CN101527544B - Device and method for identifying inverse characteristic of nonlinear system, power amplifier and predistorter thereof - Google Patents
Device and method for identifying inverse characteristic of nonlinear system, power amplifier and predistorter thereof Download PDFInfo
- Publication number
- CN101527544B CN101527544B CN200810081674A CN200810081674A CN101527544B CN 101527544 B CN101527544 B CN 101527544B CN 200810081674 A CN200810081674 A CN 200810081674A CN 200810081674 A CN200810081674 A CN 200810081674A CN 101527544 B CN101527544 B CN 101527544B
- Authority
- CN
- China
- Prior art keywords
- signal
- centerdot
- function
- question blank
- input signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 230000006870 function Effects 0.000 claims description 145
- 230000003321 amplification Effects 0.000 claims description 28
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 28
- 238000004364 calculation method Methods 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 13
- 238000013480 data collection Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000013139 quantization Methods 0.000 claims description 7
- 238000012937 correction Methods 0.000 claims description 6
- 230000003111 delayed effect Effects 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 3
- 238000011002 quantification Methods 0.000 claims 5
- 238000010586 diagram Methods 0.000 description 28
- 238000012545 processing Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000013500 data storage Methods 0.000 description 6
- 230000002238 attenuated effect Effects 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000001010 compromised effect Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Amplifiers (AREA)
- Transmitters (AREA)
Abstract
本发明公开了非线性系统尤其是非线性功率放大器的逆特性辨识装置和方法、功率放大器预失真器、以及使用非线性系统逆特性辨识装置和预失真器的功率放大设备。本发明的根据非线性系统的原始输入信号x(n)及相应的反馈输出信号yG(n)对非线性系统的逆特性进行辨识的方法包括:根据逆滤波信号xF(n)和反馈输出信号yG(n)计算查询表函数Q{·};根据反馈输出信号yG(n)和查询表函数Q{·}生成中间预失真信号z(n);根据中间预失真信号z(n)和原始输入信号x(n)构造滤波函数F{·};利用滤波函数F{·}的参数对原始输入信号x(n)进行逆滤波生成逆滤波信号xF(n);以及迭代重复以上各个步骤直到满足设定的条件为止;其中,查询表函数Q{·}和滤波函数F{·}代表非线性系统的逆特性。
The invention discloses a nonlinear system, especially an inverse characteristic identification device and method of a nonlinear power amplifier, a power amplifier predistorter, and power amplifying equipment using the nonlinear system inverse characteristic identification device and the predistorter. The method for identifying the inverse characteristics of the nonlinear system according to the original input signal x(n) of the nonlinear system and the corresponding feedback output signal yG (n) of the present invention includes: according to the inverse filter signal xF (n) and the feedback The output signal y G (n) calculates the lookup table function Q{ }; generates the intermediate predistortion signal z(n) according to the feedback output signal y G (n) and the lookup table function Q{ }; according to the intermediate predistortion signal z( n) and the original input signal x(n) construct a filter function F{ }; use the parameters of the filter function F{ } to inverse filter the original input signal x(n) to generate an inverse filter signal x F (n); and iterate Repeat the above steps until the set conditions are met; among them, the look-up table function Q{·} and the filter function F{·} represent the inverse characteristics of the nonlinear system.
Description
技术领域technical field
本发明一般地涉及非线性系统,特别是非线性功率放大器,尤其是无线通信系统的发射机(比如基站和移动台)中使用的非线性功率放大器。更具体地说,本发明涉及非线性系统尤其是非线性功率放大器的逆特性辨识装置和方法、功率放大器预失真器以及使用非线性系统逆特性辨识装置和预失真器的功率放大设备,其主要利用数字技术在基带实现预失真,以弥补非线性补功率放大器的无记忆非线性特性和记忆特性。The present invention relates generally to nonlinear systems, and in particular to nonlinear power amplifiers, especially for use in transmitters of wireless communication systems such as base stations and mobile stations. More specifically, the present invention relates to a nonlinear system, especially a nonlinear power amplifier inverse characteristic identification device and method, a power amplifier predistorter, and a power amplification device using a nonlinear system inverse characteristic identification device and a predistorter, which mainly utilizes Digital technology implements pre-distortion in the baseband to compensate for the non-memory non-linear and memory characteristics of the non-linear complementary power amplifier.
背景技术Background technique
作为非线性系统的典型代表,功率放大器是很多电子设备的重要组成部分,它可以将微弱的电信号放大,以满足远程传输的需要。其中,放大的能量来自于直流电源,即功率放大器可以将直流能量转化为交流信号。As a typical representative of nonlinear systems, power amplifiers are an important part of many electronic devices, which can amplify weak electrical signals to meet the needs of long-distance transmission. Among them, the amplified energy comes from a DC power supply, that is, the power amplifier can convert DC energy into an AC signal.
根据功率放大器的物理特性,随着输入信号的功率由小到大,反映功率放大器的输入信号与输出信号的功率关系的特性曲线可以分为线性区、非线性区和饱和区。图1示出功率放大器PA的非线性输入输出信号特性。在输入信号VIN幅度较小的区域,功率放大器PA的输出VOUT几乎是输入信号VIN的线性放大,但是随着输入信号VIN幅度的增大,功率放大器PA的非线性特性逐渐明显直到最后饱和。该非线性表现为在频域上,由于交调作用,被放大的信号的带外出现频谱展宽,带内则出现畸变,如图2所示,显示了由非线性功率放大器所引起的频谱展宽。According to the physical characteristics of the power amplifier, as the power of the input signal increases from small to large, the characteristic curve reflecting the power relationship between the input signal and the output signal of the power amplifier can be divided into a linear region, a nonlinear region and a saturation region. Fig. 1 shows the nonlinear input and output signal characteristics of the power amplifier PA. In the region where the amplitude of the input signal V IN is small, the output V OUT of the power amplifier PA is almost a linear amplification of the input signal V IN , but as the input signal V IN amplitude increases, the nonlinear characteristics of the power amplifier PA gradually become obvious until Finally saturated. The nonlinear performance is in the frequency domain. Due to the intermodulation effect, the amplified signal has spectral broadening outside the band and distortion in the band. As shown in Figure 2, it shows the spectral broadening caused by the nonlinear power amplifier. .
理想情况下,希望功率放大器仅仅起到线性放大的作用,即输出信号只是输入信号的简单线性放大,因此让功率放大器工作在线性区。但是此时功率放大器将直流信号转换为交流信号的效率非常低,造成大量能量的浪费,并且需要增加额外的散热设备。Ideally, it is hoped that the power amplifier can only play the role of linear amplification, that is, the output signal is only a simple linear amplification of the input signal, so let the power amplifier work in the linear region. However, at this time, the efficiency of the power amplifier in converting the DC signal into the AC signal is very low, resulting in a large amount of waste of energy, and additional heat dissipation equipment needs to be added.
因此,一方面为了提高功率放大器的效率,另一方面由于很多现代通信系统中的信号都有很大的动态范围(峰均功率比),所以功率放大器往往需要在非线性区工作,从而导致输出信号的畸变(在频域上,带内出现畸变,带外则出现频谱展宽)。在功率放大器领域,通常将这种当前输出仅受当前输入影响的非线性功率放大器的畸变称作功率放大器的无记忆非线性特性。Therefore, on the one hand, in order to improve the efficiency of the power amplifier, on the other hand, because the signals in many modern communication systems have a large dynamic range (peak-to-average power ratio), the power amplifier often needs to work in the nonlinear region, resulting in output Distortion of the signal (in the frequency domain, distortion occurs in the band, and spectrum broadening occurs outside the band). In the field of power amplifiers, the distortion of the nonlinear power amplifier whose current output is only affected by the current input is usually called the memoryless nonlinear characteristic of the power amplifier.
在众多克服功率放大器非线性特性的方法中,基带预失真是一种备受关注的方法。如图3所示,示出用于抵消图1所示的非线性特性的功率放大器预失真器的输入输出信号特性的示意图。基带预失真技术通过使用预失真器PD模拟功率放大器PA的逆特性,使原始输入信号VIN在输入到功率放大器之前发生预畸变,从而补偿功率放大器PA的非线性,并在功率放大器的输出端获得没有畸变的放大输出信号VOUT。具有预失真处理功能的功率放大器的输入输出信号特性直到接近饱和区之前均表现出非常好的线性特性,如图4所示,示出设置有预失真器的功率放大器的输入输出信号特性的示意图。Among many methods to overcome the nonlinear characteristics of power amplifiers, baseband predistortion is a method that has attracted much attention. As shown in FIG. 3 , a schematic diagram of input and output signal characteristics of a power amplifier predistorter for canceling the nonlinear characteristic shown in FIG. 1 is shown. The baseband predistortion technology uses the predistorter PD to simulate the inverse characteristics of the power amplifier PA, so that the original input signal V IN is predistorted before being input to the power amplifier, thereby compensating for the nonlinearity of the power amplifier PA, and at the output of the power amplifier An amplified output signal V OUT without distortion is obtained. The input and output signal characteristics of a power amplifier with a predistortion processing function show very good linearity until it approaches the saturation region, as shown in Figure 4, which shows a schematic diagram of the input and output signal characteristics of a power amplifier equipped with a predistorter .
但是,大多数工作良好的预失真器都针对单音调信号或者窄带频率信号。也就是说,大都用于补偿上面所提到的功率放大器的无记忆非线性。然而,随着信号的带宽越来越宽,功率放大器又表现出一定的记忆特性(频率选择性),即当前的输出信号不仅与当前的输入信号有关,还与之前的输入信号有关,如图5所示,示出具有记忆特性的非线性功率放大器的输入输出信号特性的示意图。功率放大器的记忆特性在其输出上表现为载波附近的非对称频谱,如图6所示,示出由具有记忆特性的非线性功率放大器所放大的信号的频谱示意图。也就是说,尽管载波(期望信号)频谱是完全对称的,但是失真所导致的伪频谱对于中心载波来说却是非对称的。However, most predistorters that work well are for single-tone signals or narrowband frequency signals. That is, mostly used to compensate the memoryless nonlinearity of the power amplifier mentioned above. However, as the bandwidth of the signal becomes wider and wider, the power amplifier shows a certain memory characteristic (frequency selectivity), that is, the current output signal is not only related to the current input signal, but also related to the previous input signal, as shown in the figure 5 shows a schematic diagram of the input and output signal characteristics of a nonlinear power amplifier with memory characteristics. The memory characteristic of the power amplifier manifests as an asymmetric frequency spectrum near the carrier on its output, as shown in Figure 6, which shows a schematic diagram of the frequency spectrum of a signal amplified by a nonlinear power amplifier with memory characteristics. That is, although the spectrum of the carrier (desired signal) is completely symmetrical, the spurious spectrum caused by the distortion is asymmetrical with respect to the center carrier.
