CN101504543B - Method and system for extracting key process parameters - Google Patents
Method and system for extracting key process parameters Download PDFInfo
- Publication number
- CN101504543B CN101504543B CN2008101812222A CN200810181222A CN101504543B CN 101504543 B CN101504543 B CN 101504543B CN 2008101812222 A CN2008101812222 A CN 2008101812222A CN 200810181222 A CN200810181222 A CN 200810181222A CN 101504543 B CN101504543 B CN 101504543B
- Authority
- CN
- China
- Prior art keywords
- parameters
- correlation
- parameter
- data
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 193
- 230000008569 process Effects 0.000 title claims abstract description 126
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 230000002068 genetic effect Effects 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims description 48
- 238000010219 correlation analysis Methods 0.000 claims description 27
- 238000012360 testing method Methods 0.000 claims description 25
- 239000004065 semiconductor Substances 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 17
- 238000004458 analytical method Methods 0.000 abstract description 14
- 230000002596 correlated effect Effects 0.000 abstract description 6
- 235000012431 wafers Nutrition 0.000 description 37
- 238000004891 communication Methods 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
相关申请related application
根据35 U.S.C.§119,本发明要求于2007年5月4日提交、第60/916,194号、标题为“准确晶片预测的方法与设备”(Method andApparatus to Enable Accurate Wafer Prediction)的美国临时专利的优先权,其全部内容结合于此作为参考。Pursuant to 35 U.S.C. §119, this application claims priority to U.S. Provisional Patent No. 60/916,194, filed May 4, 2007, entitled "Method and Apparatus to Enable Accurate Wafer Prediction" rights, the entire contents of which are hereby incorporated by reference.
技术领域technical field
本发明涉及一种提取关键工艺参数的方法,特别涉及一种提取与选出的装置参数有关的关键工艺参数的方法。The invention relates to a method for extracting key process parameters, in particular to a method for extracting key process parameters related to selected device parameters.
背景技术Background technique
集成电路在晶片制造场所中通过多个工艺来产生。这些工艺与相关制造工具可包含热氧化、扩散、离子植入、快速热处理(RTP)、化学气相沉积(CVD)、物理气相沉积(PVD)、磊晶形成/生长工艺、蚀刻工艺、微影工艺和/或在此领域中已知的其它制造工艺与工具。此外,制造工艺包括多个度量工艺,以用来监测与控制集成电路制造优良率、质量与可靠度。Integrated circuits are produced through a number of processes in a wafer fabrication facility. These processes and associated fabrication tools can include thermal oxidation, diffusion, ion implantation, rapid thermal processing (RTP), chemical vapor deposition (CVD), physical vapor deposition (PVD), epitaxial formation/growth processes, etching processes, lithography processes and/or other manufacturing processes and tools known in the art. In addition, the manufacturing process includes multiple metrology processes for monitoring and controlling the yield, quality and reliability of IC manufacturing.
在生产集成电路期间,制造工艺会产生大量数据。然而,负责集成电路制造工艺与设备的工艺与设备工程师,仅能通过进行各种实验(例如DOE)、或通过生产经验来确定制造工艺参数与集成电路性能(例如对在半导体基板或晶片上制造的集成电路所做的测量)间的关系。累积此种数据与知识会耗用大量的资源。此外,仅能对主动参数(例如气体流速)而无法对被动参数(例如反射功率)进行实验。另外,仍难以确定在一实验(例如在分批作业中)选出的每一参数对集成电路性能的影响。During the production of integrated circuits, the manufacturing process generates large amounts of data. However, the process and equipment engineers responsible for the integrated circuit manufacturing process and equipment can only determine the manufacturing process parameters and integrated circuit performance through various experiments (such as DOE) or production experience (such as for semiconductor substrates or wafers) The relationship between the measurements made by integrated circuits). Accumulating such data and knowledge is resource-intensive. Furthermore, experiments can only be performed on active parameters (such as gas flow rate) and not on passive parameters (such as reflected power). In addition, it remains difficult to determine the effect of each parameter selected in an experiment (eg, in a batch operation) on integrated circuit performance.
因此,需要一种能加强判断参数(例如一工艺参数)与集成电路装置性能间的相关性的方法。Therefore, there is a need for a method that can strengthen the correlation between a judgment parameter (such as a process parameter) and the performance of an integrated circuit device.
发明内容Contents of the invention
提供了一种方法,包括选出装置参数与收集工艺数据。工艺数据包含时序工艺数据,以及与多个工艺参数有关的数值。总结时序工艺数据。进行相关性分析。相关性分析识别出关键参数,关键参数包含在多个工艺参数中。关键工艺参数与选出的装置参数有关。产生选出的装置参数的基因地图。A method is provided, including selecting plant parameters and collecting process data. The process data includes time series process data and values related to multiple process parameters. Summarizes timing process data. Perform correlation analysis. Correlation analysis identifies critical parameters, which are included in multiple process parameters. The key process parameters are related to the selected device parameters. Genetic maps of selected device parameters were generated.
还提供了一种计算机可读取媒介。计算机可读取媒介包括确定工艺参数的指令。这些指令包括接收工艺数据以及相应的装置性能数据。工艺数据与第一、第二、第三、及第四工艺参数有关。总结工艺数据。将第一、第二、第三、及第四工艺参数分组成第一群与第二群。利用第一、第二、第三、及第四工艺参数间的相关性来进行分组。产生用于第一群的相关性矩阵。产生用于装置参数的基因地图。基因地图包括第一群与装置参数的相对相关性,以及第二群与装置参数的相对相关性。A computer readable medium is also provided. A computer readable medium includes instructions for determining process parameters. These instructions include receiving process data and corresponding device performance data. The process data is related to the first, second, third, and fourth process parameters. Summarize process data. The first, second, third, and fourth process parameters are grouped into a first group and a second group. The correlation among the first, second, third, and fourth process parameters is used for grouping. A correlation matrix for the first population is generated. Generate gene maps for device parameters. The gene map includes the relative correlation of the first population to the device parameter, and the relative correlation of the second population to the device parameter.
