CN101571340A - 利用液化天然气冷能的空气分离方法 - Google Patents
利用液化天然气冷能的空气分离方法 Download PDFInfo
- Publication number
- CN101571340A CN101571340A CNA2009100852138A CN200910085213A CN101571340A CN 101571340 A CN101571340 A CN 101571340A CN A2009100852138 A CNA2009100852138 A CN A2009100852138A CN 200910085213 A CN200910085213 A CN 200910085213A CN 101571340 A CN101571340 A CN 101571340A
- Authority
- CN
- China
- Prior art keywords
- nitrogen
- liquid
- heat exchanger
- air
- cryogenic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
- F25J3/04224—Cores associated with a liquefaction or refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
- F25J3/04266—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
- F25J3/04272—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/42—Quasi-closed internal or closed external nitrogen refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/904—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本发明公开了一种利用液化天然气冷能的空气分离方法,包括空气分离单元,为空气分离单元提供冷量的LNG冷能利用单元及利用NG高温冷能的乙二醇水溶液循环单元等三个部分。本发明将LNG的低温冷能用于空分系统后,可使液体空分产品的单位电耗降低到0.30kwh/m3左右,仅为常规流程生产的液体空分产品的约1/3,内压缩气体产品的单位电耗也可大幅降低,同时还节省大量冷却水,符合节能降耗、发展循环经济的大趋势,具有明显的社会效益和经济效益。
Description
技术领域
本发明涉及一种空气分离方法,特别涉及一种利用液化天然气冷能的空气分离方法。
背景技术
LNG(液化天然气)是一种优质清洁能源。为满足管输要求,LNG需加压到某个规定的压力。在加压过程中,LNG的一部分冷能转化为压力能。加压后的LNG仍具有高品位的低温冷能。通常的办法是用海水加热气化升温后送入输气管线。这样做浪费了宝贵的低温冷能。
空气分离方法特别是生产液氧、液氮和液氩等液体空分产品的空气分离方法以及生产部分加压气氧、气氮(内压缩气体产品)和部分液体空分产品的空气分离方法,需要大量的低温冷量。常规的办法是用一股高压空气或高压氮气冷却到规定温度后进一台或两台增压透平膨胀机膨胀制冷来提供空分系统所需的冷量。气体的压缩是要消耗大量电力和冷却水的。因此常规的这类空分系统其液体空分产品和内压缩气体产品的单位电耗很高。
中国专利申请说明书CN 1873357A公开了一种回收液化天然气冷能的空气分离方法,该专利申请的低温氮压机仅一段压缩,进口温度-110℃~-120℃,出口压力3.0~3.5MPa;制冷循环中带增压透平膨胀机;进气用冷氮气冷却;由于未充分利用LNG的冷能,加上该专利的精馏系统组织产品提取率较低,因而产品的单位能耗较高。
中国专利申请说明书CN 101033910A公开了一种集成空气分离与液化天然气冷量回收系统,该专利申请用常温进气低压及中压氮压机,压缩机轴功率高;该专利申请无乙二醇水溶液冷却系统,原料空压机轴功率较高。由于未充分利用LNG的冷能,因而产品的单位能耗较高。
中国专利申请说明书CN 101050913A公开了一种利用从液化天然气中提取的冷量生产液氧液氮的空气分离方法,该专利申请采用三段低温进气的循环氮压机,但未给出进气温度与排气压力;该专利申请的精馏组织氧氩的提取率较低;该专利申请无乙二醇水溶液冷却系统,不仅原料空压机轴功率较高,NG的高温冷能也未充分利用,导致产品的单位能耗较高,且出空分系统的NG仍处低温,不能满足管输要求。
中国专利申请说明书CN 1407303A公开了一种利用液化天然气冷量的空气分离装置,该专利申请未说明使用何种氮压机,无乙二醇水溶液冷却系统,仅适用于小型空分设备。