因此,为了准确地模拟具有上述记忆特性的功率放大器的逆特性,就必须采用更加复杂的结构和方法来对功率放大器的逆特性进行建模和参数估计,以便实现预失真。目前用于同时补偿功率放大器的无记忆非线性特性和记忆特性两者的技术主要包括记忆多项式模型和二维查询表方法。Therefore, in order to accurately simulate the inverse characteristics of the power amplifier with the above-mentioned memory characteristics, it is necessary to use more complex structures and methods to model and estimate the parameters of the inverse characteristics of the power amplifier in order to achieve pre-distortion. Current techniques for simultaneously compensating both memoryless nonlinearity and memory characteristics of power amplifiers mainly include memory polynomial models and two-dimensional look-up table methods.
记忆多项式模型是Volterra模型的简化模型。Volterra模型采用Volterra级数来对非线性系统进行精确建模,通过仿真功率放大器的逆Volterra级数模型从理论上可以抵消功率放大器的无记忆非线性特性和记忆特性。虽然Volterra模型对于抵消功率放大器的无记忆非线性特性和记忆特性非常有效,但是其物理实现几乎是不可能的,因为需要使用复杂的公式,并且需要巨量的数学运算。为此,提出了简化的Volterra模型,即,记忆多项式模型。如图7所示,示出根据现有技术使用记忆多项式模型对具有记忆特性的非线性功率放大器的输入信号进行预失真处理的示意图,其中记忆多项式模型使用与当前输入和先前输入相关的多项式函数表示输出。抵消功率放大器的非线性的能力取决于所使用的先前输入的数量和多项式的阶数。精细地描述功率放大器的非线性特性需要使用含有高阶项的多项式,这往往引起大条件数的矩阵的产生,导致数值计算非常困难。The memory polynomial model is a simplified model of the Volterra model. The Volterra model uses the Volterra series to accurately model the nonlinear system. By simulating the inverse Volterra series model of the power amplifier, it can theoretically offset the non-memory nonlinear characteristics and memory characteristics of the power amplifier. While the Volterra model is very effective for counteracting the memoryless nonlinearity and memory characteristics of power amplifiers, its physical implementation is nearly impossible due to the use of complex formulas and the enormous amount of mathematical operations required. To this end, a simplified Volterra model, ie, a memory polynomial model, is proposed. As shown in Figure 7, it shows a schematic diagram of predistorting the input signal of a nonlinear power amplifier with memory characteristics using a memory polynomial model according to the prior art, wherein the memory polynomial model uses a polynomial function related to the current input and the previous input Indicates the output. The ability to cancel the non-linearity of the power amplifier depends on the number of previous inputs used and the order of the polynomial. To describe the nonlinear characteristics of power amplifiers finely requires the use of polynomials with high-order terms, which often leads to the generation of matrices with large condition numbers, making numerical calculations very difficult.
二维查询表方法则是根据功率放大器的当前输出与其当前输入和前一输入之间的关系,将功率放大器的逆特性制成查询表,从而在对输入信号进行功率放大之前利用从查询表中得到的加权系数对输入信号进行预失真,由此抵消功率放大器的非线性特性。如图8所示,示出根据现有技术使用二维查询表对具有记忆特性的非线性功率放大器的输入信号进行预失真处理的示意图。但是,二维查询表不仅需要很大的内存来存储大量的预失真数据,而且记忆深度有限,往往只利用当前输入和前一输入与输出的关系对功率放大器的输入信号进行预失真,用于抵消功率放大器的记忆特性。如果需要增加记忆深度,则多维查询表将变得非常复杂,而且很难实现。The two-dimensional look-up table method is based on the relationship between the current output of the power amplifier and its current input and previous input, and the inverse characteristics of the power amplifier are made into a look-up table, so that the input signal is used before power amplification from the look-up table. The resulting weighting coefficients predistort the input signal, thereby canceling out the non-linear characteristics of the power amplifier. As shown in FIG. 8 , it shows a schematic diagram of performing predistortion processing on an input signal of a nonlinear power amplifier with memory characteristics using a two-dimensional look-up table according to the prior art. However, the two-dimensional look-up table not only requires a large memory to store a large amount of pre-distortion data, but also has a limited memory depth, and often only uses the relationship between the current input and the previous input and output to pre-distort the input signal of the power amplifier. Counteracts the memory characteristics of power amplifiers. If memory depth needs to be increased, multidimensional lookup tables will become very complex and difficult to implement.
对于类似于非线性功率放大器的其它非线性系统也存在以上类似的技术问题。Similar technical problems as above also exist for other nonlinear systems similar to nonlinear power amplifiers.
发明内容Contents of the invention
有鉴于此,本发明的一个目的是提供一种非线性系统逆特性辨识装置和方法,能够有效减少对存储设备和数值计算的要求。In view of this, an object of the present invention is to provide a nonlinear system inverse characteristic identification device and method, which can effectively reduce the requirements for storage devices and numerical calculations.
本发明的另一个目的是提供一种功率放大器逆特性辨识装置和方法、功率放大器预失真器、以及使用功率放大器逆特性辨识装置和预失真器的功率放大设备,其主要利用数字技术在基带实现预失真,以弥补功率放大器的无记忆非线性特性和记忆特性,同时有效减少对存储设备和数值计算的要求。Another object of the present invention is to provide a power amplifier inverse characteristic identification device and method, a power amplifier predistorter, and a power amplification device using a power amplifier inverse characteristic identification device and a predistorter, which are mainly realized in baseband using digital technology Pre-distortion to compensate for the non-memory nonlinearity and memory characteristics of the power amplifier, while effectively reducing the requirements for storage devices and numerical calculations.
根据本发明的一个方面,提供一种非线性系统逆特性辨识方法,用于根据非线性系统的原始输入信号x(n)及相应的反馈输出信号yG(n)对非线性系统的逆特性进行辨识,包括:查询表函数Q{·}生成步骤,根据逆滤波信号xF(n)和反馈输出信号yG(n)计算查询表函数Q{·};中间预失真信号z(n)生成步骤,根据反馈输出信号yG(n)和查询表函数Q{·}生成中间预失真信号z(n);滤波函数F{·}构造步骤,根据中间预失真信号z(n)和原始输入信号x(n)构造滤波函数F{·};逆滤波步骤,利用滤波函数F{·}的参数按照公式xF(n)=F-1{x(n)}对原始输入信号x(n)进行逆滤波生成逆滤波信号xF(n);以及迭代重复以上各个步骤直到满足设定的条件为止;其中,查询表函数Q{·}和滤波函数F{·}代表非线性系统的逆特性。According to one aspect of the present invention, a nonlinear system inverse characteristic identification method is provided, which is used to analyze the inverse characteristic of the nonlinear system according to the original input signal x(n) of the nonlinear system and the corresponding feedback output signal y G (n) Carry out identification, including: look-up table function Q{ } generation step, calculate look-up table function Q{ } according to inverse filter signal x F (n) and feedback output signal y G (n); intermediate predistortion signal z(n) The generation step is to generate the intermediate predistortion signal z(n) according to the feedback output signal y G (n) and the lookup table function Q{ }; the filter function F{ } construction step is to generate the intermediate predistortion signal z(n) and the original The input signal x(n) constructs the filter function F{ }; in the inverse filter step, the parameters of the filter function F{ } are used according to the formula x F (n)=F -1 {x(n)} to the original input signal x( n) Perform inverse filtering to generate an inverse filtering signal x F (n); and iteratively repeat the above steps until the set conditions are met; wherein, the lookup table function Q{ } and filter function F{ } represent the nonlinear system inverse characteristic.
根据本发明的另一个方面,提供一种非线性系统逆特性辨识装置,用于根据非线性系统的原始输入信号x(n)及相应的反馈输出信号yG(n)对非线性系统的逆特性进行辨识,包括:参数计算器,用于对非线性系统的逆特性进行辨识,生成表示非线性系统的逆特性的查询表函数Q{·}和滤波函数F{·};以及收敛判决器,用于判定参数计算器所生成的查询表函数Q{·}和滤波函数F{·}是否满足设定的条件,并控制参数计算器迭代计算查询表函数Q{·}和滤波函数F{·};其中所述参数计算器包括:查询表生成器,用于根据逆滤波信号xF(n)和反馈输出信号yG(n)计算查询表函数Q{·};中间预失真器,用于根据反馈输出信号yG(n)和查询表生成器所计算的查询表函数Q{·}生成中间预失真信号z(n);滤波参数计算器,用于根据中间预失真器所生成的中间预失真信号z(n)和原始输入信号x(n)构造滤波函数F{·};以及逆滤波器,用于利用滤波参数计算器所构造的滤波函数F{·}按照公式xF(n)=F-1{x(n)}对原始输入信号x(n)进行逆滤波生成逆滤波信号xF(n)。According to another aspect of the present invention, there is provided a nonlinear system inverse characteristic identification device, which is used for the inverse of the nonlinear system according to the original input signal x(n) of the nonlinear system and the corresponding feedback output signal y G (n) Identify the characteristics of the nonlinear system, including: parameter calculator, used to identify the inverse characteristics of the nonlinear system, generate a lookup table function Q{ } and a filter function F{ } representing the inverse characteristics of the nonlinear system; and a convergence decision device , used to determine whether the lookup table function Q{ } and filter function F{ } generated by the parameter calculator meet the set conditions, and control the parameter calculator to iteratively calculate the lookup table function Q{ } and filter function F{ }; wherein the parameter calculator includes: a look-up table generator, for calculating the look-up table function Q{ } according to the inverse filter signal x F (n) and the feedback output signal y G (n); intermediate predistorter, It is used to generate the intermediate predistortion signal z(n) according to the feedback output signal y G (n) and the lookup table function Q{ } calculated by the lookup table generator; the filter parameter calculator is used to generate the intermediate predistorter according to The intermediate predistortion signal z(n) and the original input signal x(n) construct the filter function F{ }; and the inverse filter is used to use the filter function F{ } constructed by the filter parameter calculator according to the formula x F (n)=F −1 {x(n)} performs inverse filtering on the original input signal x(n) to generate an inverse filtered signal x F (n).