还进一步地提供了一系统。此系统可被操作来收集制造数据。制造数据包含时序数据。系统将总结此时序数据。确定第一制造参数与第二制造参数间的相关性。还确定包括第一制造参数及第二制造参数的群组与集成电路性能间的相关性。产生示出群组与集成电路性能间的相对相关性的基因地图。A system is further provided. The system is operable to collect manufacturing data. Manufacturing data includes timing data. The system summarizes this time series data. A correlation between the first manufacturing parameter and the second manufacturing parameter is determined. A correlation between the group comprising the first fabrication parameter and the second fabrication parameter and integrated circuit performance is also determined. A gene map showing the relative correlation between cohorts and integrated circuit performance is generated.
附图说明Description of drawings
连同附图研读以下详细说明可最佳地理解本发明的方面。要强调的是,依照产业所实施的标准,各特征并不按比例绘制。事实上,为了讨论的清楚,各特征的尺寸可被任意放大或缩小。Aspects of the invention are best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, in accordance with the standards practiced in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily expanded or reduced for clarity of discussion.
图1是示出了一种提取关键工艺参数方法的实施例的流程图;Fig. 1 is a flowchart illustrating an embodiment of a method for extracting key process parameters;
图2是示出了一计算机系统的实施例的方块图;Figure 2 is a block diagram illustrating an embodiment of a computer system;
图3是示出了一种相关性分析方法的实施例的流程图;Fig. 3 is a flowchart showing an embodiment of a correlation analysis method;
图4是示出了用于图3的方法中的一阶层二元树的实施例的图式;Figure 4 is a diagram illustrating an embodiment of a one-level binary tree used in the method of Figure 3;
图5是示出了一相关性矩阵的实施例的文件/画面图片(shot);以及Figure 5 is a document/screen shot showing an embodiment of a dependency matrix; and
图6是示出了一基因地图的实施例的文件/画面图片。Figure 6 is a file/screen image showing an example of a gene map.
具体实施方式Detailed ways
要理解的是,在此提供具体实施例,以实例教授更广泛的发明概念,且本领域技术人员将可容易地应用本发明的教导至其它方法或设备。此外,要理解的是,在本发明中所讨论的方法与设备包含一些已知的结构和/或工艺。因为这些结构与工艺在本领域中为众所皆知的,将仅以一般的标准来叙述。本说明中会省略有些中间结构和/或工艺,它们的内容仅仅是设计上的选择。此外,为了方便与实例之用,在所有的附图中重复组件符号,重复并不意指在所有的附图中,须组合任何的特征或步骤。It is to be understood that specific embodiments are provided herein by way of example to teach the broader inventive concepts, and that those skilled in the art will readily apply the teachings of the invention to other methods or devices. In addition, it is to be understood that the methods and apparatuses discussed herein involve some known structures and/or processes. Since these structures and processes are well known in the art, they will be described in general terms only. Some intermediate structures and/or processes will be omitted in this description, and their contents are only design choices. In addition, for the purpose of convenience and example, component symbols are repeated in all the drawings, and the repetition does not mean that any features or steps must be combined in all the drawings.
参考图1,示出了一种用来提取关键工艺参数的方法100。方法100起始于步骤102,在此选出一装置参数。装置参数包括与集成电路有关的一参数,其包括一电性或物理参数,其可指出集成电路装置性能。在一实施例中,在集成电路装置或其部分的晶片层测试上,确定(例如测量)此装置参数的值。装置参数的实例包括Iddq(饱和电流的改变)、漏损参数、速度参数和/或本领域中已知的许多其它装置参数。Referring to FIG. 1 , a method 100 for extracting critical process parameters is shown. Method 100 begins at step 102, where a device parameter is selected. Device parameters include a parameter related to the integrated circuit, including an electrical or physical parameter, which may indicate integrated circuit device performance. In one embodiment, the value of a parameter of the device is determined (eg, measured) upon wafer level testing of the integrated circuit device or portion thereof. Examples of device parameters include Iddq (change in saturation current), leakage parameters, speed parameters, and/or many other device parameters known in the art.