上述专利申请说明书均未涉及能及时发现LNG可能泄漏的措施,较易引发一些问题和意外。
发明内容
本发明为解决公知技术中存在的技术问题而提供一种利用液化天然气冷能的空气分离方法,该方法将加压到规定压力的LNG的低温冷能与空分系统有机地结合起来,充分地利用了LNG的冷能。即将LNG的低温冷能用来生产液体空分产品和内压缩气体产品,以降低液体空分产品和内压缩气体产品的单位电耗,同时使LNG在空分系统中气化升温达到要求的管输温度,不需要再用海水气化升温,消除了泵送海水所需的电能,达到一举多得的效果。
本发明为解决公知技术中存在的技术问题所采取的技术方案是:一种利用液化天然气冷能的空气分离方法,包括以下步骤:
(一)原料空气经空压机压缩后,去除杂质,进入包括主换热器和蒸馏塔系统的空气分离单元;所述蒸馏塔系统包括上塔、下塔和主冷凝蒸发器,在同时生产液氩产品时还包括制氩系统;
(二)原料空气在主换热器中通过与蒸馏塔系统的部分排出物流换热而被冷却;
(三)冷却后的原料空气进入蒸馏塔系统中分离成排出物流,所述排出物流包括从上塔顶部得到的纯氮气、从上塔上部得到的污氮气,从上塔中部得到的送制氩系统的氩馏分;
(四)将纯氮气中分出的一股氮气降温后送进低温氮压机的一段压缩,压缩后的氮气进LNG换热器,与加压到管输压力的LNG换热,从LNG中提取冷能,换热后的氮气再进低温氮压机的二段压缩,压缩后的氮气再进LNG换热器,与LNG换热,多次循环直至制成出LNG换热器的高压过冷液氮,高压过冷液氮经再次过冷并经节流后经气液分离器分离成液氮和气氮,气氮与出低温氮压机一段的氮气汇合,液氮为空分单元提供所需的冷量;
(五)将液氮分出至少一股与至少一部分原料空气换热,使至少一部分原料空气液化,换热后的氮气与氮气汇合;
(六)LNG经换热后气化为出LNG换热器的低温天然气,将低温天然气与乙二醇水溶液在换热器中换热,取得低温天然气冷能的乙二醇水溶液作为空压机中间冷却器及末级冷却器的冷却介质,换热后的乙二醇水溶液回换热器进行循环换热,低温天然气升温至管输温度送入输气管线。
所述低温氮压机是三段低温进气的多级压缩透平压缩机,每段的进口氮气温度均为-100℃~-150℃,所述低温氮压机的末级出口氮气压力大于3.5Mpa。
所述进低温氮压机一段的氮气在进入低温氮压机的一段前,通过在LNG换热器中与LNG换热被降温。
所述纯氮气出上塔顶部后经液氮过冷器、液空过冷器和主换热器复热升温后分为两股,一股是去低温氮压机的氮气,另一股纯氮气作为低压氮气产品输出;污氮气出上塔后经液氮过冷器、液空过冷器和主换热器复热升温后分成两路,一路污氮气去净化系统做再生气,一路污氮气去水冷塔或放空;所述排出物流还包括从上塔底部得到的气氧,气氧在液氧冷凝过冷器中经去主换热器的液氮液化过冷后作为液氧产品输出;所述液氮分出一路作为液氮产品输出。
所述纯氮气出上塔顶部后经液氮过冷器、液空过冷器和主换热器复热升温后分为两股,一股是去低温氮压机的氮气,另一股纯氮气作为低压氮气产品输出;污氮气出上塔后经液氮过冷器、液空过冷器和主换热器复热升温后分成两路,一路污氮气去净化系统做再生气,一路污氮气去水冷塔或放空;所述排出物流还包括从上塔底部抽出的液氧,液氧在液氧冷凝过冷器中经去主换热器的液氮过冷后作为液氧产品输出;从主冷凝蒸发器中抽出液氮,液氮在液氮过冷器中经污氮和纯氮气过冷后一部分送上塔顶部参与精馏,另一部分作为液氮产品输出。
所述进低温氮压机一段的氮气在进入低温氮压机一段前,通过在氮换热器中与从液氮中分出的一股液氮换热降温,液氮换热后气化成的氮气与出低温氮压机一段的氮气汇合。
所述排出物流包括中压氮气,中压氮气在主换热器中与原料空气换热后与出低温氮压机一段的氮气汇合。
所述液氮分出一路液氮与出主冷凝蒸发器的液氮汇合,在过冷器中经污氮和纯氮气过冷后少部分成为液氮产品,大部分进入蒸馏塔系统的上塔顶部参与精馏,并为蒸馏塔系统提供所需要的冷量;所述纯氮气出上塔顶部后经液氮过冷器、液空过冷器和主换热器复热升温后分为两股,一股是去低温氮压机的氮气,另一股纯氮气作为低压氮气产品输出;污氮气出上塔后经液氮过冷器、液空过冷器和主换热器复热升温后分成两路,一路污氮气去净化系统做再生气,一路污氮气去水冷塔或放空;所述排出物流还包括从上塔底部抽出的液氧,液氧在液氧冷凝过冷器中经去主换热器的液氮过冷后作为液氧产品输出。
所述LNG换热器是单独的一个或是由多个分换热器组成的,出每个分换热器的低温天然气汇合后再进入与乙二醇水溶液进行换热的换热器。
所述低温氮压机上设置有报警联锁的碳氢化合物检测仪。
本发明具有的优点和积极效果是:将LNG的低温冷能用于空分系统后,可使液体空分产品的单位电耗降低到0.30kwh/m3左右,仅为常规流程生产的液体空分产品的约1/3,内压缩气体产品的单位电耗也可大幅降低,同时还节省大量冷却水,符合节能降耗、发展循环经济的大趋势,具有明显的社会效益和经济效益。
附图说明
图1是本发明实施例1的示意图;
图2是本发明实施例2的示意图;
图3是本发明实施例3的示意图。