根据本发明的再一个方面,提供一种功率放大器预失真器,包括:地址发生器,用于对原始输入信号进行取模、量化后转化为查询表地址;一维查询表,按照查询表函数Q{·}进行配置,并根据地址发生器输出的查询表地址输出校正因子;乘法器,用于将原始输入信号与一维查询表输出的校正因子相乘,获得中间预失真信号;以及滤波器,按照滤波函数F{·}进行配置,并对乘法器所输出的中间预失真信号进行滤波,生成预失真信号;其中,查询表函数Q{·}和滤波函数F{·}根据上面所述的非线性系统逆特性辨识方法生成或者根据上面所述的非线性系统逆特性辨识装置生成。According to another aspect of the present invention, a power amplifier predistorter is provided, including: an address generator, which is used to convert the original input signal into a look-up table address after modulo and quantization; a one-dimensional look-up table, according to the look-up table function Q{ } configures and outputs the correction factor according to the address of the lookup table output by the address generator; the multiplier is used to multiply the original input signal with the correction factor output by the one-dimensional lookup table to obtain an intermediate predistortion signal; and filter The multiplier is configured according to the filter function F{ }, and the intermediate pre-distortion signal output by the multiplier is filtered to generate a pre-distortion signal; where the look-up table function Q{ } and filter function F{ } are based on the above generated by the above-mentioned nonlinear system inverse characteristic identification method or generated according to the above-mentioned nonlinear system inverse characteristic identification device.
根据本发明的另一个方面,提供一种功率放大设备,包括:预失真模块,用于对原始输入信号进行预失真,输出预失真输入信号;数模转换器,用于将预失真模块所输出的预失真输入信号转换为模拟信号;上变频器,用于将从数模转换器输出的模拟信号上变频为射频信号;功率放大器,用于对上变频器输出的射频信号进行功率放大并输出功率放大后的输出信号;其中,所述预失真模块的结构与前面所限定的功率放大器预失真器的结构相同。According to another aspect of the present invention, a power amplifying device is provided, including: a pre-distortion module, used to pre-distort the original input signal, and output the pre-distorted input signal; a digital-to-analog converter, used to convert the The pre-distorted input signal is converted into an analog signal; the up-converter is used to up-convert the analog signal output from the digital-to-analog converter into a radio frequency signal; the power amplifier is used to amplify the power of the radio frequency signal output by the up-converter and output The output signal after power amplification; wherein, the structure of the pre-distortion module is the same as that of the power amplifier pre-distorter defined above.
根据本发明的再一个方面,提供一种功率放大设备,包括:预失真模块,其结构与根据前面所限定的功率放大器预失真器的结构相同,用于对原始输入信号进行预失真,输出预失真输入信号;数模转换器,用于将预失真模块所输出的预失真输入信号转换为模拟信号;上变频器,用于将从数模转换器输出的模拟信号上变频为射频信号;功率放大器,用于对上变频器输出的射频信号进行功率放大并输出功率放大后的输出信号;定向耦合器,用于将功率放大器的输出分支为两路信号,一路信号作为输出信号进行输出,另一路信号反馈给衰减器;衰减器,用于接收定向耦合器反馈的信号,并对该反馈信号进行衰减;下变频器,用于将衰减器输出的衰减信号下变频为基带信号;模数转换器,用于将下变频器输出的基带信号转换为数字信号,作为反馈输出信号;延时器,用于对原始输入信号进行延时,生成延时输入信号;以及预失真数据更新器,用于接收模数转换器所输出的反馈输出信号和延时器所输出的延时输入信号,并根据所接收的反馈输出信号和延时输入信号对查询表函数和滤波器系数进行在线更新。According to still another aspect of the present invention, a power amplification device is provided, including: a pre-distortion module, the structure of which is the same as that of the power amplifier pre-distorter defined above, for performing pre-distortion on the original input signal and outputting the pre-distortion module. Distorted input signal; digital-to-analog converter, used to convert the pre-distorted input signal output by the pre-distortion module into an analog signal; up-converter, used to up-convert the analog signal output from the digital-to-analog converter into a radio frequency signal; power The amplifier is used to amplify the power of the RF signal output by the up-converter and output the amplified output signal; the directional coupler is used to branch the output of the power amplifier into two signals, one signal is output as an output signal, and the other One signal is fed back to the attenuator; the attenuator is used to receive the signal fed back by the directional coupler and attenuate the feedback signal; the down-converter is used to down-convert the attenuated signal output by the attenuator to a baseband signal; analog-to-digital conversion The device is used to convert the baseband signal output by the down-converter into a digital signal as a feedback output signal; the delayer is used to delay the original input signal to generate a delayed input signal; and the pre-distortion data updater is used to The method is to receive the feedback output signal output by the analog-to-digital converter and the delayed input signal output by the delayer, and update the look-up table function and the filter coefficient online according to the received feedback output signal and delayed input signal.
根据本发明的另一个方面,提供一种在线更新功率放大设备的预失真模块的参数的方法,包括步骤:According to another aspect of the present invention, there is provided a method for online updating the parameters of the pre-distortion module of the power amplification device, comprising steps:
比较功率放大设备的原始输入信号x(n)与反馈输出信号,按照下面的公式计算误差信号:Comparing the original input signal x(n) of the power amplification device with the feedback output signal, the error signal is calculated according to the following formula:
其中,F{·}、Q{·}、P{·}分别代表滤波器的滤波函数、查询表的查询表函数、以及功率放大器的放大函数,而Among them, F{·}, Q{·}, P{·} respectively represent the filtering function of the filter, the lookup table function of the lookup table, and the amplification function of the power amplifier, and
z(n)=x(n)·Q([|x(n)|]),z(n)=x(n) Q([|x(n)|]),
查询表函数Q{·}为The query table function Q{ } is
Q([|x(n)|])=[q0,q1,...,qK-1]T Q([|x(n)|])=[q 0 ,q 1 ,...,q K-1 ] T
滤波器系数为The filter coefficients are
W=[w1,w2,...,wL-1]T W=[w 1 , w 2 , . . . , w L-1 ] T
L代表滤波器的记忆深度,[|·|]代表取模和量化;以及L represents the memory depth of the filter, [|·|] represents modulo and quantization; and
按照下面的公式在线更新查询表函数和滤波器系数Update the lookup table function and filter coefficients online according to the following formula
其中in
U=[μ1,μ1,...,μL-1]T U=[μ 1 , μ 1 ,..., μ L-1 ] T
U和μq均为收敛步长。Both U and μq are convergence step sizes.
根据本发明的上述非线性系统逆特性辨识装置和方法、功率放大器预失真器、以及使用功率放大器逆特性辨识装置和预失真器的功率放大设备,避免了由于矩阵高条件数引起的数值计算困难。According to the above-mentioned nonlinear system inverse characteristic identification device and method, power amplifier predistorter, and power amplification equipment using the power amplifier inverse characteristic identification device and predistorter of the present invention, the numerical calculation difficulties caused by the high condition number of the matrix are avoided .
在下面的说明书部分中给出本发明的其他方面,其中,详细说明用于充分地公开本发明的优选实施例,而不对其施加限定。Further aspects of the invention are given in the descriptive section below, wherein the detailed description serves to fully disclose preferred embodiments of the invention without imposing limitations thereon.
附图说明Description of drawings
下面结合具体的实施例,并参照附图,对本发明的上述和其它目的和优点做进一步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。The above and other objects and advantages of the present invention will be further described below in conjunction with specific embodiments and with reference to the accompanying drawings. In the drawings, the same or corresponding technical features or components will be indicated by the same or corresponding reference numerals.
图1是示出功率放大器的输入输出信号的非线性特性的示意图;FIG. 1 is a schematic diagram showing the nonlinear characteristics of input and output signals of a power amplifier;
图2是示出由非线性功率放大器所放大的信号的频谱示意图;Figure 2 is a schematic diagram showing the frequency spectrum of a signal amplified by a nonlinear power amplifier;
图3是示出用于抵消图1所示的非线性特性的功率放大器预失真器的输入输出信号特性的示意图;3 is a schematic diagram showing input and output signal characteristics of a power amplifier predistorter for canceling the non-linear characteristic shown in FIG. 1;
图4是示出设置有预失真器的功率放大器的输入输出信号特性的示意图;4 is a schematic diagram showing input and output signal characteristics of a power amplifier provided with a predistorter;
图5是示出具有记忆特性的非线性功率放大器的输入输出信号特性的示意图;5 is a schematic diagram showing the input and output signal characteristics of a nonlinear power amplifier with memory characteristics;
图6是示出由具有记忆特性的非线性功率放大器所放大的信号的频谱示意图;Fig. 6 is a schematic diagram showing the frequency spectrum of a signal amplified by a nonlinear power amplifier with memory characteristics;
图7是示出根据现有技术使用记忆多项式模型对具有记忆特性的非线性功率放大器的输入信号进行预失真处理的示意图;Fig. 7 is a schematic diagram showing that a memory polynomial model is used to perform predistortion processing on an input signal of a nonlinear power amplifier with memory characteristics according to the prior art;
图8是示出根据现有技术使用二维查询表对具有记忆特性的非线性功率放大器的输入信号进行预失真处理的示意图;Fig. 8 is a schematic diagram showing that a two-dimensional look-up table is used to perform pre-distortion processing on an input signal of a nonlinear power amplifier with memory characteristics according to the prior art;
图9是示出利用Hammerstein模型构建非线性系统的逆特性的结构示意图;Fig. 9 is a structural schematic diagram showing the inverse characteristics of the nonlinear system constructed using the Hammerstein model;
图10是示出本发明所采用的用于获得非线性系统的逆特性的间接学习法的原理示意图;Fig. 10 is a schematic diagram showing the principle of the indirect learning method used in the present invention to obtain the inverse characteristics of the nonlinear system;
图11是示出根据本发明的间接学习法离线获得非线性系统的逆特性的辨识装置的原理示意图;11 is a schematic diagram showing the principle of an identification device for obtaining the inverse characteristics of a nonlinear system off-line according to the indirect learning method of the present invention;
图12是示出根据本发明的间接学习法离线获得非线性系统的逆特性的辨识方法的优化处理过程的流程图;Fig. 12 is a flow chart showing the optimization process of the identification method for obtaining the inverse characteristics of the nonlinear system off-line according to the indirect learning method of the present invention;
图13是示出根据本发明的一个优选实施例的非线性系统逆特性辨识装置的方框图;Fig. 13 is a block diagram showing a nonlinear system inverse characteristic identification device according to a preferred embodiment of the present invention;
图14是示出用于收集功率放大器的输入输出数据的装置结构的方框图;FIG. 14 is a block diagram showing a device structure for collecting input and output data of a power amplifier;
图15是示出根据本发明的能够实现预失真的非线性功率放大设备的结构方框图;Fig. 15 is a structural block diagram showing a nonlinear power amplifying device capable of realizing predistortion according to the present invention;
图16是示出根据本发明的能够在线更新升级预失真模块的参数的功率放大设备的结构原理图;以及Fig. 16 is a structural principle diagram showing a power amplifying device capable of online updating and upgrading the parameters of the pre-distortion module according to the present invention; and
图17是示出个人计算机的示例性结构的框图。Fig. 17 is a block diagram showing an exemplary structure of a personal computer.