此方法随后进行到步骤104,在此,确定与选出的装置参数有关的晶片测试参数。换句话说,进行相关性分析以确定影响步骤102中选出的装置参数的一或多个晶片测试参数。一参数对另一参数的影响可通过统计工具来测量,诸如R2值(确定系数)。与装置参数相关的晶片测试参数在此可被视为“关键”晶片测试参数。在一实施例中,关键晶片测试参数为那些具有比选出的值更大的R2值的;选出的数值使用的准则,诸如待被分析的工艺性能、被使用进行相关性分析的资源、和/或那些本领域技术人员已知的其它考虑。相关性分析包含基因地图分析,将在以下图3作进一步的描述。在其它实施例中,各种统计工具与方法可被用来确定一个或多个关键WAT参数。晶片测试参数也可被视为晶片接受测试(WAT)参数。晶片测试(例如WAT)工艺包括在半导体基板(例如晶片)上形成的集成电路的晶片层电性测试,或测试结构的晶片层电性测试。WAT工艺典型地包括在晶片上多个测试位置(例如探针位置)的晶片测试参数的量测。探针位置被置于晶片的切割线或散置于集成电路装置之间。晶片测试参数可包括电阻、电流和/或其它在此领域中已知参数的测量。与晶片测试参数有关的数值在此被描述为WAT数据。为了进行相关性分析,可收集来自多个晶片与相应装置性能(例如装置参数的数值)的WAT。在一实施例中,可收集超过200个晶片的WAT数据。在一实施例中,步骤104被省略。The method then proceeds to step 104 where wafer test parameters related to the selected device parameters are determined. In other words, a correlation analysis is performed to determine one or more wafer test parameters that affect the device parameters selected in step 102 . The effect of one parameter on another can be measured by statistical tools, such as the R2 value (coefficient of determination). Wafer test parameters related to device parameters may be considered herein as "critical" wafer test parameters. In one embodiment, the critical wafer test parameters are those having R2 values greater than the selected value; the selected value uses criteria such as process performance to be analyzed, resources used for correlation analysis , and/or other considerations known to those skilled in the art. Correlation analysis included gene map analysis, which is further described in Figure 3 below. In other embodiments, various statistical tools and methods may be used to determine one or more key WAT parameters. Wafer test parameters may also be considered wafer acceptance test (WAT) parameters. Wafer test (eg, WAT) processes include wafer-level electrical testing of integrated circuits formed on semiconductor substrates (eg, wafers), or wafer-level electrical testing of test structures. The WAT process typically includes the measurement of wafer test parameters at multiple test locations (eg, probe locations) on the wafer. Probe locations are placed on the dicing lines of the wafer or interspersed between integrated circuit devices. Wafer test parameters may include measurements of resistance, current, and/or other parameters known in the art. Values related to wafer test parameters are described herein as WAT data. For correlation analysis, WAT from multiple wafers and corresponding device performance (eg, values of device parameters) can be collected. In one embodiment, WAT data can be collected for over 200 wafers. In one embodiment, step 104 is omitted.
方法100随后进行到步骤106,在此确定关键工艺参数。关键工艺参数与关键晶片测试参数和/或选出的装置参数有关,其分别在参考步骤104与102描述。换句话说,可进行相关性分析,以确定影响步骤102中选出的装置参数的关键工艺参数。在一实施例中,可进行相关性分析,以提取与步骤104的关键晶片测试参数相关的工艺参数。Method 100 then proceeds to step 106, where key process parameters are determined. The critical process parameters relate to critical wafer test parameters and/or selected device parameters, which are described with reference to steps 104 and 102, respectively. In other words, a correlation analysis may be performed to determine critical process parameters that affect the device parameters selected in step 102 . In one embodiment, correlation analysis may be performed to extract process parameters related to the critical wafer test parameters in step 104 .
工艺参数包括与制造工艺有关的设备或计量参数。工艺参数的值可在制造期间内(例如在生产线)被确定。与工艺参数有关的值在此被视为工艺数据。工艺参数可为主动参数或被动参数。主动参数包括在制造工艺期间内可容易具体指定的任何制造参数(诸如通过定义设备的参数)。主动参数的实例包括射频功率、气体流率、浓度、与处理时间。被动参数包括任何不为制造方法所确定的制造参数,但为例如:依据其它被动和/或主动参数的工艺本身,设备种类,设备情况,晶片被处理的情况,和/或其它可能的因素。被动参数的实例包括反射功率、周遭环境、污染程度以及工具本身的温度和/或压力曲线。Process parameters include equipment or measurement parameters related to the manufacturing process. The values of the process parameters may be determined during manufacture (eg on the production line). Values relating to process parameters are considered process data here. Process parameters can be active parameters or passive parameters. Active parameters include any manufacturing parameter that can be easily specified during the manufacturing process (such as by defining parameters of a device). Examples of active parameters include RF power, gas flow rate, concentration, and treatment time. Passive parameters include any manufacturing parameters that are not determined by the manufacturing method, but are, for example, the process itself in terms of other passive and/or active parameters, the type of equipment, the condition of the equipment, the conditions in which the wafers are processed, and/or other possible factors. Examples of passive parameters include reflected power, ambient conditions, contamination levels, and the temperature and/or pressure profile of the tool itself.
为了进行相关性分析,收集包括用于设备参数与计量参数的数据的工艺数据,以及相应装置性能(如装置参数的数值)和/或WAT数据。在一实施例中,收集超过200个晶片的工艺数据。在一实施例中,工艺数据包括错误诊断与分类(FDC)数据。在一实施例中,收集与一个或多个工艺参数有关的时序工艺数据(例如与设备参数有关的数值)。时序工艺数据包括依据均匀时间间隔所收集的一串数据、被处理晶片的数目、和/或可被确定的其它间隔。时序工艺数据包括预防性保养工艺、设备修理工艺、设备清洁工艺、和/或制造工艺的其它典型步骤之前与之后的数据。在一实施例中,可利用已知的通用设备模式/半导体设备沟通标准通讯(GEM/SECS)来收集时序工艺数据。可用统计分析来总结时序工艺数据,以提供与一个或多个工艺参数有关的总结的工艺数据。For correlation analysis, process data including data for plant parameters and metering parameters are collected, as well as corresponding plant performance (eg values of plant parameters) and/or WAT data. In one embodiment, process data is collected for more than 200 wafers. In one embodiment, the process data includes fault diagnosis and classification (FDC) data. In one embodiment, time-series process data related to one or more process parameters (eg, values related to equipment parameters) are collected. Time-series process data includes a stream of data collected at uniform time intervals, the number of wafers processed, and/or other intervals that may be determined. Time-series process data includes data before and after a preventive maintenance process, an equipment repair process, an equipment cleaning process, and/or other typical steps of a manufacturing process. In one embodiment, the timing process data may be collected using the known Generic Equipment Model/Semiconductor Equipment Communication Standard Communication (GEM/SECS). The time-series process data may be summarized with statistical analysis to provide summarized process data related to one or more process parameters.