图中:设备序号如下:1为原料空压机,2为末级冷却器,3为空气净化系统,4为主换热器,5为下塔,6为主冷凝蒸发器,7为上塔,8为液氮过冷器,9为液空过冷器,10为再生用电加热器,11为液体过冷器,12为液氧冷凝过冷器,15为低温压缩机,16为LNG换热器,17为高压过冷液氮再过冷器,18为气液分离器,19为低温NG与乙二醇水溶液的换热器,20为乙二醇水溶液循环泵,21为氮换热器。
相关物料作如下编号:101为原料空气,102为出下塔的液空,103为出主冷凝蒸发器的液氮,104为出上塔的纯氮气,105为低压氮气产品,106为去低温压缩机一段的低压氮气,107为出上塔的污氮气,108为去再生纯化器的污氮气,109为去水冷塔或放空的污氮气,110为出上塔的氧气,111为产品液氧,112为氩馏分,113为产品液氮,114为出上塔的液氧,115为出下塔的中压氮气;201为去低温压缩机一段进口的氮气(污氮气),202为低温压机一段出口的氮气(污氮气),203为低温氮压机二段进口的氮气(污氮气),204为低温压机二段出口、三段进口的氮气(污氮气),205为低温压机三段出口的氮气(污氮气),206为高压过冷液氮(污液氮),207为中压液氮(污液氮),208及209为低压氮(污氮)气液混合物,210为液氮产品,211为208与209汇合后的低压气,212为出高压过冷液氮再过冷器的中压氮气(污氮气),213为212与115的汇合气,214为去与出主冷的液氮103汇合的液氮,215为从207抽出的部分液体;301为乙二醇水溶液;401为加压后送到空分系统的液化天然气,402为去输气管道的天然气。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
实施例1:
如图1所示,从大气空气经过滤器吸入的空气101经多级压缩(中间冷却器用乙二醇水溶液冷却)达到0.5Mpa左右的要求压力后在末级冷却器2中用乙二醇水溶液冷却降温,然后进空气净化系统3除去二氧化碳、水、乙炔等有害杂质后送入空分单元主冷箱。净化后的空气在主换热器4与返流气体换热降温到要求温度后送入下塔5。空气在下塔5经初步分离后在底部得到富氧液空102,在顶部得到纯氮气。该纯氮气进入主冷凝蒸发器6,在其中被液氧冷凝成液氮。该液氮的一部分送回下塔以维持下塔的精馏工况,另一部分液氮103经液氮过冷器8过冷后节流送入上塔7参与精馏。出下塔的富氧液空102经液空过冷器9过冷后节流送入上塔7参与上塔的精馏。送入上塔的液氮103、富氧液空102与主冷凝蒸发器蒸发的气氧进行再次精馏,从上塔7顶部得到纯氮气104,从上塔7上部得到污氮气107,从上塔中部得到氩馏分112,从上塔底部得到气氧产品110。该气氧产品110在氧冷凝过冷器12中被低压液氮209冷凝、过冷成液氧产品111。从上塔顶部得到的纯氮气104在液氮过冷器8、液空过冷器9和主换热器4复热升温出冷箱后分为两部分。一部分纯氮气106与211汇合成氮气201,在LNG换热器16中降温到-100℃~-150℃后入低温氮压机15的一段压缩,另一部分作为氮气产品105供使用。从上塔7上部得到的污氮气107在液氮过冷器8、液空过冷器9和主换热器4复热升温出冷箱后也分成两路,一路污氮气108去空气净化系统3作再生气,一路污氮气109去水冷塔或放空。氩馏分112送入制氩系统制取产品液氩,该制氩系统是本行业技术人员所熟知的。
经低温氮压机15一段压缩后的氮气202与出气液分离器18的中压氮气212汇合后成进低温氮压机二段的氮气203,在LNG换热器16中被LNG冷却到-100℃~-150℃后进低温氮压机15的二段压缩。出二段的氮气204在LNG换热器16中被LNG401冷却到-100℃~-150℃后进低温氮压机15的三段压缩。出三段的高压氮气205在LNG换热器16中被LNG冷却、液化并过冷成高压过冷液氮206。该高压过冷液氮206在高压过冷液氮再过冷器17中被进一步过冷后节流到相当于下塔顶部压力后入气液分离器18。从分离器18的底部得到的液氮207在液体过冷器11中被进一步过冷后分成三路:一路低压氮气液混合物208经节流后去过冷液氮207,一路低压氮气液混合物209经节流后去氧冷凝过冷器12使氧气110冷凝并过冷成液氧产品111,一路作为产品液氮210送储槽。低压氮气液混合物208、209汇合成低压气211经主换热器4复热后出冷箱去低温氮压机15。从分离器18顶部得到的气氮212在高压过冷液氮再过冷器17中过冷高压过冷液氮206后与另一股氮气202汇合成进低温氮压机二段的氮气203。
出LNG换热器16的低温天然气在换热器19中与乙二醇水溶液301换热,低温天然气复热到常温后成为满足管输要求的天然气402送天然气管线。冷却后的乙二醇水溶液301去原料空压机的中间冷却器和末级冷却器2冷却压缩后的原料空气101。
如果需要,在液氮210出口加液氮泵,在液氧111出口加液氧泵,在主换热器4增设压力氮、压力氧通道,可以全部或部分生产内压缩氮、氧产品。
实施例2:
如图2所示,与实施例一的不同主要是:液氧、液氮产品都是由精馏产生的。作为传递LNG冷能的冷媒液氮207在进一步过冷后分成两路:一路节流到低压后过冷自身,一路节流后去过冷从上塔7底部抽出的液氧114。低压氮气液混合物208与209汇合成低压气211后在主换热器4中将原料空气101部分冷凝。原料空气101部分冷凝后进入下塔5,经下塔5和上塔7的精馏后从主冷凝蒸发器抽出的液氮103在液氮过冷器8过冷后一部分经节流送上塔7顶部参与精馏,一部分液氮113作为液氮产品送贮槽。从上塔7底部得到液氧114,该液氧114在氧过冷器12中被过冷后成为液氧产品111送液氧贮槽。
在本实施例中,作为冷媒的介质207可以是纯氮,也可以是污氮。如果是污氮,则低温氮压机15就是污氮压缩机。
在本实施例中,可以将原料空气101分成两路,将主换热器4分成两个。一部分原料空气在主换热器4冷却到约饱和温度后进下塔5底部。另一部分原料空气在另一个主换热器中被冷媒207节流过冷液氧和自身后的低压气液混合物211(或其中一部分)全部液化后送下塔5的中部,并从下塔5的中部抽出一股液体经过冷节流送上塔7参与精馏。或将全部液化的那部分原料空气分成两路,一路送下塔5的中部,一路送上塔7的中部。这是本专业技术人员都熟知的。
同实施例一相同,本实施例也可全部或部分生产内压缩气体产品。
实施例3:
如图3所示,本实施例与实施例一的不同是:在确保LNG不会漏入与之换热的冷媒液氮207后,可从冷媒液氮207中分出一路液氮214与出主冷凝蒸发器6的液氮103汇合,经过冷后少部分成为液氮产品113,大部分进入上塔7顶部参与精馏,并为分离过程提供所需要的冷量。这时,从上塔7底部抽出的是液氧114。另外,还要从下塔5顶部抽出一股氮气115到主换热器4。该中压氮115在主换热器4复热出冷箱后与中压氮气212汇合成中压氮气213,再与低温压机一段出口的氮气202汇合成氮气203后经LNG换热器16冷却到-100℃~-150℃后进低温氮压机15的二段压缩。
本实施例的另一个不同是低温氮压机一段进口的氮气201不是用LNG冷却到-100℃~-150℃,而是用从液氮207中抽出的部分液氮215在换热器21中冷却到-100℃~-150℃。气化复热后的物流215与213及202汇合成物流203。
同实施例一相同,本实施例也可全部或部分生产内压缩气体产品。
综上所述:采用本发明的空分系统由三部分组成。第一部分与常规的低压空分流程基本相同,不再多加叙述。第二部分由低温进气的氮气(污氮气)压缩机以及LNG和几种不同压力的氮气(污氮气)进行换热的热交换器组成。第三部分由乙二醇水溶液与出LNG换热器的低温天然气(NG)进行换热的换热器及原料空气压缩机的中间冷却器和末级冷却器组成。这三个部分可以分置于三个冷箱中以达到更加安全的目的。在第二部分的LNG和几种不同压力的氮气(污氮气)进行换热的换热器中,LNG将进低温压机各段的氮气(污氮气)均冷却到-100℃~-150℃的低温后再进行压缩,并将末级出口的高压气液化和过冷。高压过冷液氮(污液氮)用保温管路送到第一部分即空分系统的主冷箱中,在高压过冷液氮再过冷器中被出该过冷器的高压液氮(污液氮)节流后获得的中压氮气(污氮气)再次过冷,节流后得到的液氮(污液氮)为空分系统提供所需的全部冷量。
作为冷源的LNG与几股氮气(污氮气)在换热器中经过热交换已经气化升温变成了低温NG,它还具有一定的高温冷量。在乙二醇水溶液与这股低温NG的换热器中,NG被进一步复热到常温,然后送入输气管线。乙二醇水溶液被冷却降温后,作为循环冷却工质送入原料空压机的中间冷却器和末级冷却器去冷却压缩后的空气。升温后的乙二醇水溶液经泵加压后去再次冷却,循环使用。
由此可见,第二部分是LNG冷能利用的主体部分。氮气(污氮气)的低温压缩极大地降低了压缩机的功率消耗,还以液氮(污液氮)为冷媒为空分系统提供了所需的全部冷量。第三部分是LNG冷能利用的补充和完善,它不仅使LNG的冷能得到了全部利用,还使LNG复热到管输要求的常温,并用与NG换热得到的低温乙二醇水溶液作为原料空压机的循环冷却工质,降低了原料空压机二、三级及空气纯化器的进口温度,从而降低了原料空压机的功率消耗。由于低温压缩机无需冷却水冷却,作为循环冷却工质的乙二醇水溶解实现的又是闭路循环,因而也大大降低了冷却水的消耗。
在本发明中,低温氮压机是三段低温进气的多级压缩透平压缩机。每段的氮气(污氮气)进口温度均为-100℃~-150℃。低温压缩机的末级出口压力在3.5Mpa以上。
在本发明中,LNG与几股低温压机各段进口氮气(污氮气)及末级出口氮气(污氮气)进行换热的换热器可以组合成一个换热器,也可以分成几个独立的换热器或另行组合成2个或3个换热器。出这些换热器的低温天然气汇合后再进入与乙二醇水溶液进行换热的换热器。