具体实施方式Detailed ways
下面参照附图来说明本发明的实施例。Embodiments of the present invention will be described below with reference to the drawings.
本发明对于非线性系统逆特性的辨识基于常用的Hammerstein模型。Hammerstein模型是考虑了非线性系统的记忆特性而建立的一种非线性结构模型,由无记忆非线性模型和线性时变系统两部分串联构成。图9示出了利用Hammerstein模型90构建非线性系统的逆特性的结构示意图。如图9所示,Hammerstein模型90包括地址发生器91、查询表(Look-Up Table,LUT)92、FIR(有限冲激响应)滤波器93以及乘法器95。地址发生器91根据输入信号x(n)生成用来查询LUT 92的地址,然后根据该地址从LUT 92中选择用复数表示的系数。在将复数系数与输入信号x(n)在乘法器95相乘之后,所得到的乘积通过FIR滤波器93进行数字滤波,从而形成最终的预失真信号u(n)。这里,用k表示LUT 92的地址。The identification of the inverse characteristics of the nonlinear system in the present invention is based on the commonly used Hammerstein model. The Hammerstein model is a nonlinear structural model that considers the memory characteristics of nonlinear systems. It is composed of two parts in series: a memoryless nonlinear model and a linear time-varying system. FIG. 9 shows a schematic structural diagram of constructing the inverse characteristics of a nonlinear system using a Hammerstein model 90 . As shown in FIG. 9 , the Hammerstein model 90 includes an address generator 91 , a look-up table (Look-Up Table, LUT) 92 , a FIR (finite impulse response)
一维LUT可以用于补偿非线性系统的无记忆非线性特性,滤波器用于补偿非线性系统的记忆特性,从而避免了占用大量的内存和高阶多项式的使用,减少了运算量。因此,问题转化为如何构建该一维LUT和FIR滤波器的参数,使得二者结合能够较好地拟和非线性系统的综合非线性特性。为此,本发明采用“间接学习法”。图10示出了本发明所采用的用于获得非线性系统的逆特性的间接学习法的原理。The one-dimensional LUT can be used to compensate the memoryless nonlinear characteristics of the nonlinear system, and the filter is used to compensate the memory characteristics of the nonlinear system, thereby avoiding the use of a large amount of memory and high-order polynomials, and reducing the amount of calculation. Therefore, the problem is transformed into how to construct the parameters of the one-dimensional LUT and FIR filter, so that the combination of the two can better fit the comprehensive nonlinear characteristics of the nonlinear system. For this reason, the present invention adopts " indirect learning method ". Fig. 10 shows the principle of the indirect learning method used in the present invention to obtain the inverse characteristics of the nonlinear system.
通常情况下,非线性系统的特性不会随时间频繁地发生变化,因此学习算法和辨识预失真模型A的模块可以在收集一些输入和输出数据样点(例如n个输入数据样点和n个输出数据样点)后进行离线数据处理。在进行辨识后,将新参数发送到非线性系统的预失真模型A模块,以便对非线性系统的综合非线性进行补偿。如图10所示,这一过程是通过在离线更新数据时,使用所收集的输入和输出数据样点,通过极小化误差信号e(n)来获得非线性系统的逆特性(估计模型A的参数)。在图10中,x(n)为非线性系统的输入,y(n)为非线性系统的输出,G为非线性系统的期望增益系数,而yG(n)称为非线性系统的反馈输出。预失真模型A模块可以用现场可编程门阵列(FPGA)等各种可编程器件实现,从而容易地实现现场更新非线性系统的时变参数等。Usually, the characteristics of the nonlinear system do not change frequently over time, so the learning algorithm and the module of identifying the predistortion model A can collect some input and output data samples (for example, n input data samples and n Output data samples) and perform offline data processing. After identification, the new parameters are sent to the predistortion model A module of the nonlinear system to compensate for the integrated nonlinearity of the nonlinear system. As shown in Fig. 10, the process is to obtain the inverse characteristics of the nonlinear system (estimation model A parameters). In Figure 10, x(n) is the input of the nonlinear system, y(n) is the output of the nonlinear system, G is the expected gain coefficient of the nonlinear system, and y G (n) is called the feedback of the nonlinear system output. The predistortion model A module can be implemented with various programmable devices such as field programmable gate array (FPGA), so that it is easy to update the time-varying parameters of the nonlinear system on the spot.
图11示出根据间接学习法离线获得非线性系统的逆特性的辨识装置,即图10所示的学习算法和辨识预失真模型A的模块的原理示意图。该装置的原理基于图10所示的间接学习法。图中的数据收集存储模块301将收集存储的非线性系统的输入输出数据送给辨识模块300,辨识模块300则将这些数据映射输出后与数据收集存储模块301存储的非线性系统的输入数据经加法器306进行比较,并用误差信号e(n)作为修正辨识模块300中参数的依据。FIG. 11 shows an identification device for obtaining the inverse characteristics of the nonlinear system off-line according to the indirect learning method, that is, a schematic diagram of the learning algorithm shown in FIG. 10 and a module for identifying the predistortion model A. The principle of the device is based on the indirect learning method shown in FIG. 10 . The data collection and
辨识模块300包含地址发生器302、查询表303、乘法器304和双滤波器305。这里的地址发生器302、查询表303、乘法器304和双滤波器305分别相应于图9所示的地址发生器91、查询表92、乘法器95和FIR滤波器93,其具体工作原理将结合下文具体描述。The
根据图11可知,误差信号e(n)可以表示为According to Figure 11, the error signal e(n) can be expressed as
其中x(n)表示图10所示的输入信号。在图10所示的非线性系统的期望增益为G,非线性系统的输出为y(n)的情况下,yG(n)可以用下式表示where x(n) represents the input signal shown in Figure 10. In the case where the expected gain of the nonlinear system shown in Figure 10 is G, and the output of the nonlinear system is y(n), y G (n) can be expressed by the following formula
yG(n)=y(n)/G (2) yG (n)=y(n)/G(2)
表示辨识信号(输入信号x(n)的估计值),记为 Represents the identification signal (estimated value of the input signal x(n)), denoted as
中间预失真信号z(n)为The intermediate predistortion signal z(n) is
z(n)=yG(n)·Q([|yG(n)|]) (4)z(n)=y G (n) Q([|y G (n)|]) (4)
这里,F{·}代表滤波器305的滤波函数,Q{·}代表查询表303的查询表函数。Here, F{·} represents the filter function of the
[|·|]代表地址发生器302所执行的取模和量化,即[|·|] represents the modulo and quantization performed by the
k=[|yG(n)|] k=0,...,K-1 (5)k=[|y G (n)|] k=0,...,K-1 (5)
k对应查询表当中的一个地址(例如0~255)。k corresponds to an address (for example, 0-255) in the lookup table.
由此,对非线性系统的逆特性进行辨识的问题转化为通过设计滤波器305与查询表303的参数来极小化误差信号e(n)。考虑到e(n)是一个时间序列,该辨识问题可以写作:Therefore, the problem of identifying the inverse characteristic of the nonlinear system is transformed into minimizing the error signal e(n) by designing the parameters of the
这里here
为了能有效地极小化函数E,最好的办法是联合优化F{·}和Q{·}。本实施例提出一种计算方法,通过交替优化计算F{·}和Q{·}来极小化E,以优化得到的F{·}和Q{·}(滤波器305和查询表303)来逼近非线性系统的逆特性。In order to effectively minimize the function E, the best way is to jointly optimize F{·} and Q{·}. This embodiment proposes a calculation method to minimize E by alternately optimizing F{ } and Q{ } to optimize the obtained F{ } and Q{ } (filter 305 and lookup table 303) to approximate the inverse properties of nonlinear systems.
