03-26 深圳先进技术研究院 A kind of sea-farming water quality early-warning method
CN110278287A (en) * 2019-07-24 2019-09-24 浙江创韵环境科技有限公司 A kind of sewage monitoring system
CN110751853A (en) * 2019-10-25 2020-02-04 百度在线网络技术(北京)有限公司 Parking space data validity identification method and device
CN112037106A (en) * 2020-08-07 2020-12-04 汉威科技集团股份有限公司 Data anomaly analysis method based on characteristic cross correlation and probability density
CN112540050A (en) * 2020-11-24 2021-03-23 威海精讯畅通电子科技有限公司 Water quality detector and detection method thereof
CN112858619A (en) * 2021-03-03 2021-05-28 华南农业大学 Prediction and early warning method for prawn culture water quality
CN115508522A (en) * 2021-06-07 2022-12-23 芯视界(北京)科技有限公司 Water quality detection method and device, electronic device and storage medium
WO2023000503A1 (en) * 2021-07-19 2023-01-26 上海亨通海洋装备有限公司 Online self-detection control system for water quality testing instrument

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19824609C2 (en) * 1998-06-02 2001-09-06 Wolfram Weis Process for online monitoring of compliance with specified limit values and parameters in fluids and device for carrying out the process
CN201110857Y (en) * 2007-10-29 2008-09-03 于明 Water source on-line monitoring early-warning system
CN201222059Y (en) * 2008-06-20 2009-04-15 东莞市凌峰信息科技有限公司 Remote wireless multi-point detection system for water quality

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947690A (en) * 2010-06-22 2013-02-27 株式会社日立高新技术 Automatic analysis device
CN102947690B (en) * 2010-06-22 2015-03-11 株式会社日立高新技术 Automatic analysis device
CN103175941A (en) * 2012-12-29 2013-06-26 聚光科技(杭州)股份有限公司 Analysis device data validity judgment device and method
CN103175941B (en) * 2012-12-29 2016-01-20 聚光科技(杭州)股份有限公司 The judgment means of analytical equipment data validity and method
CN103235096A (en) * 2013-04-16 2013-08-07 广州铁路职业技术学院 Sewage water quality detection method and apparatus
CN103398743A (en) * 2013-08-07 2013-11-20 广州中国科学院沈阳自动化研究所分所 Mobile water quality monitoring device, system and method
CN103398743B (en) * 2013-08-07 2015-12-23 广州中国科学院沈阳自动化研究所分所 Mobile water quality monitoring device, system and method
CN103728429A (en) * 2013-12-25 2014-04-16 力合科技(湖南)股份有限公司 Water quality online monitoring method and monitoring system
CN103728429B (en) * 2013-12-25 2016-06-01 力合科技(湖南)股份有限公司 On-line water quality monitoring method and Monitoring systems
CN103743878A (en) * 2013-12-26 2014-04-23 力合科技(湖南)股份有限公司 Water quality monitoring data processing method and device
WO2018027517A1 (en) * 2016-08-09 2018-02-15 曹鸿鹏 On-site water source pollution monitoring method and system
CN108108889A (en) * 2017-12-18 2018-06-01 杭州电子科技大学 A kind of water monitoring data on-line processing method and device
CN108226437A (en) * 2018-04-09 2018-06-29 山东建筑大学 A kind of method of amendment water quality monitoring result applied to lake library water body
CN108665119A (en) * 2018-08-03 2018-10-16 清华大学 A kind of water supply network unusual service condition method for early warning
CN108665119B (en) * 2018-08-03 2021-05-28 清华大学 Water supply pipe network abnormal working condition early warning method
CN109520567A (en) * 2018-11-27 2019-03-26 深圳先进技术研究院 A kind of sea-farming water quality early-warning method
CN110278287A (en) * 2019-07-24 2019-09-24 浙江创韵环境科技有限公司 A kind of sewage monitoring system
CN110751853A (en) * 2019-10-25 2020-02-04 百度在线网络技术(北京)有限公司 Parking space data validity identification method and device
CN112037106A (en) * 2020-08-07 2020-12-04 汉威科技集团股份有限公司 Data anomaly analysis method based on characteristic cross correlation and probability density
CN112037106B (en) * 2020-08-07 2023-12-15 汉威科技集团股份有限公司 Data anomaly analysis method based on feature cross-correlation and probability density
CN112540050A (en) * 2020-11-24 2021-03-23 威海精讯畅通电子科技有限公司 Water quality detector and detection method thereof
CN112540050B (en) * 2020-11-24 2022-12-27 威海精讯畅通电子科技有限公司 Water quality detector and detection method thereof
CN112858619A (en) * 2021-03-03 2021-05-28 华南农业大学 Prediction and early warning method for prawn culture water quality
CN115508522A (en) * 2021-06-07 2022-12-23 芯视界(北京)科技有限公司 Water quality detection method and device, electronic device and storage medium
WO2023000503A1 (en) * 2021-07-19 2023-01-26 上海亨通海洋装备有限公司 Online self-detection control system for water quality testing instrument

Also Published As

Publication number Publication date
CN101718774B (en) 2012-11-28

Similar Documents

Publication Publication Date Title
CN101718774B (en) Diagnostic method for validity of online collected water quality data
CN112863134B (en) Intelligent diagnosis system and method for rural sewage treatment facility abnormal operation
CN110297018A (en) A kind of method and device that drainage pipeline networks pollutant emission is traced to the source
CN111596025B (en) Water environment pollution analysis system based on big data
CN103728428A (en) Water quality real-time online monitoring system
CN203101366U (en) Online water quality detecting device and online water quality monitoring system for water supplying network
JP2005250557A (en) Daily water quality monitoring system by mobile technology
CN117630319B (en) Big data-based water quality monitoring and early warning method and system
JP4964273B2 (en) Water treatment facility management system
CN111121874A (en) Water quality monitoring and evaluating system and method for water source area
CN106225832A (en) A kind of water quality monitoring system for Landscape Park and method
CN208588936U (en) A kind of monitoring system in waste water processing
CN211825988U (en) Water surface pollutant monitoring system
CN110850051A (en) Water quality environment monitoring method
CN115330575A (en) Three-dimensional visual distributed sewage plant management system
CN109870989A (en) A kind of method and its system of comprehensively monitoring sewage discharge
CN112327791A (en) Environmental monitoring platform based on big data
KR100523856B1 (en) A remote control system in the quality of water
CN111240256A (en) Building engineering on-site monitoring management system
CN211374726U (en) Water quality monitoring system
CN112699003A (en) Monitoring management method and system for rural small-sized sewage treatment facilities
CN117853055A (en) Pollution tracing management and control system
CN104750144B (en) Method of early warning operating condition of equipment
CN217765080U (en) Water meter and pipe network running state monitoring system
JP2007087117A (en) Data collection device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121128

Termination date: 20151109

CF01 Termination of patent right due to non-payment of annual fee