在本发明中,进低温压机一段的低压氮气(污氮气)也可以在一个单独的换热器中与出高压过冷液氮再过冷器的一股中压液氮(污液氮)换热;或与出下塔顶的中压氮气和部分上述中压液体换热;低压氮气(污氮气)降温后进低温氮压机一段压缩。中压氮气和液氮(污液氮)升温后与另二股中压气汇合后再进LNG换热器降温,然后进低温压机二段压缩。这时,LNG可以在1~3个换热器中与不同压力的氮气(污氮气)换热。
在本发明中,出原料空压机末级的空气可以在末级冷却器中用乙二醇水溶液冷却后送入空气净化系统,也可以用空气冷却塔冷却后再送入空气净化系统。当然,也可以设置水冷却塔用多余的污氮气生产低温水。
在本发明中,液氧、液氮、液氩等液体空分产品及不同压力的内压缩氧气产品、内压缩氮气产品及内压缩氩气产品可以根据需要任意组合。当然,也可以同时生产一部分中压氮气产品及低压氧气产品。
在本发明中,必须在低温压机每段的进气管上(或其它适当部位)设置可报警联锁的碳氢化合物(CnHm)检测仪,以确保整个系统的安全。
在本发明中,在确保安全的前提下,与LNG换热液化并过冷的液氮可以进入分馏塔参与精馏。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护范围之内。
Claims (10)
1.一种利用液化天然气冷能的空气分离方法,其特征在于,包括以下步骤:
(一)原料空气(101)经空压机(1)压缩后,去除杂质,进入包括主换热器(4)和蒸馏塔系统的空气分离单元;所述蒸馏塔系统包括上塔(7)、下塔(5)和主冷凝蒸发器(6);
(二)原料空气(101)在主换热器(4)中通过与蒸馏塔系统的部分排出物流换热而被冷却;
(三)冷却后的原料空气进入蒸馏塔系统中分离成排出物流,所述排出物流包括从上塔顶部得到的纯氮气(104)、从上塔(7)上部得到的污氮气(107),从上塔中部得到的送制氩系统的氩馏分(112);
(四)将纯氮气(104)中分出的一股氮气(106)降温后送进低温氮压机(15)的一段压缩,压缩后的氮气进LNG换热器(16),与加压到管输压力的LNG换热,从LNG中提取冷能,换热后的氮气再进低温氮压机(15)的二段压缩,压缩后的氮气再进LNG换热器(16),与LNG换热,多次循环直至制成出LNG换热器(16)的高压过冷液氮(206),高压过冷液氮(206)经节流进气液分离器(18)分离成液氮(207)和气氮(212),气氮(212)与出低温氮压机(15)一段的氮气(202)汇合,液氮(207)为空分单元提供所需的冷量;
(五)将液氮(207)分出至少一股与至少一部分原料空气换热,使至少一部分原料空气液化,换热后的氮气(211)与氮气(106)汇合;
(六)LNG经换热后气化为出LNG换热器(16)的低温天然气,将低温天然气与乙二醇水溶液在换热器(19)中换热,取得低温天然气冷能的乙二醇水溶液作为空压机(1)中间冷却器及末级冷却器(2)的冷却介质,换热后的乙二醇水溶液回换热器(19)进行循环换热,低温天然气升温至管输温度送入输气管线。
2.根据权利要求1所述的利用液化天然气冷能的空气分离方法,其特征在于,所述低温氮压机(15)是三段低温进气的多级压缩透平压缩机,每段的进口氮气温度均为-100℃~-150℃,所述低温氮压机(15)的末级出口氮气压力大于3.5Mpa。
3.根据权利要求2所述的利用液化天然气冷能的空气分离方法,其特征在于,所述进低温氮压机(15)一段的氮气在进入低温氮压机(15)的一段前,通过在LNG换热器(16)中与LNG换热被降温。
4.根据权利要求2所述的利用液化天然气冷能的空气分离方法,其特征在于,所述纯氮气(104)出上塔顶部后经液氮过冷器(8)、液空过冷器(9)和主换热器(4)复热升温后分为两股,一股是去低温氮压机(15)的氮气(106),另一股纯氮气(105)作为低压氮气产品输出;污氮气(107)出上塔后经液氮过冷器(8)、液空过冷器(9)和主换热器(4)复热升温后分成两路,一路污氮气(108)去净化系统(3)做再生气,一路污氮气(109)去水冷塔或放空;所述排出物流还包括从上塔底部得到的气氧(110),气氧(110)在液氧冷凝过冷器(12)中经去主换热器的液氮(209)液化过冷后作为液氧产品输出;所述液氮(207)分出一路作为液氮产品输出。
5.根据权利要求2所述的利用液化天然气冷能的空气分离方法,其特征在于,所述纯氮气(104)出上塔顶部后经液氮过冷器(8)、液空过冷器(9)和主换热器(4)复热升温后分为两股,一股是去低温氮压机(15)的氮气(106),另一股纯氮气(105)作为低压氮气产品输出;污氮气(107)出上塔后经液氮过冷器(8)、液空过冷器(9)和主换热器(4)复热升温后分成两路,一路污氮气(108)去净化系统(3)做再生气,一路污氮气(109)去水冷塔或放空;所述排出物流还包括从上塔(7)底部抽出的液氧(114),液氧(114)在液氧冷凝过冷器(12)中经去主换热器的液氮(209)过冷后作为液氧产品输出;从主冷凝蒸发器(6)中抽出液氮(103),液氮(103)在液氮过冷器(8)中经污氮(107)和纯氮气(104)过冷后一部分送上塔(7)顶部参与精馏,另一部分作为液氮产品输出。