首先来分析计算函数Q{·}。查询表的内容可以通过分析每个样点的增益获得,这里每个样点的增益可表示为First, let's analyze the calculation function Q{·}. The content of the lookup table can be obtained by analyzing the gain of each sample point, where the gain of each sample point can be expressed as
gp(n)=x(n)/yG(n) (8)gp(n)=x(n)/y G (n) (8)
也就是说,每一个gp(n)对应一个yG(n)y也就对应一个查询表当中的地址k,将具有相同地址k值的gp(n)归为一类(划入一个组),将其记作That is to say, each gp(n) corresponds to a y G (n)y corresponds to an address k in a lookup table, and the gp(n) with the same address k value is classified into one category (into a group) , write it as
GPk=[gp(i),...gp(j)] 0<k<K-1,GP k = [gp(i), . . . gp(j)] 0<k<K-1,
1<i,j<N (9) ,
将每个组内的gp(n)分别对模值和相位取平均,可以获得折衷的增益特性,即By averaging the modulus and phase of gp(n) in each group, a compromised gain characteristic can be obtained, namely
gk=mean(|GPk|) (10)g k = mean(|GP k |) (10)
pk=mean(∠GPk) (11)p k =mean(∠GP k ) (11)
于是,可以获得查询表函数Q{·}Therefore, the query table function Q{ } can be obtained
Q{·}=Gain⊙exp(j·Phase) (12)Q{ }=Gain⊙exp(j Phase) (12)
其中in
Gain=[g0,...,gi,...]T (13)Gain=[g 0 , . . . , g i , . . . ] T (13)
Phase=[p0,...pi,...]T (14)Phase=[p 0 ,...p i ,...] T (14)
并且,⊙表示Hadamard乘积,上标T表示将矩阵转置。And, ⊙ represents the Hadamard product, and the superscript T represents transposing the matrix.
在根据公式(12)获得查询表函数Q{·}后,可以根据公式(4)计算中间预失真信号z(n)。After obtaining the lookup table function Q{·} according to formula (12), the intermediate predistortion signal z(n) can be calculated according to formula (4).
应该指出的是,在上面计算折衷增益特性的时候,选择的是每个组内gp(n)的模值和相位各自的平均值。当然也可以使用其它本领域技术人员公知的算法来获得该折衷的增益特性,比如中值法、最小二乘法等等,在此省略具体的相关描述。It should be pointed out that when calculating the compromised gain characteristics above, the average value of the modulus and phase of gp(n) in each group is selected. Of course, other algorithms known to those skilled in the art can also be used to obtain the compromised gain characteristics, such as the median method, the least square method, etc., and specific related descriptions are omitted here.
下面分析计算滤波函数F{·},这可以通过最小二乘法获得。在得到中间预失真信号z(n)后,为了获得最优的滤波函数F{·}以逼近输入信号x(n),可根据最小二乘法得到滤波器系数:The following analyzes and calculates the filter function F{·}, which can be obtained by the least square method. After obtaining the intermediate predistortion signal z(n), in order to obtain the optimal filter function F{ } to approximate the input signal x(n), the filter coefficients can be obtained according to the least square method:
W=(ZM HZM)-1·ZM H·X (15)W=(Z M H Z M ) -1 Z M H X (15)
其中in
X=[x(1),x(2),...,x(N)]T (16)X=[x(1), x(2), . . . , x(N)] T (16)
这里,N是收集的数据的长度,L是FIR滤波器的阶数(记忆深度)。Here, N is the length of collected data, and L is the order (memory depth) of the FIR filter.
在根据公式(15)计算得到滤波器的参数W后,滤波函数F{·}用矩阵和向量形式可以表示为:After the parameter W of the filter is calculated according to formula (15), the filter function F{ } can be expressed in the form of matrix and vector as:
F{z(n)}=ZM·W (18)F{z(n)}=Z M ·W (18)
然后,根据公式(3)和公式(18)可以得到输入信号x(n)的估计值从而根据公式(1)计算误差信号e(n)。如果误差信号e(n)满足设定的条件,则认为输入信号x(n)的估计值满足要求。这意味着当前所使用的查询表函数Q{·}和滤波函数F{·}很好地拟和了非线性系统的特性,可以用作图10所示的预失真模型A的参数。Then, the estimated value of the input signal x(n) can be obtained according to formula (3) and formula (18) The error signal e(n) is thus calculated according to formula (1). If the error signal e(n) satisfies the set conditions, the estimated value of the input signal x(n) is considered fulfil requirements. This means that the currently used lookup table function Q{·} and filter function F{·} fit the characteristics of the nonlinear system well, and can be used as parameters of the predistortion model A shown in FIG. 10 .
另一方面,如果误差信号e(n)不满足设定的条件,则输入信号x(n)的估计值不能满足要求,需要对查询表函数Q{·}和滤波函数F{·}进行进一步的修正。此时,利用滤波器305对输入信号x(n)按照下式进行逆滤波得到逆滤波信号xF(n):On the other hand, if the error signal e(n) does not meet the set conditions, the estimated value of the input signal x(n) Can not meet the requirements, need to further modify the query table function Q{·} and filter function F{·}. At this time, the input signal x(n) is inversely filtered by the
xF(n)=F-1{x(n)} (19)x F (n) = F -1 {x(n)} (19)
然后,使用该逆滤波信号xF(n)代替公式(8)中的原始输入信号x(n)与非线性系统的反馈输出信号yG(n)一起,利用公式(4)、(5)以及公式(12)至公式(18)重新计算查询表函数Q{·}和滤波函数F{·}。接着,再根据公式(1)计算误差信号e(n),直到满足设定的条件为止。Then, use the inverse filtered signal x F (n) to replace the original input signal x (n) in formula (8) together with the feedback output signal y G (n) of the nonlinear system, using formulas (4), (5) And formula (12) to formula (18) recalculate the lookup table function Q{·} and filter function F{·}. Then, calculate the error signal e(n) according to formula (1) until the set conditions are met.
这里,设定的条件可以为在获得误差信号e(n)后,检查下面的公式(20)所示的标准均方误差NMSE是否收敛或者判断迭代次数是否大于某个门限值。Here, the set condition can be to check whether the standard mean square error NMSE shown in the following formula (20) converges or to determine whether the number of iterations is greater than a certain threshold after obtaining the error signal e(n).
当然,本领域的技术人员应该理解,设定的条件不仅限于这里所提到的标准均方误差NMSE,也可以是其它的判定标准,比如均方误差MSE、峰值均方误差PMSE等等。Of course, those skilled in the art should understand that the set conditions are not limited to the standard mean square error NMSE mentioned here, and may also be other criteria, such as mean square error MSE, peak mean square error PMSE and so on.
图12示出了由图11所示的辨识模块300执行的优化处理过程的流程图,即如何根据非线性系统的输入信号x(n)和输出信号y(n)来获得用于表征非线性系统的逆特性的查询表303函数Q{·}和滤波器305的函数F{·}。Fig. 12 shows a flow chart of the optimization process performed by the
如图12所示,首先在步骤S1201获取非线性系统的原始输入信号x(n),以及经过非线性系统处理、然后经过反馈和衰减所得到的由辨识模块300处理的输出信号yG(n)。As shown in FIG. 12 , firstly, in step S1201, the original input signal x(n) of the nonlinear system is obtained, and the output signal y G (n ).
接着,在步骤S1202将输出信号yG(n)逐个样点地进行取模与量化操作,根据公式(5)获得与每个样点的输出信号yG(n)对应的地址编号k。之后,在步骤S1203,设定初始标准均方误差NMSE0,并令迭代变量i=0。Next, in step S1202, the output signal y G (n) is subjected to modulo sampling and quantization operations sample by sample, and the address number k corresponding to the output signal y G (n) of each sample is obtained according to formula (5). Afterwards, in step S1203, an initial standard mean square error NMSE 0 is set, and the iteration variable i=0.
然后,在步骤S1204根据公式(8)~(14)进行分组与平均,获得查询表函数Q{·}。首先,根据公式(8)获得逐点增益gp(n),并根据公式(9)将逐个样点增益按照对应的输出信号地址划分成若干组。接着,根据(10)~(14)获取查询表函数Q{·}。Then, in step S1204, grouping and averaging are performed according to formulas (8)-(14), and the lookup table function Q{·} is obtained. First, the point-by-point gain gp(n) is obtained according to formula (8), and the sample-by-sample gain is divided into several groups according to the corresponding output signal addresses according to formula (9). Next, obtain the query table function Q{·} according to (10)-(14).
在计算获得查询表函数Q{·}之后,在步骤S1205,根据公式(4)计算中间预失真信号z(n)。之后,在步骤1206对迭代变量i递增1,即i=i+1。After the look-up table function Q{·} is calculated, in step S1205, the intermediate predistortion signal z(n) is calculated according to formula (4). Afterwards, in step 1206, the iteration variable i is incremented by 1, that is, i=i+1.
然后,在步骤S1206进行滤波器设计获得滤波函数F{·},并计算标准均方误差NMSEi。首先,根据公式(17)构造滤波矩阵ZM并根据公式(15)获得滤波函数F{·}。然后根据公式(3)和公式(18)计算输入信号x(n)的估计值并根据公式(20)计算标准均方误差NMSEi。Then, perform filter design in step S1206 to obtain the filter function F{·}, and calculate the standard mean square error NMSE i . First, construct the filter matrix Z M according to formula (17) and obtain the filter function F{·} according to formula (15). The estimated value of the input signal x(n) is then calculated according to Equation (3) and Equation (18) And calculate the standard mean square error NMSE i according to formula (20).
在获得标准均方误差NMSEi之后,在步骤S1208判断是否标准均方误差NMSEi收敛或者迭代次数是否大于某个门限值。如果是,则处理流程前进到步骤S1209,将当前的查询表函数Q{·}和滤波函数F{·}输出给现场可编程门阵列FPGA,以便从硬件上实现预失真器。After the standard mean square error NMSE i is obtained, it is judged in step S1208 whether the standard mean square error NMSE i converges or whether the number of iterations is greater than a certain threshold. If yes, the processing flow advances to step S1209, and the current look-up table function Q{·} and filter function F{·} are output to the field programmable gate array FPGA, so as to realize the predistorter in hardware.
如果在步骤S1208的判断结果表明标准均方误差NMSEi不收敛并且迭代次数不大于某个门限值,则处理流程前进到步骤S1210,利用滤波器对输入信号x(n)进行逆滤波得到xF(n)=F-1{x(n)}。If the judgment result in step S1208 shows that the standard mean square error NMSE i does not converge and the number of iterations is not greater than a certain threshold value, then the processing flow advances to step S1210, and uses a filter to perform inverse filtering on the input signal x(n) to obtain x F (n)=F -1 {x(n)}.