方法100随后进行到步骤108,在此可进行分批作业。在一实施例中,步骤108被省略。利用步骤106确定的关键工艺参数的各种数值来分批作业处理一个或多个晶片。在确定步骤106所确定的关键参数的数值范围或最理想值时,分批作业是相当有用的。例如,在一实施例中,确定栅极氧化物形成室的一个或多个工艺情况为一选出的装置参数的关键工艺参数。在实施例中,分批作业可用来确定具体的工艺情况(例如数值、设定)。Method 100 then proceeds to step 108, where a batch operation may be performed. In one embodiment, step 108 is omitted. The batch job processes one or more wafers using the various values of the critical process parameters determined in step 106 . Batch operations are quite useful in determining the range or optimum value of the key parameters determined in step 106 . For example, in one embodiment, one or more process conditions of the gate oxide formation chamber are identified as critical process parameters for a selected device parameter. In embodiments, batch operations may be used to determine specific process conditions (eg, values, settings).
方法100随后进行到步骤110,在此进行工艺最佳化。可通过调整关键工艺参数的数值而最佳化此工艺,关键工艺参数系在步骤106中确定,其使用于制造工艺中。此数值可利用步骤108分批作业所收集到的数据来确定。在一实施例中,此工艺可通过改变例如预防性保养工艺的间隔、清洁工艺、设备修理工艺、箱室闲置时间、工艺温度和/或设备替代间隔而被最佳化。通过实例来说明,在一实施例中,提取具体设备传感器变化以做为一关键工艺参数,其影响一装置的等效氧化物厚度。进一步的分析则可提供在制造工艺期间内可被调整的工艺参数(例如与传感器变化有关),以限制一装置的等效氧化物厚度的变化。Method 100 then proceeds to step 110, where process optimization is performed. The process can be optimized by adjusting the values of critical process parameters, determined in step 106, which are used in the manufacturing process. This value can be determined using the data collected in step 108 of the batch job. In one embodiment, the process can be optimized by varying, for example, the interval of preventive maintenance processes, cleaning processes, equipment repair processes, chamber idle time, process temperature, and/or equipment replacement intervals. By way of example, in one embodiment, device-specific sensor variation is extracted as a key process parameter that affects the equivalent oxide thickness of a device. Further analysis can provide process parameters (eg, related to sensor variations) that can be adjusted during the fabrication process to limit variations in a device's equivalent oxide thickness.
因此,方法100确定与选出装置参数有关的关键工艺参数。方法100可被认为分成两层的阶层分析(例如(1)提取关键WAT参数与(2)提取关键工艺参数)。不过,在其它实施例中,可有其它的阶层分析结构。Accordingly, method 100 determines key process parameters related to selected device parameters. The method 100 can be considered as a two-tier hierarchical analysis (eg (1) extracting key WAT parameters and (2) extracting key process parameters). However, in other embodiments, other hierarchical analysis structures are possible.
参考图2,示出了一种用来实施本发明实施例的计算机系统200的实施例,其包含在此说明的系统与方法。在一实施例中,计算机系统200包括例如在图1的方法100与图3的方法300中所描述的提取关键工艺参数的功能。Referring to FIG. 2, there is shown an embodiment of a computer system 200 for implementing embodiments of the present invention, including the systems and methods described herein. In one embodiment, the computer system 200 includes the function of extracting key process parameters such as described in the method 100 of FIG. 1 and the method 300 of FIG. 3 .
计算机系统200包括微处理器204、输入装置210、存储装置206、系统内存208、显示器214与通讯装置212,其均通过一个或多个总线202互连。存储装置206可以是软盘机、硬盘机、CD-ROM、光学装置、或任何其它存储装置。除此之外,存储装置206可有能力接收软盘机、硬盘机、CD-ROM、DVD-ROM、或者任何其它形式包含计算机可执行指令的计算机可读取媒体。通讯装置212为一调制解调器、网络卡、或任何其它能使计算机系统与其它节点通讯的装置。要理解的是,任何计算机系统200可代表多个互连计算机系统,诸如个人计算机、主机、个人数字助理与电话装置。通讯装置212可允许计算机系统200与用于集成电路制造和/或测试的一个或多个工具或计算机系统之间的通讯。The computer system 200 includes a microprocessor 204 , an input device 210 , a storage device 206 , a system memory 208 , a display 214 and a communication device 212 , all of which are interconnected by one or more buses 202 . Storage device 206 may be a floppy disk drive, hard disk drive, CD-ROM, optical device, or any other storage device. In addition, storage device 206 may be capable of receiving a floppy disk drive, hard disk drive, CD-ROM, DVD-ROM, or any other form of computer-readable media containing computer-executable instructions. The communication device 212 is a modem, network card, or any other device that enables the computer system to communicate with other nodes. It is to be understood that any computer system 200 may represent a plurality of interconnected computer systems, such as personal computers, mainframes, personal digital assistants, and telephony devices. Communication device 212 may allow communication between computer system 200 and one or more tools or computer systems used for integrated circuit fabrication and/or testing.