6.根据权利要求2所述的利用液化天然气冷能的空气分离方法,其特征在于,所述进低温氮压机(15)一段的氮气在进入低温氮压机(15)一段前,通过在氮换热器(21)中与从液氮(207)中分出的一股液氮(215)换热降温,液氮(215)换热后气化成的氮气与出低温氮压机(15)一段的氮气汇合。
7.根据权利要求2所述的利用液化天然气冷能的空气分离方法,其特征在于,所述排出物流包括中压氮气(115),中压氮气(115)在主换热器(4)中与原料空气(101)换热后与出低温氮压机(15)一段的氮气汇合。
8.根据权利要求2所述的利用液化天然气冷能的空气分离方法,其特征在于,所述液氮(207)分出一路液氮(214)与出主冷凝蒸发器(6)的液氮(103)汇合,在过冷器(8)中经污氮(107)和纯氮气(104)过冷后少部分成为液氮产品(113),大部分进入蒸馏塔系统的上塔(7)顶部参与精馏,并为蒸馏塔系统提供所需要的冷量;所述纯氮气(104)出上塔顶部后经液氮过冷器(8)、液空过冷器(9)和主换热器(4)复热升温后分为两股,一股是去低温氮压机(15)的氮气(106),另一股纯氮气(105)作为低压氮气产品输出;污氮气(107)出上塔后经液氮过冷器(8)、液空过冷器(9)和主换热器(4)复热升温后分成两路,一路污氮气(108)去净化系统(3)做再生气,一路污氮气(109)去水冷塔或放空;所述排出物流还包括从上塔(7)底部抽出的液氧(114),液氧(114)在液氧冷凝过冷器(12)中经去主换热器的液氮(209)过冷后作为液氧产品输出。
9.根据权利要求1所述的利用液化天然气冷能的空气分离方法,其特征在于,所述LNG换热器(16)是单独的一个或是由多个分换热器组成的,出每个分换热器的低温天然气汇合后再进入与乙二醇水溶液进行换热的换热器(19)。
10.根据权利要求1所述的利用液化天然气冷能的空气分离方法,其特征在于,所述低温氮压机(15)上设置有报警联锁的碳氢化合物检测仪。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100852138A CN101571340B (zh) | 2009-06-04 | 2009-06-04 | 利用液化天然气冷能的空气分离方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100852138A CN101571340B (zh) | 2009-06-04 | 2009-06-04 | 利用液化天然气冷能的空气分离方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101571340A true CN101571340A (zh) | 2009-11-04 |
CN101571340B CN101571340B (zh) | 2011-02-23 |
Family
ID=41230758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100852138A Active CN101571340B (zh) | 2009-06-04 | 2009-06-04 | 利用液化天然气冷能的空气分离方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101571340B (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101846436A (zh) * | 2010-05-27 | 2010-09-29 | 中国海洋石油总公司 | 利用lng冷能的全液体空气分离装置 |
CN102032756A (zh) * | 2011-01-07 | 2011-04-27 | 苏州市兴鲁空分设备科技发展有限公司 | 空气分离方法 |
CN102052821A (zh) * | 2011-01-07 | 2011-05-11 | 苏州市兴鲁空分设备科技发展有限公司 | 一种空气分离方法 |
CN103343718A (zh) * | 2013-06-25 | 2013-10-09 | 上海佳豪船舶工程设计股份有限公司 | 一种lng燃料动力船舶的lng燃料主机余热利用系统 |
CN103644706A (zh) * | 2013-12-11 | 2014-03-19 | 辽宁哈深冷气体液化设备有限公司 | 液化天然气及高纯氮联产设备及生产方法 |
CN104110939A (zh) * | 2013-04-19 | 2014-10-22 | 中国石油天然气集团公司 | 一种液化天然气冷能回收利用系统 |
CN104110940A (zh) * | 2014-06-19 | 2014-10-22 | 中国寰球工程公司 | 一种利用液化天然气冷能的高效空分装置 |
