CN101696942B - Multi-junction solar cell and each sub-cell AC electroluminescence test method and device - Google Patents
Multi-junction solar cell and each sub-cell AC electroluminescence test method and device Download PDFInfo
- Publication number
- CN101696942B CN101696942B CN2009101126699A CN200910112669A CN101696942B CN 101696942 B CN101696942 B CN 101696942B CN 2009101126699 A CN2009101126699 A CN 2009101126699A CN 200910112669 A CN200910112669 A CN 200910112669A CN 101696942 B CN101696942 B CN 101696942B
- Authority
- CN
- China
- Prior art keywords
- solar cell
- sub
- electroluminescence
- cell
- junction solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005401 electroluminescence Methods 0.000 title claims abstract description 57
- 238000010998 test method Methods 0.000 title claims description 8
- 230000007547 defect Effects 0.000 claims abstract description 40
- 238000012360 testing method Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 30
- 230000006378 damage Effects 0.000 claims abstract description 23
- 238000001228 spectrum Methods 0.000 claims abstract description 19
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 18
- 238000001194 electroluminescence spectrum Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 9
- 230000003595 spectral effect Effects 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 7
- 238000004020 luminiscence type Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000010191 image analysis Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 238000007689 inspection Methods 0.000 claims description 2
- 238000000295 emission spectrum Methods 0.000 claims 1
- 238000003331 infrared imaging Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract 8
- 208000027418 Wounds and injury Diseases 0.000 abstract 1
- 210000003850 cellular structure Anatomy 0.000 abstract 1
- 239000002178 crystalline material Substances 0.000 abstract 1
- 208000014674 injury Diseases 0.000 abstract 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 13
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种太阳能电池交流电致发光测试,尤其是涉及一种多结太阳能电池及各子电池交流电致发光测试方法和装置,主要通过建立电致发光光谱与分光成像联合系统,实现各子电池材料缺陷和器件工艺损伤的检测。The present invention relates to a solar cell AC electroluminescence test, in particular to a multi-junction solar cell and each sub-battery AC electroluminescence test method and device, mainly by establishing a joint system of electroluminescence spectrum and spectroscopic imaging to realize the detection of each sub-cell Detection of material defects and device process damage.
背景技术Background technique
当前,在石油、煤炭等不可再生矿物能源日趋耗尽,环境污染日益严重的双重压力下,越来越多的国家开始实行阳光计划,开发太阳能这一纯天然,具有储量大、地域广、清洁可再生等优势的资源。太阳能电池作为利用太阳辐射能可行有效的方法,为人类广泛地利用太阳能开辟了广阔的前景。随着电池制造技术的改进,与晶体硅第一代太阳能电池和非晶硅、铜铟镓硒等第二代薄膜太阳能电池相比,砷化镓基半导体材料性能良好,其多结叠层连接构成的太阳能电池基本可实现全光谱吸收,使得其光电转换效率始终远远领先于其它太阳能电池。加上其优良的耐辐照性能和耐高温性能,进一步提高了电池的空间应用的可靠性和使用寿命,已日益呈现替代高效硅太阳能电池和单结砷化镓太阳能电池的趋势。At present, under the double pressure of the depletion of non-renewable mineral energy such as oil and coal and the increasingly serious environmental pollution, more and more countries have begun to implement the Sunshine Plan to develop solar energy, a pure natural energy with large reserves, wide areas, and clean energy. Renewable and other advantageous resources. As a feasible and effective method of utilizing solar radiation energy, solar cells have opened up broad prospects for human beings to utilize solar energy extensively. With the improvement of battery manufacturing technology, compared with the first-generation solar cells of crystalline silicon and the second-generation thin-film solar cells such as amorphous silicon and copper indium gallium selenide, gallium arsenide-based semiconductor materials have good performance, and their multi-junction stack connections The formed solar cell can basically realize full-spectrum absorption, so that its photoelectric conversion efficiency is always far ahead of other solar cells. Coupled with its excellent radiation resistance and high temperature resistance, it further improves the reliability and service life of the space application of the battery, and it has increasingly shown the trend of replacing high-efficiency silicon solar cells and single-junction gallium arsenide solar cells.
多结太阳能电池的设计,关键在于调节各子电池材料的晶格匹配、各个异质结之间的带隙匹配及各子电池的厚度,使各子电池之间电流匹配,尽可能满足各子电池光电流相等的条件,以最大限度地提高光电转换效率,否则,叠层电池的光电流将限于光电流最小的子电池,从而带来电流的复合损失。其中任何一个子电池出现问题,都会影响整电池的特性,从而降低电池的光电转换效率。因此对于多结太阳能电池,整电池和各子电池特性的分别检测是非常关键的技术。The key to the design of multi-junction solar cells is to adjust the lattice matching of each sub-cell material, the bandgap matching between each heterojunction and the thickness of each sub-cell, so that the current matching between each sub-cell can meet the requirements of each sub-cell as much as possible. The condition that the photocurrent of the cell is equal to maximize the photoelectric conversion efficiency, otherwise, the photocurrent of the laminated cell will be limited to the sub-cell with the smallest photocurrent, resulting in the recombination loss of the current. A problem with any of the sub-cells will affect the characteristics of the whole battery, thereby reducing the photoelectric conversion efficiency of the battery. Therefore, for multi-junction solar cells, the separate detection of the characteristics of the whole cell and each sub-cell is a very critical technology.