计算机系统200包括能够执行机器可读取指令的硬件,以及用来执行产生所期望结果的动作(典型地为机器可读取指令)的软件。软件包括储存在任何内存媒体(诸如RAM或ROM)的任何机器码,以及储存在其它存储装置(例如软磁盘、闪存、或CD ROM)的机器码。软件可包括例如来源或目标码。此外,软件包括能够在客户端机器或服务器中执行的任何组指令。硬件与软件的任何组合包括一计算机系统。由计算机执行的编码包括用来提取关键参数的编码,其包括进行一相关性分析并产生一相关性矩阵和/或基因地图。Computer system 200 includes hardware capable of executing machine-readable instructions, and software for performing actions (typically machine-readable instructions) to produce a desired result. Software includes any machine code stored on any memory medium, such as RAM or ROM, as well as machine code stored on other storage devices, such as floppy disk, flash memory, or CD ROM. Software may include, for example, source or object code. Furthermore, software includes any set of instructions capable of being executed in a client machine or server. Any combination of hardware and software includes a computer system. The computer-implemented code includes code for extracting key parameters, including performing a correlation analysis and generating a correlation matrix and/or gene map.
计算机可读取媒体包括被动数据储存,诸如随机存取内存,以及半永久性数据储存,诸如光盘只读存储器(CD-ROM)。本发明的一实施例可实施在一计算机的RAM中,以将标准计算机转换为一全新具体的计算器。数据结构为可实施本发明的被定义的数据组织。例如,一数据结构提供一数据组织或一可执行编码的组织。数据信号可被载送穿过传送媒体,并储存与传送各种数据结构,因此可用来传送本发明的实施例。微处理器204可进行在此所叙述的相关性分析。Computer-readable media include passive data storage, such as random access memory, and semi-permanent data storage, such as compact disc read only memory (CD-ROM). An embodiment of the present invention can be implemented in a computer's RAM to transform a standard computer into a completely new concrete calculator. A data structure is a defined organization of data that can implement the invention. For example, a data structure provides an organization of data or an organization of executable code. Data signals can be carried across transmission media, and store and transmit various data structures, and thus can be used to transmit embodiments of the present invention. The microprocessor 204 can perform the correlation analysis described herein.
显示器214可被操作而以人类可阅读的形式来分别显示,例如图4、5、与6的阶层二元树、相关性矩阵和/或基因地图。数据库216可以是在本领域中众所皆知的任何标准或专属数据库软件。无限制数据库216的物理位置,可离服务器远距地存在,可通过因特网或内部网络而被使用。所披露的数据库216包括多个数据库的实施例。数据库216包括制造数据,包括例如工艺数据,像是设备数据、计量数据;WAT数据;以及装置性能数据。The display 214 is operable to display, respectively, in a human-readable form, eg, the hierarchical binary tree, correlation matrix and/or gene map of FIGS. 4, 5, and 6. Database 216 may be any standard or proprietary database software known in the art. Unlimited physical location of the database 216, can exist remotely from the server, can be accessed via the Internet or an intranet. The disclosed database 216 includes multiple database embodiments. Database 216 includes manufacturing data including, for example, process data such as equipment data, metrology data; WAT data; and device performance data.
参考图3,其示出了一种相关性分析的方法300,以提取与选出的装置参数有关的关键工艺参数。所示相关性分析的方法可被用来从多个制造参数提取一个或多个关键制造参数;关键参数与选出的参数有关。制造参数包括例如工艺参数,诸如设备参数、计量参数、晶片测试参数、最后测试参数、或在制造集成电路期间或之后可被收集数据(例如制造参数值)的任何参数。Referring to FIG. 3 , there is shown a method 300 of correlation analysis to extract key process parameters related to selected device parameters. The shown method of correlation analysis can be used to extract one or more critical manufacturing parameters from a plurality of manufacturing parameters; the critical parameters are related to selected parameters. Fabrication parameters include, for example, process parameters such as equipment parameters, metrology parameters, wafer test parameters, final test parameters, or any parameter for which data (eg, fabrication parameter values) may be collected during or after fabrication of integrated circuits.
可使用方法300来进行方法100的步骤104和/或步骤106的相关性分析。方法300进一步示出了一种利用基因地图分析计量的相关性分析。在所示实施例中,方法300提取与装置参数有关的关键工艺参数。然而,此说明仅仅用于提供说明之用,且方法300可被使用来确定任何参数间的相关性,例如包括在诸如图1的方法100中所描述的一层或多层的阶层分析。例如,在一实施例中,方法300可被使用来提取与装置参数有关的WAT参数。在另一实施例中,方法300可被使用来提取与WAT参数有关的工艺参数。The correlation analysis of step 104 and/or step 106 of method 100 may be performed using method 300 . Method 300 further illustrates a correlation analysis that utilizes gene map analysis metrics. In the illustrated embodiment, method 300 extracts key process parameters related to device parameters. However, this illustration is for illustrative purposes only, and method 300 may be used to determine correlations between any parameters, including, for example, one or more layers of hierarchical analysis such as described in method 100 of FIG. 1 . For example, in one embodiment, method 300 may be used to extract WAT parameters related to device parameters. In another embodiment, method 300 may be used to extract process parameters related to WAT parameters.
方法300起始于步骤302,在此选出装置参数。步骤302实质类似上述方法100的步骤102。方法300随后进行到步骤304,在此收集与多个工艺参数有关的工艺数据。在一实施例中,收集用于多个晶片的时序工艺数据与相应的晶片结果(例如装置参数值)。工艺数据包括在已知晶片的制造工艺期间确定的一个或多个设备参数和/或计量参数的数值;相应的晶片结果包括已知晶片的装置参数和/或WAT参数所确定出的数值。在一实施例中,收集至少200个晶片的时序工艺数据与相应的晶片结果。Method 300 begins at
方法300随后进行到步骤306,在此总结工艺数据或部分的工艺数据。在一实施例中,总结数据包括确定出代表时序工艺数据(例如设备数据)的一个或多个统计数值。统计值包括一最大值、一最小值、一标准误差值与平均值、和/或其它可能的统计值。可总结时序数据以确定出每一工艺步骤的最大值、最小值、标准误差值与平均值中的一个或多个。通过实例来说明,在一实施例中,与射频功率有关的工艺参数的时序数据被收集。针对晶片在与射频功率有关的制造中所经历的每一工艺步骤,时序数据可被总结为最大值、最小值、标准误差值、与平均值中的一个或多个。The method 300 then proceeds to step 306 where the process data or portions of the process data are summarized. In one embodiment, summarizing data includes determining one or more statistical values representative of time-series process data (eg, equipment data). Statistical values include a maximum value, a minimum value, a standard error value and mean value, and/or other possible statistical values. The timing data can be summarized to determine one or more of maximum, minimum, standard error, and mean values for each process step. By way of example, in one embodiment, time-series data of process parameters related to RF power is collected. Timing data may be summarized as one or more of maximum values, minimum values, standard error values, and average values for each process step that the wafer undergoes in RF power-related fabrication.
方法300随后进行到步骤308,在此将工艺参数分组。可利用阶层分群来将参数分组。在一实施例中,阶层分群包括确定高度相关的第一与第二参数,以及将第一与第二参数组成单一群以用于进一步分析。一群可包括高度相关的任意多个工艺参数。在一实施例中,高度相关的参数具有至少0.8的R2值。因此,在一实施例中,一群包括彼此间具有至少0.8的R2值的参数。在一实施例中,一个或多个群参数被聚在一起以形成一更大群。Method 300 then proceeds to step 308 where the process parameters are grouped. Hierarchical grouping can be used to group parameters. In one embodiment, hierarchical grouping includes determining highly correlated first and second parameters, and grouping the first and second parameters into a single group for further analysis. A group can include any number of process parameters that are highly correlated. In one embodiment, highly correlated parameters have an R2 value of at least 0.8. Thus, in one embodiment, a group includes parameters that have an R2 value of at least 0.8 relative to each other. In one embodiment, one or more group parameters are grouped together to form a larger group.
一实施例中,阶层二元树可被使用来将参数分组。图4提供了阶层二元树400。阶层二元树400包括:包含相关距离的垂直轴402,以及包含指定参数群的水平轴404。小的相关距离代表此群参数间的高R2值。截止点406示出一选出的相关距离以提供参数间的适当相关性。在一实施例中,具有截止点406以下的相关距离的群可被进一步分析成一群,例如,可确定与一选出的装置参数相关的一群。In one embodiment, a hierarchical binary tree may be used to group parameters. FIG. 4 provides a hierarchical
方法300随后进行到步骤310,在此确定群与选出的装置参数的相关性。也确定出次要群、关键群(例如那些与选出的装置参数具有更大相关性的)。在一实施例中,就一个或多个群而言,通过关键组件转换加上逐步回归来计算群对装置参数的R2值。在一实施例中,群参数与装置参数有关,其在不同制造工艺步骤上都具有不同机制。在此实施例中,回归与R2计算在各步骤被分别实施。Method 300 then proceeds to step 310, where the correlation of the clusters to the selected device parameters is determined. Minor groups, key groups (eg, those having a greater correlation with selected device parameters) are also identified. In one embodiment, for one or more groups, group-to-device parameter R2 values are calculated by key component transformations plus stepwise regression. In one embodiment, the group parameters are related to device parameters, which have different mechanisms at different manufacturing process steps. In this example, regression and R2 calculations are performed separately at each step.
如上所述,在一实施例中,一群与选出的装置参数间的相关性(例如R2值)由关键组件转换加上逐步回归来确定。例如,关键组件转换可将高度相关的工艺参数转换成较小的数据集(例如群)。举例来说,X1(参数)对选出的装置参数的R2值是0.1,X2(参数)对选出的装置参数的R2值是0.1,X1及X2群的R2可为(1)>0.2,(2)=0.2或(3)<0.2。情况(1)、(2)或(3)的结果取决于所分析的数据。逐步回归利用满足条件的R2以选出落于指定情况(1)下的工艺参数。换句话说,此方法能够找出一些参数,当将这些参数分组在一起时,其与装置参数的相关性会大于将其个别分组时其相关性的总和。As noted above, in one embodiment, a population of correlations (eg, R2 values) with selected device parameters is determined by key component transformation plus stepwise regression. For example, critical component transformations can transform highly correlated process parameters into smaller data sets (eg clusters). For example, the R2 value of X1 (parameter) to the selected device parameter is 0.1, the R2 value of X2 (parameter) to the selected device parameter is 0.1, and the R2 value of X1 and X2 group can be (1) >0.2, (2)=0.2 or (3)<0.2. The outcome of case (1), (2) or (3) depends on the data analyzed. Stepwise regression uses R2 satisfying the condition to select process parameters that fall under the specified condition (1). In other words, the method is able to find parameters that, when grouped together, have a greater correlation with device parameters than the sum of their correlations when grouped individually.
参考图3与5,方法300进行到步骤312,在此提供了用于一个或多个群的相关性矩阵。图5示出了相关性矩阵500。相关性矩阵500提供(例如示出)一群的参数的相关性(例如R2值)。可通过上述图2的显示器214来提供相关性矩阵500。可提供相关性矩阵500给被确定为关键群(例如与装置参数有足够相关性)的群。相关性矩阵500包括垂直轴502,其包括提供相关性矩阵的群内的多个参数。水平轴504包括相同的多个参数(为了容易使用,由数字代表参数名字)。因此,对角线示出同一数值,即R2等于1。相关性矩阵500的项目,例如参考标号506所示出的项目提供参数间的R2值。例如,参考标号506a示出参数B与参数C间的R2值为0.9。相关性矩阵500可被彩色编码,以容易地示出相对相关性数值。在一实施例中,R值被分类为1、<0.9、<0.75、<0.5、<0.25、<0.1、<0、<-0.1、<-0.25、<-0.5、<-0.75、<-0.9、与<-1的类别,一个或多个类别以不同颜色显示。相关性矩阵500包括标题508,其提供群命名以及对选出的装置参数的相关值(例如R2值)。3 and 5, method 300 proceeds to step 312, where a correlation matrix for one or more clusters is provided. FIG. 5 shows a
参考图3与6,方法300随后进行到步骤314,于此产生示出于图6的一基因地图600。基因地图600以多个工艺步骤示出工艺参数或群参数与选出的装置参数间相关性的相对分级。基因地图600可被示出在一显示器上,诸如上述图2所描述的显示器214。基因地图600的好处在于,以相对分级对使用者突显与选出的装置参数最有关的工艺参数。在一实施例中,步骤302中选出的每一装置参数都被显示于一个基因地图。Referring to FIGS. 3 and 6, the method 300 then proceeds to step 314, where a
基因地图600包括标示为1、2、3、4、与5的多个制造工艺步骤602。垂直轴604代表多个工艺参数。在已确定各群参数与选出的装置参数的相关性时,如以上步骤310中所述,各群可依据其相关性的强度来分级,并且指定一相对号码。例如,具有对装置参数的最高相关性的参数群(例如最高R2值)可被指定为“1”,具有对装置参数的次最高相关性的参数群(例如第二高R2值)可被指定为“2”等。基因地图600以指定分级来显示一群的各参数,如项目606所示。基因地图600示出前七高群的分级,然而可存在任意数的分级。
在一实施例中,使用者可选出项目606的其中一个,而参数名字将被显示。在一实施例中,使用者可选出项目606,而相关群的所有参数将被显示,如方块608所示。在一实施例中,使用者可选出一群,而可更详细地检阅。如此一来会产生一相关性矩阵,诸如图5所述的相关性矩阵500。In one embodiment, the user can select one of the
基因地图600的优点包括一高效率与有效的系统,以提供例如工艺工程师的使用者以系统的方式,依各工艺参数影响选出的装置参数的程度,一个一个的检阅工艺参数。在其它实施例中,基因地图可被用来显示任何多个参数(例如制造参数)与一选出参数(例如指示装置性能)的相对相关性。Advantages of the
因此,方法300提供了一种方法以进行包含基因地图分析的相关性分析。如前所述,方法300被用来选择一装置参数,并选取与装置参数高度相关的一个或多个工艺参数。然而,调整方法300以确定任何多个参数与另一参数的相对相关性的其它实施例是可能存在的,所提供的范例如下。Thus, method 300 provides a method to perform correlation analysis including gene map analysis. As previously described, method 300 is used to select a device parameter and select one or more process parameters that are highly correlated with the device parameter. However, other embodiments of adjusting the method 300 to determine the relative correlation of any number of parameters to another parameter are possible, examples provided below.
在一实施例中,进行类似方法300的相关性分析以确定与选出的装置参数相关的一个或多个WAT参数。用来提取关键WAT参数的相关性分析可用来与提取关键工艺参数的相关性分析结合。例如,在一实施例中,装置参数被选出。相关性分析,诸如一种包括方法300的基因地图分析的一个或多个步骤的分析,可用来提取与选出的装置参数有关的关键WAT参数。相关性分析,诸如一种包括方法300的基因地图分析的一个或多个步骤的分析,可用来提取与已提取的关键WAT参数有关的关键工艺参数。In one embodiment, a correlation analysis similar to method 300 is performed to determine one or more WAT parameters that correlate with selected device parameters. The correlation analysis used to extract key WAT parameters can be used in combination with the correlation analysis used to extract key process parameters. For example, in one embodiment, device parameters are selected. Correlation analysis, such as an analysis involving one or more steps of the genetic map analysis of method 300, can be used to extract key WAT parameters related to selected device parameters. Correlation analysis, such as an analysis including one or more steps of the genetic map analysis of method 300, can be used to extract key process parameters related to the extracted key WAT parameters.
在一实施例中,被确定为与选出的装置参数有关的一群(例如一关键群)可通过设备历史纪录而生效。设备历史纪录可提供何时发生预防性保养、修理、新设备或部分的安装、清洁和/或其它设备工艺。例如,装置性能数据(例如装置参数)的时间图可示出装置性能趋势的改变,可归因于设备历史纪录所包含的工艺。例如,在预防性保养工艺后,装置性能会立刻提高。In one embodiment, a group (eg, a key group) determined to be associated with selected device parameters may be validated through the device history. Equipment history records may provide information on when preventive maintenance, repairs, installation of new equipment or parts, cleaning and/or other equipment processes occurred. For example, a time graph of device performance data (eg, device parameters) may show changes in device performance trends attributable to processes encompassed by the device history. For example, after a preventive maintenance process, device performance improves immediately.
虽然上述只详细说明了本发明的一些示范性实施例,但本领域技术人员将在不背离本发明创新的教导与优点下,容易地了解示例性实施例的各种修改。Although only some exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily understand various modifications to the exemplary embodiments without departing from the innovative teachings and advantages of the present invention.
主要组件符号说明Explanation of main component symbols
100 方法 200 计算机系统100 Method 200 Computer System
202 总线 204 微处理器202 Bus 204 Microprocessor
206 存储装置 208 系统内存206 storage device 208 system memory
210 输入装置 212 通讯装置210 Input device 212 Communication device
214 显示器 216 数据库214 Display 216 Database
400 阶层二元树 402 垂直轴400
404 水平轴 406 截止点404
500 相关性矩阵 502 垂直轴500
504 水平轴 506 参考标号504
508 标题 600 基因地图508
602 制造工艺步骤 604 垂直轴602
606 项目 608 方块。606
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/026,361 US7974728B2 (en) | 2007-05-04 | 2008-02-05 | System for extraction of key process parameters from fault detection classification to enable wafer prediction |
US12/026,361 | 2008-02-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101504543A CN101504543A (en) | 2009-08-12 |
CN101504543B true CN101504543B (en) | 2011-04-20 |
Family
ID=40976813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101812222A Expired - Fee Related CN101504543B (en) | 2008-02-05 | 2008-11-14 | Method and system for extracting key process parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101504543B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3029623B1 (en) * | 2014-12-05 | 2019-06-14 | Safran Aircraft Engines | PROCESS FOR FOLLOWING THE MANUFACTURE OF PARTS HAVING A DIMENSIONAL REQUIREMENT ASSIMILATED TO A CABLE CHAIN |
CN107541716B (en) * | 2016-06-27 | 2019-09-13 | 台湾积体电路制造股份有限公司 | Parameter adjustment method for deposition process |
CN109859066A (en) * | 2017-11-30 | 2019-06-07 | 阿里巴巴集团控股有限公司 | A kind of method and apparatus of determining technological parameter |
CN109948283B (en) * | 2019-03-29 | 2023-08-18 | 上海华力集成电路制造有限公司 | Analysis method of semiconductor device |
CN109933946B (en) * | 2019-03-29 | 2023-08-18 | 上海华力集成电路制造有限公司 | Analysis method of semiconductor device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6549864B1 (en) * | 2001-08-13 | 2003-04-15 | General Electric Company | Multivariate statistical process analysis systems and methods for the production of melt polycarbonate |
CN1672253A (en) * | 2002-07-29 | 2005-09-21 | 先进微装置公司 | Dynamic target setting method and device for process control system |
US6959252B2 (en) * | 2002-12-31 | 2005-10-25 | Powerchip Semiconductor Corp. | Method for analyzing in-line QC test parameters |
-
2008
- 2008-11-14 CN CN2008101812222A patent/CN101504543B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6549864B1 (en) * | 2001-08-13 | 2003-04-15 | General Electric Company | Multivariate statistical process analysis systems and methods for the production of melt polycarbonate |
CN1672253A (en) * | 2002-07-29 | 2005-09-21 | 先进微装置公司 | Dynamic target setting method and device for process control system |
US6959252B2 (en) * | 2002-12-31 | 2005-10-25 | Powerchip Semiconductor Corp. | Method for analyzing in-line QC test parameters |
Also Published As
Publication number | Publication date |
---|---|
CN101504543A (en) | 2009-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7974728B2 (en) | System for extraction of key process parameters from fault detection classification to enable wafer prediction | |
JP4878085B2 (en) | Management method for manufacturing process | |
Chien et al. | Manufacturing intelligence to forecast and reduce semiconductor cycle time | |
KR100956959B1 (en) | Correlation of Process Tools Data Mining with End-of-Line Data Mining | |
US8145337B2 (en) | Methodology to enable wafer result prediction of semiconductor wafer batch processing equipment | |
US7117058B2 (en) | Automatic statistical process control (SPC) chart generation apparatus and method thereof | |
CN101504543B (en) | Method and system for extracting key process parameters | |
TWI503763B (en) | Control method for processing semiconductor and computer readable recording media | |
Pan et al. | A virtual metrology system for predicting end-of-line electrical properties using a MANCOVA model with tools clustering | |
CN102201324B (en) | Semiconductor manufacturing method and system | |
TWI842961B (en) | Data processing method, data processing device and computer readable recording medium | |
US6922600B1 (en) | System and method for optimizing manufacturing processes using real time partitioned process capability analysis | |
Arif et al. | Cascade quality prediction method using multiple PCA+ ID3 for multi-stage manufacturing system | |
CN101387870B (en) | Method and system for improving wafer yield | |
EP1208591A1 (en) | Method and apparatus for characterizing a semiconductor device | |
TWI285341B (en) | Method for analyzing in-line QC parameters | |
US20090306807A1 (en) | Multidimensional process window optimization in semiconductor manufacturing | |
Weiss et al. | Improving quality control by early prediction of manufacturing outcomes | |
CN101581930B (en) | Innovative approach to automatic virtual metrology | |
CN101036092B (en) | Method and system for dynamically controlling metrology work in progress | |
TW202040443A (en) | Predictive maintenance method for component of production tool and computer program product thereof | |
US7565254B2 (en) | Method and apparatus for metrology sampling using combination sampling rules | |
Greeneltch et al. | Design-aware virtual metrology and process recipe recommendation | |
US20090276182A1 (en) | Machine fault detection method | |
US20060100844A1 (en) | Test time forecast system and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110420 |
|
CF01 | Termination of patent right due to non-payment of annual fee |