CN105783424A (zh) * | 2016-04-22 | 2016-07-20 | 暨南大学 | 利用液化天然气冷能生产高压富氧气体的空气分离方法 |
CN105865149A (zh) * | 2016-04-22 | 2016-08-17 | 暨南大学 | 一种利用液化天然气冷能生产液态空气的方法 |
CN108007068A (zh) * | 2018-01-07 | 2018-05-08 | 中国科学院工程热物理研究所 | 一种lng冷能利用的热集成精馏空分系统 |
CN109140903A (zh) * | 2018-08-24 | 2019-01-04 | 邢仁钊 | 一种利用液化天然气冷能的空分系统及空气分离方法 |
CN109357475A (zh) * | 2018-08-30 | 2019-02-19 | 华中科技大学 | 一种梯级利用lng冷能制取液氧液氮的系统 |
CN110701870A (zh) * | 2019-05-29 | 2020-01-17 | 苏州市兴鲁空分设备科技发展有限公司 | 一种利用lng冷能的空分装置和方法 |
US10612842B2 (en) | 2016-11-18 | 2020-04-07 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | LNG integration with cryogenic unit |
CN111512107A (zh) * | 2018-01-02 | 2020-08-07 | 普莱克斯技术有限公司 | 用于从低温空气分离单元灵活回收氩的系统和方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6131407A (en) * | 1999-03-04 | 2000-10-17 | Wissolik; Robert | Natural gas letdown liquefaction system |
JP2000337767A (ja) * | 1999-05-26 | 2000-12-08 | Air Liquide Japan Ltd | 空気分離方法及び空気分離設備 |
CN2766203Y (zh) * | 2005-04-15 | 2006-03-22 | 林福粦 | 回收液化天然气冷能的空气分离装置 |
CN100363699C (zh) * | 2005-04-25 | 2008-01-23 | 林福粦 | 回收液化天然气冷能的空气分离系统 |
CN101205484B (zh) * | 2007-11-27 | 2012-01-25 | 中国海洋石油总公司 | 原油三合一稳定处理工艺 |
-
2009
- 2009-06-04 CN CN2009100852138A patent/CN101571340B/zh active Active
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101846436A (zh) * | 2010-05-27 | 2010-09-29 | 中国海洋石油总公司 | 利用lng冷能的全液体空气分离装置 |
CN102032756A (zh) * | 2011-01-07 | 2011-04-27 | 苏州市兴鲁空分设备科技发展有限公司 | 空气分离方法 |
CN102052821A (zh) * | 2011-01-07 | 2011-05-11 | 苏州市兴鲁空分设备科技发展有限公司 | 一种空气分离方法 |
CN104110939A (zh) * | 2013-04-19 | 2014-10-22 | 中国石油天然气集团公司 | 一种液化天然气冷能回收利用系统 |
CN103343718A (zh) * | 2013-06-25 | 2013-10-09 | 上海佳豪船舶工程设计股份有限公司 | 一种lng燃料动力船舶的lng燃料主机余热利用系统 |
CN103343718B (zh) * | 2013-06-25 | 2016-06-01 | 上海佳豪船舶工程设计股份有限公司 | 一种lng燃料动力船舶的lng燃料主机余热利用系统 |
CN103644706A (zh) * | 2013-12-11 | 2014-03-19 | 辽宁哈深冷气体液化设备有限公司 | 液化天然气及高纯氮联产设备及生产方法 |
CN104110940A (zh) * | 2014-06-19 | 2014-10-22 | 中国寰球工程公司 | 一种利用液化天然气冷能的高效空分装置 |
CN105865149B (zh) * | 2016-04-22 | 2018-07-31 | 暨南大学 | 一种利用液化天然气冷能生产液态空气的方法 |
CN105783424A (zh) * | 2016-04-22 | 2016-07-20 | 暨南大学 | 利用液化天然气冷能生产高压富氧气体的空气分离方法 |