然后,处理流程返回到步骤S1204,重复迭代执行步骤S1204~S1208。使用该逆滤波信号xF(n)代替公式(8)中的原始输入信号x(n)与非线性系统的反馈输出信号yG(n)一起,利用公式(4)、(5)以及公式(12)至公式(18)重新计算查询表函数Q{·}和滤波函数F{·}。接着,再根据公式(20)计算标准均方误差NMSEi,直到标准均方误差NMSEi收敛或者迭代次数大于某个门限值为止。Then, the processing flow returns to step S1204, and steps S1204-S1208 are iteratively executed. Use this inverse filtered signal x F (n) to replace the original input signal x (n) in formula (8) together with the feedback output signal y G (n) of the nonlinear system, using formulas (4), (5) and formula (12) to formula (18) to recalculate the lookup table function Q{·} and filter function F{·}. Next, calculate the standard mean square error NMSE i according to formula (20), until the standard mean square error NMSE i converges or the number of iterations is greater than a certain threshold.
下面将详细描述实现上述辨识方法的优选非线性系统逆特性辨识装置的结构。如图13所示,示出根据本发明的一个优选实施例的非线性系统逆特性辨识装置的方框图。The structure of a preferred nonlinear system inverse characteristic identification device for implementing the above identification method will be described in detail below. As shown in FIG. 13 , it shows a block diagram of a nonlinear system inverse characteristic identification device according to a preferred embodiment of the present invention.
在图13所示的数据存储设备810中存储有原始输入信号x(n)和经过衰减的反馈输出信号yG(n),这些信号被送给参数计算器800。参数计算器800包括地址发生器801、查询表生成器802、滤波参数计算器803、中间预失真器804、滤波器805、逆滤波器806以及选择器807等单元。The original input signal x(n) and the attenuated feedback output signal y G (n) are stored in the
反馈输出信号yG(n)输入参数计算器800后,由地址发生器801按照公式(5)转换为地址k。所转换的地址k和反馈输出信号yG(n)一起被输入到查询表生成器802。另外,查询表生成器802还输入来自选择器807的信号x(n)或逆滤波信号xF(n),并根据公式(8)~(14)生成查询表函数Q{·},将所生成的查询表函数Q{·}输出到中间预失真器804。After the feedback output signal y G (n) is input into the parameter calculator 800, it is converted into an address k by the
中间预失真器804接收来自查询表生成器802的查询表函数Q{·}和反馈输出信号yG(n),从而根据公式(4)生成中间预失真信号z(n),并将所生成的中间预失真信号z(n)分别输出到滤波参数计算器803和滤波器805。The
滤波参数计算器803接收来自中间预失真器804的中间预失真信号z(n)和原始输入信号x(n),并根据公式(15)~(18)生成滤波函数F{·}。所生成的滤波函数F{·}分别输出到滤波器805和逆滤波器806。The
滤波器805根据滤波参数计算器803所生成的滤波函数F{·},根据公式(3)对中间预失真器804所生成的中间预失真信号z(n)进行处理生成原始输入信号的估计值并将所生成的原始输入信号的估计值输出到NMSE计算器808。The
NMSE计算器808接收滤波器805所生成的原始输入信号的估计值和原始输入信号x(n),并按照公式(20)计算输出标准均方误差NMSE到收敛判决器811。
与滤波器805对称设置的逆滤波器806也接收来自滤波参数计算器803的滤波函数F{·},并使用该滤波函数F{·}对原始输入信号x(n)进行逆滤波,输出逆滤波信号xF(n)到选择器807。The
选择器807用于选择原始输入信号x(n)和逆滤波信号xF(n),根据需要将二者之一输出到查询表生成器802。具体地说,一般情况下在第一次迭代计算查询表函数Q{·}和滤波函数F{·}时,选择器807将原始输入信号x(n)输出到查询表生成器802,但在之后的迭代计算中选择逆滤波器806所生成的逆滤波信号xF(n)输出到查询表生成器802。The
收敛判决器811记录标准均方误差NMSE和迭代步数,并以标准均方误差NMSE或者迭代步数作为判定条件。如果不满足判定条件,即,如果标准均方误差NMSE没有收敛或者迭代步数不超过预定阈值,则收敛判决器811控制参数计算器800反复迭代执行上述过程。如果满足判定条件,即,如果标准均方误差NMSE收敛或者迭代步数超过了预定阈值,则收敛判决器811控制参数计算器800输出最新计算得到的滤波函数F{·}和查询表函数Q{·}。The convergence determiner 811 records the standard mean square error NMSE and the number of iteration steps, and uses the standard mean square error NMSE or the number of iteration steps as a judgment condition. If the determination condition is not satisfied, that is, if the standard mean square error NMSE does not converge or the number of iteration steps does not exceed a predetermined threshold, the convergence determiner 811 controls the parameter calculator 800 to iteratively execute the above process. If the judgment condition is met, that is, if the standard mean square error NMSE converges or the number of iteration steps exceeds a predetermined threshold, then the convergence decision unit 811 controls the parameter calculator 800 to output the latest calculated filter function F{ } and lookup table function Q{ ·}.
下面将以非线性功率放大器为例具体说明如何利用上面所述的非线性系统逆特性辨识方法和辨识装置来对功率放大器的无记忆非线性特性和记忆特性进行补偿,从而扩展其线性放大区。也就是说,如何利用上面所述的非线性系统逆特性辨识方法和辨识装置来对非线性功率放大器进行预失真。The following will take a nonlinear power amplifier as an example to illustrate how to use the above-mentioned nonlinear system inverse characteristic identification method and identification device to compensate the memoryless nonlinear characteristics and memory characteristics of the power amplifier, thereby expanding its linear amplification region. That is to say, how to use the above-mentioned nonlinear system inverse characteristic identification method and identification device to predistort the nonlinear power amplifier.
首先需要对非线性功率放大器的输入输出数据进行收集,以便对其逆特性进行辨识。图14示出了用于收集功率放大器的输入输出数据的装置结构的方框图。需要指出的是,这里的功率放大器是以通信系统中基站和移动台的发射机所常用的功率放大器为例进行说明的,当然该功率放大器也可以应用到其它场合中。Firstly, it is necessary to collect the input and output data of the nonlinear power amplifier in order to identify its inverse characteristics. Fig. 14 is a block diagram showing the structure of a device for collecting input and output data of a power amplifier. It should be pointed out that the power amplifier here is described by taking the power amplifier commonly used by the transmitters of the base station and the mobile station in the communication system as an example. Of course, the power amplifier can also be applied to other occasions.
如图14所示,该用于收集功率放大器的输入输出数据的装置包括:数模转换器101,用于将数字输入信号x(n)转换为模拟信号(为基带信号);上变频器102,用于将从数模转换器101输出的基带信号上变频为射频信号;功率放大器103,用于对上变频器102输出的射频信号进行功率放大;定向耦合器104,用于将功率放大器103的输出分支为两路信号,一路信号作为输出信号y(n)进行输出,另一路信号反馈给衰减器105;衰减器105,用于接收定向耦合器104反馈的功率放大器103的输出,并对该反馈信号进行衰减;下变频器106,用于将衰减器105输出的衰减信号下变频为基带信号;模数转换器107,用于将下变频器106进行下变频所得到的基带信号转换为数字信号,即,反馈输出信号yG(n);以及数据收集存储模块100,用于收集存储原始输入信号x(n)和反馈输出信号yG(n)。数据收集存储模块100中所存储的原始输入信号x(n)和反馈输出信号yG(n)用向量形式表示如下:As shown in Figure 14, the device for collecting the input and output data of the power amplifier includes: a digital-to-analog converter 101, which is used to convert the digital input signal x(n) into an analog signal (baseband signal); an up-converter 102 , for upconverting the baseband signal output from the digital-to-analog converter 101 into a radio frequency signal; the power amplifier 103 is used to amplify the power of the radio frequency signal output by the up converter 102; the directional coupler 104 is used to convert the power amplifier 103 The output branch of is two-way signal, and one-way signal is output as output signal y (n), and another way signal is fed back to attenuator 105; Attenuator 105 is used for receiving the output of power amplifier 103 fed back by directional coupler 104, and to The feedback signal is attenuated; the down converter 106 is used to down-convert the attenuated signal output by the attenuator 105 into a baseband signal; the analog-to-digital converter 107 is used to convert the baseband signal obtained by down-converting the down converter 106 into The digital signal, namely, the feedback output signal y G (n); and the data collection and storage module 100, used to collect and store the original input signal x(n) and the feedback output signal y G (n). The original input signal x(n) and the feedback output signal yG (n) stored in the data
X=[x(1),x(2),......,x(n)] (21)X = [x(1), x(2), ..., x(n)] (21)
YG=[yG(1),yG(2),......,yG(n)] (22)Y G = [y G (1), y G (2), ..., y G (n)] (22)
在使用图14所示的装置收集了功率放大器的原始输入信号x(n)和反馈输出信号yG(n)之后,可以使用图12所示的非线性系统逆特性辨识方法或图13所示的非线性系统逆特性辨识装置对该功率放大器的逆特性进行辨识,从而获得滤波函数F{·}和查询表函数Q{·}。After using the device shown in Figure 14 to collect the original input signal x(n) and feedback output signal yG (n) of the power amplifier, you can use the nonlinear system inverse characteristic identification method shown in Figure 12 or the The nonlinear system inverse characteristic identification device identifies the inverse characteristic of the power amplifier, thereby obtaining the filter function F{·} and the look-up table function Q{·}.
在获得滤波函数F{·}和查询表函数Q{·}之后,就可以构建功率放大器的预失真模块并用来对功率放大器的输入信号x(n)进行预失真,从而使功率放大器获得良好的线性输出。图15示出了根据本发明的实施例能够实现预失真的非线性功率放大设备的结构方框图。After obtaining the filter function F{ } and the lookup table function Q{ }, the pre-distortion module of the power amplifier can be constructed and used to pre-distort the input signal x(n) of the power amplifier, so that the power amplifier can obtain a good linear output. Fig. 15 shows a structural block diagram of a nonlinear power amplifying device capable of realizing predistortion according to an embodiment of the present invention.
如图15所示,该能够实现预失真的非线性功率放大设备包括:预失真模块400,用于对输入信号x(n)进行预失真,输出预失真信号;数模转换器405,用于将预失真模块400所输出的预失真信号转换为模拟信号(为基带信号);上变频器406,用于将从数模转换器405输出的基带信号上变频为射频信号;功率放大器407,用于对上变频器406输出的射频信号进行功率放大并输出功率放大后的输出信号y(n)。此时,功率放大设备所输出的信号y(n)已经消除了功率放大器的无记忆非线性特性和记忆特性,具有良好的线性特性。As shown in FIG. 15 , the non-linear power amplification device capable of pre-distortion includes: a
图15所示的预失真模块400包括:地址发生器401,用于对输入信号x(n)进行取模、量化后转化为查询表地址;一维查询表402,按照根据上面所述的辨识方法或辨识装置所得到的查询表函数Q{·}进行配置,并根据地址发生器401输出的查询表地址输出校正因子;乘法器403,用于将原始输入信号x(n)与一维查询表402输出的校正因子相乘,得到中间预失真信号;以及滤波器404,按照利用上面所述的辨识方法或辨识装置得到的滤波函数F{·}进行配置,并对乘法器403所输出的中间预失真信号进行滤波完成预失真,输出预失真信号到数模转换器405。The
另外,也可以将图14所示的用于收集功率放大器的输入输出数据的装置中的定向耦合器104、衰减器105、下变频器106、模数转换器107、以及数据收集存储模块100结合到图15所示的功率放大设备中,以便构成具有数据收集存储功能和预失真功能两者的功率放大设备。In addition, the
根据如上配置的具有预失真模块的非线性功率放大设备,利用数字技术在基带实现了预失真,不仅能够弥补功率放大器的无记忆非线性特性和记忆特性,而且能够有效减少对存储设备的容量要求并大大降低了对数值计算的要求。According to the non-linear power amplification device with pre-distortion module configured as above, the pre-distortion is realized in the baseband by using digital technology, which can not only compensate for the non-memory nonlinear characteristics and memory characteristics of the power amplifier, but also effectively reduce the capacity requirements for storage devices And greatly reduce the requirements for numerical calculation.
上面所描述的是利用事先收集存储的功率放大器的输入信号x(n)和反馈输出信号yG(n)对功率放大器的逆特性进行离线辨识,然后根据辨识结果配置功率放大器的预失真模块。What is described above is to use the previously collected and stored input signal x(n) and feedback output signal y G (n) of the power amplifier to conduct offline identification of the inverse characteristics of the power amplifier, and then configure the pre-distortion module of the power amplifier according to the identification results.
但是,正如在前文中所提到的,非线性功率放大器作为一种非线性系统,其输出特性会随着时间的变化而发生变化。虽然这种变化短时间内并不显著,但是随着时间的延长其特性必然发生变化,因而最好定时对功率放大器的逆特性进行辨识,以便使其输出总是表现出良好的线性形态。However, as mentioned above, as a nonlinear system, the output characteristics of the nonlinear power amplifier will change with time. Although this change is not significant in a short period of time, its characteristics will inevitably change as time goes on. Therefore, it is best to regularly identify the inverse characteristics of the power amplifier so that its output always shows a good linear form.
为了避免定期辨识功率放大器的逆特性并定期更新其预失真模块的参数所带来的烦琐工作,本实施例还提出一种在线更新升级预失真模块的参数的功率放大方法和设备。如图16所示,示出了根据本发明的能够在线更新升级预失真模块的参数的功率放大设备的结构原理图。In order to avoid the cumbersome work of regularly identifying the inverse characteristics of the power amplifier and periodically updating the parameters of the pre-distortion module, this embodiment also proposes a power amplification method and device for online updating and upgrading the parameters of the pre-distortion module. As shown in FIG. 16 , it shows a schematic structural diagram of a power amplification device capable of updating parameters of an upgraded predistortion module online according to the present invention.
图16所示的功率放大设备包括预失真模块400、数模转换器405、上变频器406、功率放大器407、定向耦合器104、衰减器105、下变频器106、模数转换器107、预失真数据更新器600、以及延时器601。除了预失真数据更新器600和延时器601以外,其余的各个单元分别与图14和图15所示的相应单元的结构相同,并用相同的附图标记表示,在此省略其详细描述。The power amplifying device shown in FIG. 16 includes a
在图16所示的具有在线更新预失真模块的功率放大设备中,首先原始数字输入信号x(n)输入预失真模块400,经地址发生器401取模、量化后转换为查询表地址。根据该查询表地址从一维查询表402中读取校正因子,并将该校正因子与原始数字输入信号x(n)在乘法器403中相乘。相乘后的结果再经滤波器404进行滤波完成预失真处理,生成预失真信号。接着,预失真信号经数模转换器405和上变频器406变为射频模拟信号,发送给功率放大器407进行功率放大并输出放大后的信号y(n)。In the power amplifying device with an online update predistortion module shown in FIG. 16 , first the original digital input signal x(n) is input to the
放大后的输出信号y(n)经定向耦合器104反馈回来,然后经衰减器105衰减,之后下变频器106将信号下变频到基带,再由模数变换器107将基带信号转换为数字信号,并输入到预失真数据更新器600中。The amplified output signal y(n) is fed back through the
原始的数字输入信号x(n)则有一路经过延时器601延时后也输入到预失真数据更新器600中。预失真数据更新器600相当于图11所示的辨识模块300,并且根据下面的算法更新预失真模块400中的滤波函数F{·}和查询表函数Q{·}。One of the original digital input signals x(n) is delayed by the delayer 601 and then input to the predistortion data updater 600 . The predistortion data updater 600 is equivalent to the
从图16中可以推导出,将原始的数字输入信号x(n)与反馈回来的数字输出信号相比较可以得到误差信号:It can be deduced from Figure 16 that the error signal can be obtained by comparing the original digital input signal x(n) with the fed back digital output signal:
其中,P{·}代表功率放大器函数,而where P{ } represents the power amplifier function, and
z(n)=x(n)·Q([|x(n)|]) (24)z(n)=x(n)·Q([|x(n)|]) (24)
查询表函数Q{·}可以写作The query table function Q{ } can be written
Q([|x(n)|])=[q0,q1,...,qK-1]T (25)Q([|x(n)|])=[q 0 ,q 1 ,...,q K-1 ] T (25)
滤波器系数可以整理为The filter coefficients can be organized as
W=[w1,w2,...,wL-1]T (26)W=[w 1 , w 2 , . . . , w L-1 ] T (26)
L仍然代表记忆深度。L still stands for memory depth.
于是查询表函数和滤波器系数可以按照下式更新:The lookup table function and filter coefficients can then be updated as follows:
其中in
U=[μ1,μ1,...,μL-1]T (28)U=[μ 1 , μ 1 , . . . , μ L-1 ] T (28)
U和μq都是收敛步长。Both U and μq are convergence step sizes.
当然,预失真数据更新器600也可以按照前面所述的非线性逆特性辨识方法利用最新获取的原始输入信号x(n)和反馈输出信号yG(n)对功率放大器的逆特性进行在线辨识,以获取实时的查询表函数Q{·}和滤波函数F{·}。Of course, the predistortion data updater 600 can also use the newly acquired original input signal x(n) and feedback output signal yG (n) to conduct online identification of the inverse characteristic of the power amplifier according to the above-mentioned nonlinear inverse characteristic identification method , to obtain the real-time query table function Q{·} and filter function F{·}.
在获得了新的查询表函数和滤波函数后,就可以对预失真模块400中的相应参数进行修改,在此省略了由图16所示的预失真模块400和预失真数据更新器600所执行的处理方法的流程的详细描述。After obtaining the new look-up table function and filtering function, the corresponding parameters in the
根据本实施例所公开的辨识装置及辨识方法,不仅能够同时减少对存储设备和数值计算的要求,而且能够实现预失真模块参数的在线更新,从而实时保证了功率放大器的线性特性。According to the identification device and identification method disclosed in this embodiment, not only the requirements for storage devices and numerical calculations can be reduced simultaneously, but also the online update of the parameters of the predistortion module can be realized, thereby ensuring the linearity of the power amplifier in real time.
上面以非线性功率放大器作为示例详细描述了如何对时变非线性系统进行离线和在线逆特性辨识,并根据辨识结果对非线性系统进行预失真。Taking the nonlinear power amplifier as an example above, how to identify the time-varying nonlinear system offline and online inverse characteristics is described in detail, and pre-distort the nonlinear system according to the identification result.
如上所述,本发明采用一个一维查询表和有限冲激响应(FIR)滤波器串联来描述功率放大器的非线性特性,从而避免了应用记忆多项式模型中所使用的很多高阶项来精确描述功率放大器的非线性特性,因为高阶项的使用往往导致相应地矩阵的条件数很高,给精确获取记忆多项式参数和预失真带来了困难。而且,根据本发明的功率放大器预失真器、以及使用功率放大器逆特性辨识装置和预失真器的功率放大设备采用的是一维查询表,大大节省了内存需要。As mentioned above, the present invention uses a one-dimensional look-up table in series with a finite impulse response (FIR) filter to describe the nonlinear characteristics of the power amplifier, thereby avoiding the need to accurately describe many high-order terms used in the memory polynomial model Due to the nonlinear characteristics of the power amplifier, the use of high-order terms often leads to a high condition number of the corresponding matrix, which makes it difficult to accurately obtain memory polynomial parameters and pre-distortion. Moreover, the power amplifier predistorter and the power amplifying device using the power amplifier inverse characteristic identification device and the predistorter according to the present invention use a one-dimensional look-up table, which greatly saves memory requirements.
另外,还应该指出的是,上述系列处理和装置也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图17所示的通用个人计算机700安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。In addition, it should also be noted that the series of processes and devices described above may also be implemented by software and/or firmware. In the case of realization by software and/or firmware, the program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration, such as a general-purpose
在图17中,中央处理单元(CPU)701根据只读存储器(ROM)702中存储的程序或从存储部分708加载到随机存取存储器(RAM)703的程序执行各种处理。在RAM 703中,也根据需要存储当CPU 701执行各种处理等等时所需的数据。In FIG. 17 , a central processing unit (CPU) 701 executes various processes according to programs stored in a read only memory (ROM) 702 or programs loaded from a
CPU 701、ROM 702和RAM 703经由总线704彼此连接。输入/输出接口705也连接到总线704。The
下述部件连接到输入/输出接口705:输入部分706,包括键盘、鼠标等等;输出部分707,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等等,和扬声器等等;存储部分708,包括硬盘等等;和通信部分709,包括网络接口卡比如LAN卡、调制解调器等等。通信部分709经由网络比如因特网执行通信处理。The following components are connected to the input/output interface 705: an
根据需要,驱动器710也连接到输入/输出接口705。可拆卸介质711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器710上,使得从中读出的计算机程序根据需要被安装到存储部分708中。A
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质711安装构成软件的程序。In the case of realizing the above-described series of processing by software, the programs constituting the software are installed from a network such as the Internet or a storage medium such as the
本领域的技术人员应当理解,这种存储介质不局限于图17所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质711。可拆卸介质711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 702、存储部分708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。Those skilled in the art should understand that such a storage medium is not limited to the
还需要指出的是,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。It should also be pointed out that the steps for executing the above series of processes can naturally be executed in chronological order according to the illustrated order, but it does not need to be executed in chronological order. Certain steps may be performed in parallel or independently of each other.
虽然已经详细说明了本发明及其优点,但是应当理解在不脱离由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本申请的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the terms "comprising", "comprising", or any other variation thereof in this application are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that includes a set of elements includes not only those elements, but also includes none. other elements specifically listed, or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
Claims (29)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810081674A CN101527544B (en) | 2008-03-05 | 2008-03-05 | Device and method for identifying inverse characteristic of nonlinear system, power amplifier and predistorter thereof |
JP2008248388A JP5120178B2 (en) | 2008-03-05 | 2008-09-26 | Nonlinear system inverse characteristic identification device and method, power amplification device, and power amplifier predistorter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810081674A CN101527544B (en) | 2008-03-05 | 2008-03-05 | Device and method for identifying inverse characteristic of nonlinear system, power amplifier and predistorter thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101527544A CN101527544A (en) | 2009-09-09 |
CN101527544B true CN101527544B (en) | 2012-09-12 |
Family
ID=41095271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810081674A Expired - Fee Related CN101527544B (en) | 2008-03-05 | 2008-03-05 | Device and method for identifying inverse characteristic of nonlinear system, power amplifier and predistorter thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5120178B2 (en) |
CN (1) | CN101527544B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5221260B2 (en) * | 2008-09-22 | 2013-06-26 | 日本無線株式会社 | Predistorter |
CN102025327B (en) * | 2009-09-18 | 2013-01-02 | 富士通株式会社 | Amplifier apparatus and predistortion control method |
JP5516378B2 (en) | 2010-12-13 | 2014-06-11 | 富士通株式会社 | Distortion compensation apparatus, distortion compensation method, and radio apparatus |
JP5707999B2 (en) * | 2011-02-09 | 2015-04-30 | 富士通株式会社 | Distortion compensation apparatus, transmitter, and distortion compensation method |
JP5751056B2 (en) * | 2011-07-14 | 2015-07-22 | 富士通株式会社 | Distortion compensation apparatus, transmitter, and distortion compensation method |
EP2582043A1 (en) * | 2011-10-10 | 2013-04-17 | Astrium Limited | Control system for a power amplifier |
CN103580617A (en) * | 2012-07-20 | 2014-02-12 | 富士通株式会社 | Method and device for training predistorter |
CN103780206A (en) * | 2012-10-24 | 2014-05-07 | 华为技术有限公司 | Feedback link and implementation method thereof |
JP6007744B2 (en) * | 2012-11-20 | 2016-10-12 | 富士通株式会社 | Distortion compensation apparatus, transmission apparatus, distortion compensation method, and transfer function calculation method |
JP6064714B2 (en) * | 2013-03-19 | 2017-01-25 | 富士通株式会社 | Distortion compensation apparatus and distortion compensation method |
JP6221518B2 (en) | 2013-05-24 | 2017-11-01 | 富士通株式会社 | Power amplification apparatus, transmitter, and power amplification apparatus control method |
CN103888312B (en) * | 2014-03-04 | 2017-06-09 | 京信通信系统(广州)有限公司 | The alarm method and device of a kind of pre-distortion system |
CN104242834B (en) * | 2014-08-15 | 2017-03-08 | 中国舰船研究设计中心 | Receiver preamplifier nonlinear response modeling method based on higher order polynomial-fitting |
CN104486282B (en) * | 2014-12-15 | 2018-02-13 | 成都康特数字广播电视设备有限公司 | Radio frequency multicarrier intermodulation restraining device |
US9484962B1 (en) * | 2015-06-05 | 2016-11-01 | Infineon Technologies Ag | Device and method for adaptive digital pre-distortion |
CN107786174B (en) * | 2016-08-26 | 2021-02-05 | 中颖电子股份有限公司 | Circuit and method for predistortion |
CN108011598B (en) * | 2017-12-26 | 2021-04-27 | 中国工程物理研究院电子工程研究所 | Digital predistortion adaptive processing method |
US10659124B2 (en) | 2018-03-01 | 2020-05-19 | Fujitsu Limited | Multiantenna communication device and coefficient update method |
JP2019201347A (en) | 2018-05-17 | 2019-11-21 | 富士通株式会社 | Distortion compensation device and distortion compensation method |
JP2019201361A (en) | 2018-05-17 | 2019-11-21 | 富士通株式会社 | Distortion compensation apparatus and distortion compensation method |
CN114421902B (en) * | 2022-01-21 | 2023-06-06 | 上海物骐微电子有限公司 | Predistortion calibration method and application suitable for WiFi memory-free power amplifier |
CN118764003B (en) * | 2024-09-09 | 2025-01-21 | 中国移动紫金(江苏)创新研究院有限公司 | Data predistortion processing method, device, equipment, medium and program product |
CN118801833A (en) * | 2024-09-12 | 2024-10-18 | 荣耀终端有限公司 | Signal predistortion processing method, electronic device, storage medium and chip system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1523751A (en) * | 2003-02-21 | 2004-08-25 | 日本电气株式会社 | Circuit and method for compensating for nonliner distortion of power amplifier |
CN1557046A (en) * | 2002-11-14 | 2004-12-22 | 株式会社日立国际电气 | Distortion compensation circuit, distortion compensation signal generating method, and power amplifier |
US6998909B1 (en) * | 2004-02-17 | 2006-02-14 | Altera Corporation | Method to compensate for memory effect in lookup table based digital predistorters |
CN1870614A (en) * | 2005-05-27 | 2006-11-29 | 华为技术有限公司 | Universal device for predistortion processing base band digital signal |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003188747A (en) * | 2001-12-17 | 2003-07-04 | Fujitsu Ltd | Distortion compensation transmitter |
JP4091047B2 (en) * | 2002-10-31 | 2008-05-28 | 深▲川▼市中▲興▼通▲訊▼股▲分▼有限公司 | Broadband predistortion linearization method and system |
JP4356384B2 (en) * | 2003-07-09 | 2009-11-04 | 日本電気株式会社 | Nonlinear compensation circuit, transmitter, and nonlinear compensation method |
US7826625B2 (en) * | 2004-12-21 | 2010-11-02 | Ntt Docomo, Inc. | Method and apparatus for frame-based loudspeaker equalization |
-
2008
- 2008-03-05 CN CN200810081674A patent/CN101527544B/en not_active Expired - Fee Related
- 2008-09-26 JP JP2008248388A patent/JP5120178B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1557046A (en) * | 2002-11-14 | 2004-12-22 | 株式会社日立国际电气 | Distortion compensation circuit, distortion compensation signal generating method, and power amplifier |
CN1523751A (en) * | 2003-02-21 | 2004-08-25 | 日本电气株式会社 | Circuit and method for compensating for nonliner distortion of power amplifier |
US6998909B1 (en) * | 2004-02-17 | 2006-02-14 | Altera Corporation | Method to compensate for memory effect in lookup table based digital predistorters |
CN1870614A (en) * | 2005-05-27 | 2006-11-29 | 华为技术有限公司 | Universal device for predistortion processing base band digital signal |
Also Published As
Publication number | Publication date |
---|---|
JP2009213113A (en) | 2009-09-17 |
CN101527544A (en) | 2009-09-09 |
JP5120178B2 (en) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101527544B (en) | Device and method for identifying inverse characteristic of nonlinear system, power amplifier and predistorter thereof | |
US11129076B2 (en) | Method and system for baseband predistortion linearization in multi-channel wideband communication systems | |
KR100480278B1 (en) | Digital predistorter of a wideband power amplifier and adaptation method therefor | |
CN101040502B (en) | Wideband enhanced digital injection predistortion system and method | |
CN111585608B (en) | Adaptive digital predistortion method for broadband spread frequency hopping system | |
Braithwaite et al. | General principles and design overview of digital predistortion | |
CN104363191A (en) | Digital pre-distortion method of frequency hopping communication system | |
CN101610093B (en) | Predistortion device, predistortion system and predistortion method | |
CN107786174B (en) | Circuit and method for predistortion | |
CN103187932B (en) | power amplifier and predistorter thereof | |
KR101470817B1 (en) | Apparatus and method of predistortion of multiple nonlinear amplifiers with single feedback loop | |
JP6182973B2 (en) | Signal amplification device, distortion compensation method, and wireless transmission device | |
KR20090125597A (en) | Nonlinear Model Parameter Extraction Method of Wideband Signal Using Narrowband Signal, Predistortion Apparatus and Method Using the Same | |
Shokri et al. | A novel Technique for Linearizing Digital Pre-distortion in Power Amplifiers for OFDM Applications | |
Arora et al. | Frequency Quadrupler Based High-Frequency Vector Signal Generator Using Digital Predistortion | |
Ren | Digital predistorter with improving index accuracy of lookup table based on FPGA | |
Yang et al. | An improved LUT based predistortion method for HPA with memory effects in WCDMA systems | |
KR20140018730A (en) | Behavioral modeling method and decentralized predistortion architecture for wireless communication system with multi-branch rf power amplifier architecture | |
Shokri et al. | A combination Technique based on Polynomial Method and look-up Table for Linearity Digital Pre-distortion in Power Amplifiers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120912 Termination date: 20180305 |
|
CF01 | Termination of patent right due to non-payment of annual fee |