多结太阳能电池由不同的材料组成,异质界面的失配应力、层间杂质的扩散等增加了材料生长的难度。界面一旦控制不好,将产生大量的位错、反相畴等缺陷,形成复合中心,严重降低少数载流子的寿命。而随着缺陷浓度的增加,光生载流子发生复合损失,漏电流增大,严重危害太阳能电池的寿命和性能。尤其对于空间应用的多结太阳能电池,受太空中高能粒子辐射,会引起晶格匹配缺陷,也就是辐射损伤,使电池输出功率逐渐下降,严重影响其使用寿命。此外,器件工艺引入的损伤以及电极破裂等问题,同样会大大削弱太阳能电池的光电转换效率。为了了解和控制太阳能电池中的缺陷,以提高太阳能电池的效率和使用寿命,目前常用的检测太阳能电池缺陷的技术有激光束诱导电流(LBIC)技术(C.L.Zhou et.al.,“Characterization of crystalline silicon solar cells by electrical parameters.”,Optics and PrecisionEngineering,7(2008)1163.)和电子束诱导电流(EBIC)技术(Y.Toshiki,et.al.,“Noble EvaluationMethod for Light Trapping Effect in Polycrystalline Silicon Solar Cells”,Japanese Journal ofApplied Physics,43(2004)439.)。然而,其测试时间长,而且主要用于单结太阳能电池,无法了解多结太阳能电池各子电池的信息。Multi-junction solar cells are composed of different materials, and the mismatch stress at the heterointerface and the diffusion of impurities between layers increase the difficulty of material growth. Once the interface is not well controlled, a large number of defects such as dislocations and anti-phase domains will be generated to form recombination centers, which will seriously reduce the lifetime of minority carriers. However, with the increase of defect concentration, the recombination loss of photogenerated carriers occurs, and the leakage current increases, which seriously endangers the life and performance of solar cells. Especially for multi-junction solar cells for space applications, the radiation of high-energy particles in space will cause lattice matching defects, that is, radiation damage, which will gradually reduce the output power of the cells and seriously affect their service life. In addition, problems such as damage and electrode cracks introduced by the device process will also greatly weaken the photoelectric conversion efficiency of solar cells. In order to understand and control the defects in solar cells to improve the efficiency and service life of solar cells, the technology commonly used to detect solar cell defects is laser beam induced current (LBIC) technology (C.L.Zhou et.al., "Characterization of crystalline silicon solar cells by electrical parameters.", Optics and Precision Engineering, 7(2008) 1163.) and electron beam induced current (EBIC) technology (Y.Toshiki, et.al., "Noble Evaluation Method for Light Trapping Effect in Polycrystalline Silicon Solar Cells", Japanese Journal of Applied Physics, 43(2004) 439.). However, its test time is long, and it is mainly used for single-junction solar cells, and it is impossible to know the information of each sub-cell of multi-junction solar cells.
发明内容Contents of the invention
本发明的目的是提供一种多结太阳能电池及各子电池交流电致发光测试装置。The purpose of the present invention is to provide a multi-junction solar cell and each sub-cell alternating current electroluminescence testing device.
本发明的另一目的是提供一种多结太阳能电池及各子电池交流电致发光测试方法。Another object of the present invention is to provide a multi-junction solar cell and a method for testing AC electroluminescence of each sub-cell.
本发明所述多结太阳能电池及各子电池交流电致发光测试装置设有交流驱动电路、光学组件、摄像管、光谱仪和计算机。The multi-junction solar battery and each sub-battery AC electroluminescence testing device of the present invention is provided with an AC drive circuit, an optical component, a camera tube, a spectrometer and a computer.
交流驱动电路输入端外接交流市电,交流驱动电路输出端接太阳能电池阵列;光学组件设有用于对太阳能电池电致发光光谱分光的滤波片、用于改变测试空间范围的透镜组和反射镜,以实现对太阳能电池阵列及其单个太阳能电池甚至细微晶体缺陷的观测,滤波片设于太阳能电池阵列上方,透镜组设于滤波片上方,反射镜设于透镜组上方,摄像管设于反射镜上方,滤波片、透镜组、反射镜和摄像管的光轴为同一光轴,反射镜的反射光束传至光谱仪接收口,对所需测试的太阳能电池进行电致发光光谱测量,摄像管的数据输出端通过数据线接入计算机进行分析处理。The input end of the AC drive circuit is connected to the AC mains, and the output end of the AC drive circuit is connected to the solar cell array; the optical component is provided with a filter for splitting the electroluminescent spectrum of the solar cell, a lens group and a mirror for changing the range of the test space, In order to realize the observation of the solar cell array and its single solar cell or even the tiny crystal defects, the filter is set above the solar cell array, the lens group is set above the filter, the reflector is set above the lens group, and the camera tube is set above the reflector , the optical axis of the filter, lens group, mirror and camera tube is the same optical axis, the reflected light beam of the mirror is transmitted to the receiving port of the spectrometer, and the electroluminescent spectrum measurement is performed on the solar cell to be tested, and the data output of the camera tube is The terminal is connected to the computer through the data line for analysis and processing.
所述交流驱动电路可采用调压器;所述透镜组可采用相机镜头或显微镜等。The AC drive circuit can be a voltage regulator; the lens group can be a camera lens or a microscope.
光谱仪波长检测范围覆盖整个太阳能电池的光谱响应范围,用于测量太阳能电池电致发光光谱。The wavelength detection range of the spectrometer covers the spectral response range of the entire solar cell, and is used to measure the electroluminescence spectrum of the solar cell.
所述摄像管包括红外光摄像管和可见光摄像管两类。根据测量对象,选择红外光或可见光摄像管,实现多结太阳能电池阵列、单个太阳能电池乃至各子电池的电致发光图像测量。The camera tube includes infrared camera tube and visible light camera tube. According to the measurement object, infrared light or visible light camera tube is selected to realize the electroluminescence image measurement of multi-junction solar cell array, single solar cell and even each sub-cell.
所述计算机包括数据采集与设备控制部件、数据转换处理分析软件。设备控制部件主要用于控制摄像管曝光时间、图像采集的模式、摄像管读取速度等。The computer includes data acquisition and equipment control components, and data conversion, processing and analysis software. The equipment control part is mainly used to control the exposure time of the camera tube, the mode of image acquisition, the reading speed of the camera tube, etc.
本发明所述多结太阳能电池及各子电池交流电致发光测试方法,采用多结太阳能电池及各子电池交流电致发光测试装置,包括以下步骤:The multi-junction solar cell and each sub-cell AC electroluminescence test method of the present invention adopts the multi-junction solar cell and each sub-cell AC electroluminescence test device, comprising the following steps:
1)将多结太阳能电池样品放置于样品台上,市电经交流驱动电路后,外加于电池样品上;1) The multi-junction solar cell sample is placed on the sample stage, and the mains power is applied to the battery sample after passing through the AC drive circuit;
2)采用光谱仪,测量多结太阳能电池电致发光光谱,获得各个子结的发光波段;2) Using a spectrometer to measure the electroluminescence spectrum of the multi-junction solar cell to obtain the luminescence band of each sub-junction;
3)根据步骤2)所获知的太阳能电池电致发光光谱波长范围,选择相应波段的摄像管,并通过滤波片,选择测试的光谱范围(可包含多个结或者仅含单个子结的发光波段);3) According to the solar cell electroluminescence spectrum wavelength range known in step 2), select the imaging tube of the corresponding band, and pass the filter to select the spectral range of the test (can include multiple junctions or only contain a single sub-junction luminescence band );
4)通过不同透镜组合,选择电池样品的测试范围,仔细调焦以获得清晰的空间位置分辨的交流电致发光图像;所述交流电致发光图像可采用颜色或者灰度表示电致发光光强;4) Through different lens combinations, select the test range of the battery sample, and carefully adjust the focus to obtain a clear spatially resolved AC electroluminescence image; the AC electroluminescence image can use color or grayscale to represent the electroluminescent light intensity;
5)采用计算机进行数据处理和分析,以获取太阳能电池及其各子电池器件工艺损伤和晶体材料缺陷信息,完成多结太阳能电池及各子电池交流电致发光测试。5) Use computer for data processing and analysis to obtain information on process damage and crystal material defects of solar cells and their sub-cells, and complete the AC electroluminescence test of multi-junction solar cells and their sub-cells.
在步骤2)中,所述测量多结太阳能电池电致发光光谱,若发光波长在红外光范围的子电池,则首先采用红外滤波片分光,再通过透镜组聚焦成像于可响应该波段的红外光摄像管;若发光光谱在可见光范围的子电池,则直接选择可见光摄像管。In step 2), the electroluminescence spectrum of the multi-junction solar cell is measured. If the emission wavelength of the sub-cell is in the infrared range, the infrared filter is first used to split the light, and then the lens group is used to focus the image on the infrared light that can respond to this band. Optical camera tube; if the sub-battery with luminous spectrum in the visible light range, then directly select the visible light camera tube.
在步骤5)中,所述采用计算机进行数据处理和分析,对太阳能电池阵列交流电致发光全谱图像分析,是寻找并比较不发光和发光强度较弱的单电池,其中完全不发光的为没有电注入的单电池,可能为组装、封装、电极、或电接触等工艺过程出现问题,而不均匀发光的单电池可能为晶体缺陷、器件工艺损伤所致,需进一步检测;或In step 5), the computer is used for data processing and analysis, and the analysis of the full-spectrum image of the AC electroluminescence of the solar cell array is to find and compare single cells that do not emit light and have weaker luminous intensity, wherein those that do not emit light at all are no Electrically injected single cells may be caused by problems in the process of assembly, packaging, electrodes, or electrical contacts, etc., while unevenly luminous single cells may be caused by crystal defects or device process damage, and further inspection is required; or
对单个太阳能电池交流电致发光全谱图像分析,是发光强度强、空间分布均匀的电池质量良好;发光强度弱、空间分布不均的电池为存在局域材料缺陷、子电池缺陷、或工艺损伤的电池,需结合各子电池的交流电致发光图像进一步分析;或For the full-spectrum image analysis of AC electroluminescence of a single solar cell, the battery with strong luminous intensity and uniform spatial distribution is of good quality; the battery with weak luminous intensity and uneven spatial distribution has local material defects, sub-cell defects, or process damage. Batteries, which need to be further analyzed in conjunction with the AC electroluminescence images of each sub-cell; or
对多结太阳能电池各子电池交流电致发光图像工艺损伤和材料缺陷分析。Process damage and material defect analysis of AC electroluminescence images of each sub-cell of a multi-junction solar cell.
所述器件工艺损伤的判断方法是:良好的太阳能电池电致发光图像,在电池表面的电极和金属栅覆盖区表现为暗色条纹,而金属栅之间的电池材料则表现为均匀的亮区。电极或者器件结构不完整将导致电注入不畅,发光强度较弱,表现在图片上为暗区。通过观察和比较不同子电池的交流电致发光图像,确定弱光强区域的形状与电极或其它器件结构的形状是否相同,尤其是顶电池的发光图像是否与器件结构形状相似,其中形状相同的区域为器件工艺损伤。The method for judging the process damage of the device is as follows: in a good solar cell electroluminescent image, the electrode and metal grid coverage areas on the battery surface appear as dark stripes, while the battery materials between the metal grids appear as uniform bright areas. Incomplete electrodes or device structures will lead to poor electrical injection and weak luminous intensity, which is shown as dark areas on the picture. By observing and comparing the AC electroluminescence images of different sub-cells, determine whether the shape of the weak light intensity area is the same as that of the electrode or other device structures, especially whether the luminescence image of the top cell is similar to the shape of the device structure, where the area of the same shape Damage to the device process.
所述晶体材料缺陷的判断方法是:除了与电极相关损伤区域外,通常亦可观察到与电极或其它器件结构的形状不相同的弱光强区域,这些暗区形状各异,在各子电池的位置不尽相同,其中在各子电池均出现的位置和形状相近的弱光强区域为贯穿各子电池的晶体缺陷,如穿透位错、晶界等,其产生可能始于底电池;位置和形状不同的弱光强区域为各子电池中局域晶体缺陷,如杂质缺陷、异质结构失配位错等,与各子电池的材料和结构有关。The method for judging the defects of the crystal material is: in addition to the damage area related to the electrode, the weak light intensity area that is different from the shape of the electrode or other device structures can usually be observed. These dark areas have different shapes. In each sub-cell The positions of the subcells are not the same, and the weak light intensity areas that appear in each subcell and have similar shapes are crystal defects that run through each subcell, such as threading dislocations, grain boundaries, etc., which may originate from the bottom cell; The weak light intensity regions with different positions and shapes are local crystal defects in each sub-cell, such as impurity defects, heterostructure mismatch dislocations, etc., which are related to the material and structure of each sub-cell.
上述损伤和缺陷的观测,均可通过提高电压或电流,增大发光图像的衬度,以详细辨认细小的缺陷。The observation of the above-mentioned damages and defects can increase the contrast of the luminescent image by increasing the voltage or current, so as to identify small defects in detail.
由于大功率太阳能电池板多用于生活供电,因此对太阳能电池组进行电致发光的测试,需要大电流来驱动。而输出大功率的直流稳压电源体积大,价格高。本发明采用交流电源,利用市电结合调压器,以实现大功率的太阳能电池阵列的大电流驱动需要,避免采用直流电源价格昂贵、体积大等不利因素。可以直接利用市电,方便快捷且大大降低了成本,可在工业上大规模推广使用。同时,本发明结合电致发光和成像技术,可方便快捷地在短短的几秒时间内,实现多结太阳能电池子电池中缺陷信息的分别检测,测试方法快速便捷(成像时间为大约1s),有效地区分多结太阳能电池阵列、单个太阳能电池、各子电池的特性。因此,在多结太阳能电池的研究开发乃至大规模生产和制备具有广泛的应用前景。Since high-power solar panels are mostly used for power supply in daily life, the electroluminescent test of solar battery packs requires high current to drive. However, the DC stabilized power supply with high output power is bulky and expensive. The invention adopts an AC power supply, and utilizes commercial power combined with a voltage regulator to realize the high-current drive requirement of a high-power solar cell array, and avoids disadvantageous factors such as high price and large volume of the DC power supply. It can directly use the mains power, which is convenient and fast, and greatly reduces the cost, and can be widely used in industry. At the same time, the present invention combines electroluminescence and imaging technology, which can conveniently and quickly realize the separate detection of defect information in sub-cells of multi-junction solar cells in just a few seconds, and the test method is fast and convenient (the imaging time is about 1s) , to effectively distinguish the characteristics of multi-junction solar cell arrays, individual solar cells, and individual sub-cells. Therefore, it has broad application prospects in the research and development of multi-junction solar cells and even in large-scale production and preparation.
附图说明Description of drawings
图1为本发明所述多结太阳能电池及各子电池交流电致发光测试装置实施例的结构组成示意图。FIG. 1 is a schematic diagram of the structure and composition of an embodiment of an alternating current electroluminescence test device for a multi-junction solar cell and each sub-cell according to the present invention.
图2为本发明所述单个多结太阳能电池及各子电池交流电致发光测试装置实施例的结构组成示意图。FIG. 2 is a schematic diagram of the structure and composition of an embodiment of an AC electroluminescence test device for a single multi-junction solar cell and each sub-cell according to the present invention.
图3为本发明所述多结太阳能电池各子电池交流电致发光测试装置实施例的结构组成示意图。3 is a schematic diagram of the structure and composition of an embodiment of an alternating current electroluminescence test device for each sub-cell of a multi-junction solar cell according to the present invention.
图4为单个InGaP/GaAs/Ge三结太阳能电池交流电致发光光谱。在图4中,横坐标为波长(nm),纵坐标为强度(a.u.)。Figure 4 is the AC electroluminescence spectrum of a single InGaP/GaAs/Ge triple-junction solar cell. In FIG. 4, the abscissa is the wavelength (nm), and the ordinate is the intensity (a.u.).
图5为InGaP/GaAs/Ge三结太阳能电池InGaP子电池交流电致发光图像。在图5中,标尺为1mm。Fig. 5 is an AC electroluminescence image of an InGaP sub-cell of an InGaP/GaAs/Ge triple-junction solar cell. In Fig. 5, the scale bar is 1 mm.
图6为InGaP/GaAs/Ge三结太阳能电池GaAs子电池交流电致发光图像。在图6中,标尺为1mm。Fig. 6 is an AC electroluminescence image of a GaAs sub-cell of an InGaP/GaAs/Ge triple-junction solar cell. In Fig. 6, the scale bar is 1 mm.
具体实施方式Detailed ways
下面结合附图,以InGaP/GaAs/Ge三结太阳能电池为例,对本发明的方法细节进行详细说明和示范。The details of the method of the present invention will be described and demonstrated below in conjunction with the accompanying drawings, taking an InGaP/GaAs/Ge triple-junction solar cell as an example.
参见图1~4,本发明所述多结太阳能电池及各子电池交流电致发光测试装置设有调压器(即交流驱动电路)9、光学组件、摄像管13、光谱仪17和计算机14。Referring to FIGS. 1-4 , the multi-junction solar cell and each sub-cell AC electroluminescence testing device of the present invention is provided with a voltage regulator (ie, an AC drive circuit) 9 , an optical component, a
调压器9输入端外接交流市电,调压器9输出端接太阳能电池阵列10;光学组件设有用于对太阳能电池电致发光光谱分光的滤波片11、用于改变测试空间范围的透镜组12和反射镜18,以实现对太阳能电池阵列10及其单个太阳能电池15甚至细微晶体缺陷的观测,滤波片11设于太阳能电池阵列10上方,透镜组12设于滤波片11上方,反射镜18设于透镜组12上方,摄像管13设于反射镜18上方,滤波片11、透镜组12、反射镜18和摄像管13的光轴为同一光轴,反射镜18的反射光束传至光谱仪17接收口,对所需测试的太阳能电池进行电致发光光谱测量,摄像管13的数据输出端通过数据线接入计算机14进行分析处理。The input end of the voltage regulator 9 is connected to the AC mains, and the output end of the voltage regulator 9 is connected to the
光谱仪17的波长检测范围覆盖整个太阳能电池的光谱响应范围,用于测量太阳能电池电致发光光谱。The wavelength detection range of the
市电(交流)经调压器9调整至合适电压值后,驱动太阳能电池阵列10乃至单个多结太阳能电池16及其子电池。摄像管13连接透镜组12和滤波片11,置于太阳能电池上方对其进行电致发光图像测量。用反射镜18(透镜组12上方)将光反射至光谱仪17接收口,对所需测试的太阳能电池进行电致发光光谱测量(光谱测量和图像测量不同时进行)。数据均通过数据线传入计算机14进行分析处理。After the commercial power (AC) is adjusted to an appropriate voltage value by the voltage regulator 9, the
市电可采用220V或三相380V电压,根据被测太阳能电池样品的型号规格,调节不同的电压改变驱动电流的大小,如太阳能电池阵列需要的驱动电流远超过单个太阳能电池。测试过程中,电压值由小到大逐步提升。因二极管的电流随电压指数增大,太阳能电池开始发光后应细调电压,以防止电流过大烧坏电池。The mains can use 220V or three-phase 380V voltage. According to the model specifications of the tested solar cell samples, adjust different voltages to change the size of the driving current. For example, the driving current required by a solar cell array is much higher than that of a single solar cell. During the test, the voltage value is gradually increased from small to large. Because the current of the diode increases exponentially with the voltage, the voltage should be fine-tuned after the solar cell starts to emit light, so as to prevent the battery from being burned out due to excessive current.
不同波长滤波片用于对太阳能电池电致发光光谱分光。透镜组可选择相机镜头、显微镜等,不同的焦距透镜组用于改变测试空间范围,以实现对太阳能电池阵列及其单个太阳能电池甚至细微晶体缺陷的观测。Different wavelength filters are used to split the electroluminescent spectrum of the solar cell. The lens group can choose camera lens, microscope, etc. Different focal length lens groups are used to change the scope of the test space, so as to realize the observation of the solar cell array and its single solar cell and even the tiny crystal defects.
光谱仪波长检测范围覆盖整个太阳能电池的光谱响应范围,用于测量太阳能电池电致发光光谱。The wavelength detection range of the spectrometer covers the spectral response range of the entire solar cell, and is used to measure the electroluminescence spectrum of the solar cell.
摄像管包括红外光和可见光两类。根据测量对象,选择红外光或可见光摄像管,实现多结太阳能电池阵列、单个太阳能电池乃至各子电池的电致发光图像测量。Camera tubes include infrared light and visible light. According to the measurement object, infrared light or visible light camera tube is selected to realize the electroluminescence image measurement of multi-junction solar cell array, single solar cell and even each sub-cell.
计算机主要包括数据采集和设备控制部件、数据转换处理分析软件。设备控制部件主要用于控制摄像管曝光时间、图像采集的模式、摄像管读取速度等。The computer mainly includes data acquisition and equipment control components, and data conversion, processing and analysis software. The equipment control part is mainly used to control the exposure time of the camera tube, the mode of image acquisition, the reading speed of the camera tube, etc.
以下给出InGaP/GaAs/Ge三结太阳能电池及其各子电池交流电致发光测试。The AC electroluminescence test of the InGaP/GaAs/Ge triple-junction solar cell and its sub-cells is given below.
将大功率多结太阳能电池阵列按图1的方式连接。市电经调压器9后,以适当的交流电压值,外加于太阳能电池阵列10。利用太阳能电池的正向导通特性,对太阳能电池阵列10注入电子空穴对,并产生电子空穴对的辐射复合。利用光谱仪17获得太阳能电池电致发光光谱。通过滤波片11和透镜组12,选择光谱范围和电池阵列的测试范围。结合不同探测波段的摄像管13,获取空间位置分辨的发光图像。最后,采用计算机14进行数据处理和分析。观察太阳能电池阵列交流电致发光全谱图像,寻找并比较不发光和发光强度较弱的单电池。对于完全不发光的单电池15,可能为其相关的组装、封装、电极、或电接触等工艺过程出现问题;而对于发光不均匀的单电池16,可能为晶体缺陷、器件工艺损伤所致,需进一步检测。Connect the high-power multi-junction solar cell array as shown in Figure 1. After passing through the voltage regulator 9, the commercial power is applied to the
调整透镜组合,聚焦测试范围于需进一步检测的单个多结太阳能电池16(参见图2)。利用光谱仪17获得单个太阳能电池的电致发光光谱,发光波长为685nm和886nm,分别对应InGaP和GaAs子电池的带间发光。采用红外光摄像管(400~1800nm)获取整电池交流电致发光图像。Adjust the lens combination to focus the test range on a single multi-junction solar cell 16 (see FIG. 2 ) to be further tested. Using the
根据各子电池的发光光谱,选择可见光摄像管(400~800nm),则只有顶层InGaP的信息被接收并传入计算机14的数据处理中心,获得如图5所示的InGaP子电池电致发光图像。选择750nm红外滤波片11过滤可见信号,采用红外摄像管获得如图6所示的GaAs和Ge子电池的电致发光图像。再选择1700nm红外滤波片11过滤InGaP和GaAs子电池发光信号,采用红外摄像管获得Ge子电池的电致发光图像,因Ge为间接带半导体,室温下电致发光信号微弱,未能观测到其有效的发光图像。因此,图6实际上为GaAs子电池的电致发光图像。According to the luminescent spectrum of each sub-cell, select the visible light camera tube (400-800nm), then only the information of the top layer InGaP is received and sent to the data processing center of the
由于多结太阳能电池的器件具有一定的形状,其工艺损伤与形状密切相关,可通过电池发光图像进行判断。如图5中规整暗区1和暗区2与电极形状相关,主要由制备工艺损伤导致相应区域载流子注入不良、电致发光强度变弱。Since the device of a multi-junction solar cell has a certain shape, its process damage is closely related to the shape, which can be judged by the light-emitting image of the cell. As shown in Figure 5, the regular
对于材料本身的缺陷,其形状通常与电极或其它器件结构不相同,造成的发光暗区形状各异,在各子电池的位置不尽相同。如图5和图6标记的暗区3,出现于各子电池的同一个纵向位置,且形状相近,为贯穿各子电池的晶体缺陷,如穿透位错。图5中标记为4、5、6的暗区仅在InGaP子电池图像出现,为InGaP材料缺陷;图6中标号为7、8的暗区为GaAs材料缺陷。For the defects of the material itself, its shape is usually different from that of the electrodes or other device structures, resulting in different shapes of dark areas of light emission, and different positions in each sub-cell. The
因此,本发明可以快捷清晰地显示多结太阳能电池及其各子电池的材料缺陷和工艺损伤等信息,为高效多结太阳能电池的设计、生长、以及器件工艺提供科学依据。Therefore, the present invention can quickly and clearly display information such as material defects and process damages of multi-junction solar cells and their sub-cells, and provide scientific basis for the design, growth, and device technology of high-efficiency multi-junction solar cells.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101126699A CN101696942B (en) | 2009-10-16 | 2009-10-16 | Multi-junction solar cell and each sub-cell AC electroluminescence test method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101126699A CN101696942B (en) | 2009-10-16 | 2009-10-16 | Multi-junction solar cell and each sub-cell AC electroluminescence test method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101696942A CN101696942A (en) | 2010-04-21 |
CN101696942B true CN101696942B (en) | 2011-03-30 |
Family
ID=42142058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101126699A Active CN101696942B (en) | 2009-10-16 | 2009-10-16 | Multi-junction solar cell and each sub-cell AC electroluminescence test method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101696942B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101858870A (en) * | 2010-05-20 | 2010-10-13 | 厦门大学 | Electroluminescent Imaging Defect Detector for Solar Cells |
US9863890B2 (en) * | 2011-06-10 | 2018-01-09 | The Boeing Company | Solar cell testing apparatus and method |
CN102608510B (en) * | 2012-01-19 | 2014-03-26 | 上海交通大学 | Method for rapidly measuring minority carrier lifetime of crystalline silicon solar cell |
CN104142351A (en) * | 2014-07-10 | 2014-11-12 | 深圳清华大学研究院 | Semiconductor laser testing device and method |
CN104135230A (en) * | 2014-08-07 | 2014-11-05 | 鹤壁国立光电科技有限公司 | Solar cell module EL testing device and method under visible light |
CN106230379B (en) * | 2016-07-27 | 2018-06-26 | 天津三安光电有限公司 | A kind of detection device and detection method of multijunction solar cell chip |
CN106301222B (en) * | 2016-10-12 | 2018-05-01 | 河海大学常州校区 | A kind of method based on EL graphical analysis cell piece part dark current |
CN106768888B (en) * | 2016-12-23 | 2023-05-02 | 福建省计量科学研究院 | Space resolution test board and test method of electroluminescence defect detector |
FR3083405B1 (en) * | 2018-06-28 | 2020-07-31 | Airbus Defence & Space Sas | SOLAR SATELLITE GENERATOR TEST DEVICE |
CN109885934B (en) * | 2019-02-21 | 2024-01-09 | 云南师范大学 | Multi-junction solar cell sub-junction analysis method and device and electronic equipment |
CN110138338A (en) * | 2019-05-30 | 2019-08-16 | 尚德太阳能电力有限公司 | EL test method for imbrication battery |
DE102019121807A1 (en) * | 2019-08-13 | 2021-02-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and device for analyzing a multi-junction solar cell with at least two sub-solar cells by means of luminescence radiation |
CN112737504B (en) * | 2020-12-23 | 2021-11-02 | 东南大学 | A Micro-area Multispectral Response Photoelectric Tester for Multijunction Solar Cells |
CN117912973A (en) * | 2022-10-09 | 2024-04-19 | 北京曜能光电科技有限公司 | Online characterization method and device for multi-junction solar cell |
CN116539591A (en) * | 2023-07-07 | 2023-08-04 | 江苏华兴激光科技有限公司 | Method for measuring semiconductor material broadband electroluminescent spectrum |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1416288A1 (en) * | 2002-10-23 | 2004-05-06 | EADS Astrium GmbH | Method and apparatus for optical detection of mechanical defects in semiconductor components, in particular solar cell arrangements |
CN101419269A (en) * | 2007-10-22 | 2009-04-29 | 日清纺绩株式会社 | Inspecting apparatus for photovoltaic devices |
CN101454905A (en) * | 2006-04-28 | 2009-06-10 | 夏普株式会社 | Solar cell module evaluation device, evaluation method, and manufacturing method |
-
2009
- 2009-10-16 CN CN2009101126699A patent/CN101696942B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1416288A1 (en) * | 2002-10-23 | 2004-05-06 | EADS Astrium GmbH | Method and apparatus for optical detection of mechanical defects in semiconductor components, in particular solar cell arrangements |
CN101454905A (en) * | 2006-04-28 | 2009-06-10 | 夏普株式会社 | Solar cell module evaluation device, evaluation method, and manufacturing method |
CN101419269A (en) * | 2007-10-22 | 2009-04-29 | 日清纺绩株式会社 | Inspecting apparatus for photovoltaic devices |
Non-Patent Citations (4)
Title |
---|
Hiroki Sugimoto et al.LUMINESCENCE ANALYSIS OF RADIATION EFFECTS IN MULTIJUNCTION SOLAR CELLS FOR SPACE.《Photovoltaic Specialists Conference,2005.Conference Record of the Thirty-first IEEE》.2005,830-833. * |
HirokiSugimotoetal.LUMINESCENCEANALYSISOFRADIATIONEFFECTSINMULTIJUNCTIONSOLARCELLSFORSPACE.《PhotovoltaicSpecialistsConference 2005.Conference Record of the Thirty-first IEEE》.2005 |
牛振红 等.多结太阳电池辐射损伤的电致发光研究.《固体电子学研究与进展》.2008,第28卷(第1期),1-3. |
牛振红等.多结太阳电池辐射损伤的电致发光研究.《固体电子学研究与进展》.2008,第28卷(第1期),1-3. * |
Also Published As
Publication number | Publication date |
---|---|
CN101696942A (en) | 2010-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101696942B (en) | Multi-junction solar cell and each sub-cell AC electroluminescence test method and device | |
Doll et al. | Photoluminescence for defect detection on full-sized photovoltaic modules | |
Kumar et al. | Solar PV module technologies | |
CN102089874A (en) | Thin film imaging method and apparatus | |
Mundt et al. | Nondestructive probing of perovskite silicon tandem solar cells using multiwavelength photoluminescence mapping | |
Hossain et al. | A comprehensive methodology to evaluate losses and process variations in silicon solar cell manufacturing | |
CN112737504B (en) | A Micro-area Multispectral Response Photoelectric Tester for Multijunction Solar Cells | |
Tex et al. | Analyzing the electrical performance of a solar cell with time-resolved photoluminescence: methodology for fast optical screening | |
Hu et al. | Absolute electroluminescence imaging diagnosis of GaAs thin-film solar cells | |
Jia et al. | Diagnosing breakdown mechanisms in monocrystalline silicon solar cells via electroluminescence imaging | |
CN110648936A (en) | Method for detecting solar cell bright and dark sheets based on photoluminescence system | |
Kunz et al. | Advances in evaporated solid‐phase‐crystallized poly‐Si thin‐film solar cells on glass (EVA) | |
Hossain et al. | Detailed performance loss analysis of silicon solar cells using high-throughput metrology methods | |
Chen et al. | Impact of cut edge recombination in high efficiency solar cells–Measurement and mitigation strategies | |
Kumar et al. | High-speed laser beam induced current imaging: a complementary quantitative diagnostic tool for modules | |
Zhang et al. | Investigation of SHJ module degradation: a post-mortem approach | |
Soufiani et al. | Contactless series resistance imaging of perovskite solar cells via inhomogeneous illumination | |
Valdivia et al. | Measurement of high efficiency 1 cm 2 AlGaInP/InGaAs/Ge solar cells with embedded InAs quantum dots at up to 1000 suns continuous concentration | |
Horner et al. | Flash quantum efficiency measurements for multi-junction solar cells | |
BAKIR | Detection of micro-cracks in PV system using electroluminescence (EL) testing | |
Brooks et al. | High-resolution laser beam induced current measurements on Cd0. 9Zn0. 1S/CdTe solar cells | |
Yongqing et al. | Research to the typical defects of crystalline silicon photovoltaic cells based on EL images | |
Sinha et al. | Solder bond degradation of fielded PV modules: Correlation between performance, series resistance and electroluminescence imaging | |
TWI628910B (en) | Electrical inspection method for solar cells | |
González et al. | Strategy for certified reliability analysis of III-V high concentration solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170406 Address after: 361000 Fujian city of Xiamen Province torch (Xiangan) Industrial District Xiang Road No. 259-269 Patentee after: Xiamen Changelight Co., Ltd. Address before: Xiamen City, Fujian Province, 361005 South Siming Road No. 422 Patentee before: Xiamen University |