CN105865149A (zh) * | 2016-04-22 | 2016-08-17 | 暨南大学 | 一种利用液化天然气冷能生产液态空气的方法 |
US10612842B2 (en) | 2016-11-18 | 2020-04-07 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | LNG integration with cryogenic unit |
CN111512107A (zh) * | 2018-01-02 | 2020-08-07 | 普莱克斯技术有限公司 | 用于从低温空气分离单元灵活回收氩的系统和方法 |
CN111512107B (zh) * | 2018-01-02 | 2022-06-17 | 普莱克斯技术有限公司 | 用于从低温空气分离单元灵活回收氩的系统和方法 |
CN108007068A (zh) * | 2018-01-07 | 2018-05-08 | 中国科学院工程热物理研究所 | 一种lng冷能利用的热集成精馏空分系统 |
CN108007068B (zh) * | 2018-01-07 | 2024-03-29 | 中国科学院工程热物理研究所 | 一种lng冷能利用的热集成精馏空分系统 |
CN109140903A (zh) * | 2018-08-24 | 2019-01-04 | 邢仁钊 | 一种利用液化天然气冷能的空分系统及空气分离方法 |
CN109140903B (zh) * | 2018-08-24 | 2024-01-09 | 邢仁钊 | 一种利用液化天然气冷能的空分系统及空气分离方法 |
CN109357475A (zh) * | 2018-08-30 | 2019-02-19 | 华中科技大学 | 一种梯级利用lng冷能制取液氧液氮的系统 |
CN110701870A (zh) * | 2019-05-29 | 2020-01-17 | 苏州市兴鲁空分设备科技发展有限公司 | 一种利用lng冷能的空分装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101571340B (zh) | 2011-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101571340B (zh) | 利用液化天然气冷能的空气分离方法 | |
CN100445673C (zh) | 用于液化高压天然气的系统和方法 | |
CN110701870B (zh) | 一种利用lng冷能的空分装置和方法 | |
CN202675796U (zh) | 利用lng冷能生产液体空分产品的装置 | |
RU2392552C1 (ru) | Очистка сжиженного природного газа | |
CN100472159C (zh) | 一种空气分离装置及其方法 | |
CN201532078U (zh) | 利用液化天然气冷能的空气分离系统 | |
CN105783424B (zh) | 利用液化天然气冷能生产高压富氧气体的空气分离方法 | |
CN104755360B (zh) | 用于通过低温蒸馏进行空气分离的方法和设备 | |
CN109140903A (zh) | 一种利用液化天然气冷能的空分系统及空气分离方法 | |
CN204115392U (zh) | 带补气压缩机的全液体空分设备 | |
CN101943512B (zh) | 一种利用液化天然气冷能的空分方法 | |
CN104110940A (zh) | 一种利用液化天然气冷能的高效空分装置 | |
CN208751137U (zh) | 一种利用液化天然气冷能的空分系统 | |
CN100363699C (zh) | 回收液化天然气冷能的空气分离系统 | |
CN201852409U (zh) | 一种利用液化天然气冷能的空分系统 | |
CN102141337A (zh) | 一种空气分离的方法 | |
CN101915495B (zh) | 利用液化天然气冷能的全液体空气分离装置及方法 | |
CN204240703U (zh) | 一种利用液化天然气冷能的高效空分装置 | |
CN104019629A (zh) | 一种可与接收站冷能供应相匹配的空气分离方法 | |
CN102072612B (zh) | N型模式节能制气方法 | |
CN102032756A (zh) | 空气分离方法 | |
CN201876055U (zh) | 利用液化天然气冷能的全液体空气分离装置 | |
CN201387202Y (zh) | 高效利用液化天然气冷能的空分系统 | |
CN112229143A (zh) | 一种通过低温精馏分离空气来生产氧气及氮气的装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |