CN101467071B - 使用分立源阵列和多个准直束的对于行李和人员的x射线成像 - Google Patents
使用分立源阵列和多个准直束的对于行李和人员的x射线成像 Download PDFInfo
- Publication number
- CN101467071B CN101467071B CN2007800218495A CN200780021849A CN101467071B CN 101467071 B CN101467071 B CN 101467071B CN 2007800218495 A CN2007800218495 A CN 2007800218495A CN 200780021849 A CN200780021849 A CN 200780021849A CN 101467071 B CN101467071 B CN 101467071B
- Authority
- CN
- China
- Prior art keywords
- array
- ray
- source
- cnt
- ray source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003491 array Methods 0.000 title claims description 6
- 238000003384 imaging method Methods 0.000 title abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000003993 interaction Effects 0.000 claims abstract description 4
- 230000004913 activation Effects 0.000 claims description 11
- 230000005855 radiation Effects 0.000 claims description 10
- 230000000149 penetrating effect Effects 0.000 claims description 9
- 238000013519 translation Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 4
- 230000002123 temporal effect Effects 0.000 abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002041 carbon nanotube Substances 0.000 abstract description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 abstract description 3
- 230000003213 activating effect Effects 0.000 abstract 1
- 238000007689 inspection Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 241001436679 Adama Species 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 240000004859 Gamochaeta purpurea Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010603 microCT Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/201—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/203—Measuring back scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/22—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
- G01V5/222—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- High Energy & Nuclear Physics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
提供一种用于对物体成像的系统和方法,更具体地涉及使用分立源阵列和多个准直束的对于行李和人员的X射线成像,该系统和方法基于:以规定的时间模式激活分立的X射线源的阵列,以利用在空间定向上变化的束照射该物体;检测与该物体相互作用后的所述束的X射线;以及产生检测器信号。然后,基于该检测器信号的时间变化性可以构造物体的图像。该分立的X射线源在检测过程中可以被移动,另外,该规定的时间模式可以构成阿达玛码。分立源可以是碳纳米管X射线源。
Description
2006年4月21日提交的题为“X-ray Imaging using Arrays ofDiscrete Sources”的美国临时专利申请No.60/794,295通过引用结合于此。
技术领域
本发明涉及用于利用贯穿辐射来检测物体的方法和系统,该物体包括人员但不限制于人员,以及更具体地涉及使用被独立激活的X射线源来检测人员。
背景技术
传统的X射线源通常使用热电子发射机构以便产生撞击金属靶的电子,通过韧致辐射过程从该金属靶发射X射线。该热电子发射通过受热的丝极实现电子的发射。热惯量将热电子系统的时间分辨率限制到微秒,而电子发射体的空间分辨率受到丝极尺寸的约束。
X射线源也可以基于场致发射阴极,当与热电子源比较时提供了在空间分辨率和时间分辨率上的优势。因为电子的场致发射由高电场产生,所以不需要加热,由此,该电子发射体通常被指为冷阴极。由该装置发射的电子束可以具有低发散度,并因此便于聚焦。另外,该源的虚拟瞬时响应提供了能比得上控制电路的时间分辨率的时闸(timegating)性能,并通过使用现代技术可以快至纳秒。
Zhang等人在‘Medical Imaging 2006’(国际光学工程学会(SPIE)学报,第6142卷,2006年3月2日)的题为“A Multi-beam X-ray ImagingSystem Based on Carbon Nanotude Field Emitters”上报告了北卡罗纳州Research Triangle Park的Xintek公司制造的5个X射线源的线性阵列,该5个X射线源每个均具有200和300μm之间的焦斑,并以碳纳米管(CNT)电极的使用为基础。报告了在40-60kVp的加速电压下的0.1-1mA范围内的电子电流。冷阴极的寿命估计超过2000小时。在200kV的加速电压下,测量到13mA的射束电流。上述的Zhang等人的论文以引用的方式结合于此。利用本领域现有技术能够预想具有每米1000个像素且10MHz的脉冲重复频率的装置。
Cheng等人在75Rev.Sci.Instruments中题为“Dynamic radiographyusing a carbon-nanotube-based field-emission X-ray source”的论文中也描述了在X射线源的环境中CNT冷阴极的使用,而Zhang等人在86Appl.Phys.Lett.,p.184104(2005)中题为“Stationary scanning X-raysource based on carbon nanotube field emitters”的论文中描述了在扫描环境下的CNT冷阴极源阵列的使用,该两篇文章均以引用的方式结合于此。
另外,Zhang等人在76Rev.Sci.Instruments,p.94301(2005)中题为“A nanotube-based field emission x-ray source for microcomputedtomography”的论文中讨论了断层摄影术中的CNT冷阴极源阵列的使用,该文章也以引用的方式结合于此。
随着安全检测站变得更加拥挤,机场的人员检测设备的覆盖区和吞吐量变成了越来越重要的考虑因素。通常的重要尺寸是垂直于交通流的尺寸,以及当前配置的金属检测器被用作比较的标准。在美国机场中,所需吞吐量与两个相邻的行李系统的支持相符合。这解释成每小时大约400人的吞吐量。
尽管人员的反向散射的X射线的扫描经常被认为是用于检测隐藏的违禁货品或潜在威胁的最有效的方法,但是这种技术的当前实施可能提供对于某些应用来说不够的吞吐量,而且,另外,可能无法满足诸如机场的某些场所强加的尺寸限制。本发明有利地提供了这些缺点的解决方法。
企图改进单侧反向散射筛查的吞吐量的当前的解决方法依赖于数个单点聚焦X射线源。因为这些源的X射线束被准直为X射线的扇束形线,所以在被筛查人上的入射角能够导致图像数据的扭曲。即使该扭曲能够在软件中进行补偿,数据仍然源于入射角度不同的X射线。在陡峭的角度中,这能够导致X射线入射遮挡(从诸如肩膀的身体部位),因此,也会导致漏掉错过隐藏的违禁物品。如果使用数个传统的X射线源来缓和这种后果,设备的尺寸就变得很大,而设备的成本就变得不吸引人。
发明内容
根据本发明的优选实施例,提供一种用于对物体成像的方法。该方法包括:
a.以规定的时间模式激活分立的X射线源的阵列,以利用在空间定向上变化的束照射该物体;
b.检测与该物体相互作用后的该束的X射线,并产生检测器信号;以及
c.基于检测器信号的时间变化性构建物体的图像。
本发明的其它实施例也可以包括通过旋转或通过平移或通过旋转和平移两者来移动分立的X射线源的阵列。分立的X射线源的阵列的特征在于阵列轴线,平移该阵列的步骤可以包括在基本横向于该阵列轴线的方向上平移该阵列,或绕着基本平行于该阵列轴线的轴线旋转该阵列。
本发明的规定的时间模式在某些实施例中可以构成阿达玛(Hadamard)码。另外,检测与物体相互作用后的X射线的步骤可以包括检测由该物体散射的X射线,而激活分立的X射线源的步骤可以包括激活场致发射源,以及,更具体来说,包括激活多个场致发射源,每个场致发射源均包括反射靶或透射靶。
根据本发明的另外一个实施例,提供一种用于检查物体的检查系统。该检查系统具有:多个分立源的线性阵列,用于贯穿辐射;至少一个散射检测器,构造为基于检测被检查物体散射的贯穿辐射来产生散射信号;以及处理器,用于接收该散射信号并产生该物体的图像。贯穿辐射的分立源更具体来说可以是碳纳米管X射线源。
附图说明
通过参考以下详细说明结合附图将更容易理解本发明的上述特征:
图1是基于电子场致发射的现有技术的X射线源的示意描述;
图2示出了根据本发明优选实施例在反向散射成像应用中的分立源的单维阵列的使用;
图3示出了根据本发明一个优选实施例在反向散射成像应用中的分立源的二维阵列的使用;
图4示出了根据本发明一个优选实施例在反向散射成像应用中的分立源的一维阵列以及反向散射检测器的固定组(fixed set)的使用;
图5示出了根据本发明一个实施例的一种图像生成设备,在该图像生成设备中,多个单维源阵列被安装在单个圆筒上;
图6A示出了本发明的一个实施例的正视图,其中,X射线从上方发射;
图6B示出了本发明的一个实施例的示意性侧视图,描述了在连续位置处横贯多个从上方发射的X射线光束的人员;
图7A示出了本发明的一个实施例的正视图,在该正视图中,X射线从相对侧发射;以及
图7B示出了本发明的一个实施例的示意侧视图,描述了在连续位置处横贯多个从上方发射的X射线的人员。
具体实施方式
诸如基于碳纳米管(CNT)的冷阴极技术展现了用于使用X射线成像的新器械的可能性,无论是通过X射线的透射、反向散射还是前向散射。根据本发明以下面描述的方式应用,分立冷阴极源可以有利地以顺序的方式及(纳秒级别的)低延时实现电子地开启该源,从而形成如经常在X射线成像技术中实践的笔形束,或可选择地,在指定时间内选择源的图案以便形成编码束。CNT的发展使得能够克服关于电流稳定性和阴极寿命的重要技术挑战。
在图1中主要用参考数字10表示的冷阴极X射线源的一般操作参考图1在技术上得到更好地理解并参考图1进行了描述。冷阴极布置有利地允许较高程度的控制。由控制电路13控制的栅极12和阴极14之间的电压Vgc控制了电子电流15,而在阴极14与也用作X射线靶的阳极16之间的电压Vca则控制撞击该靶16的电子能量,以及施加在聚焦电极18上的电压决定了电子束斑的尺寸。
尽管图1描述了组件,在该组件中,通过反射靶19产生X射线,也可以在本发明的范围内使用透射靶。
根据本发明的用于X射线成像的分立X射线源的应用,随着X射线源阵列的维度(一维、二维或三维)、扫描模式(光栅或图案)、不同或变化的能量的动态使用以及时闸的使用而改变。
时间分辨率性能能够在远程应用中尤其有利,在该远程应用中,空中散射强烈影响信噪比(SNR)。
参考图2,描述了本发明的第一实施例。X射线源22的一维阵列20在其纵向的(通常垂直的)轴线21的一侧或多侧上布置有反向散射检测器23。整个装置24能够通常水平地在横向方向25上平移(translate),以便基于逐行创建图像。可选择地,阵列20可以绕着纵向的(通常垂直的)轴线21旋转,以便X射线束26在横向方向25上(再次通常水平地)扫过,从而创建逐行图像,但整个装置不移动。这种系统适合于炸弹检测应用,例如,其中,X射线图像必须在不移动整个成像系统的情况下在短时间内被创建,例如,该整个成像系统可能布置在车(van)内。通过每次快速接连地开启一个源22,垂直地光栅扫描源,来创建图像行。
根据本发明的另外一个实施例,基于阿达玛编码束或其它编码束,来采用编码束。光束编码的讨论将在下面的论文中找到,例如,周在IEE Proc.Sci.Meas.Technol.,vol.141,pp.179-84(1994)中题为“Fourier coded-aperture imaging in nuclear medicine”的论文,Mertz等在J.Opt.Soc.Am.A,vol.3,pp.2167-70(1986)中题为“Rotationalaperture synthesis for x rays”的论文,以及Gindi等在Med.Phys.,vol.9,pp.324-39(1982)中题名为“Imaging with rotating slit apertures androtating collimators”的论文,所有这些文章均以引用的方式结合于此。
可以以较大速度(通常快至30kHz)电子地容易地开启或关闭场致发射X射线源。这意味着编码束能够被转变(从一个图案改变为另一个图案)、被循环(等同于旋转)或被取反(从掩码(mask)转变为反掩码(antimask),以便减少近距离成像的伪影)。当X射线通量是主要问题时,使用阿达玛编码束或图案化束特别有利。
现在参看图3,二维源阵列30可以不具有机械移动的部件,并在非常短的时间内允许覆盖预定义的立体角(由源32的总数及其发散度决定)。能够使用类似于阴极射线管(CRT)或图案束(阿达玛编码机构或其它编码机构)的光栅扫描机构。
根据本发明的另外的实施例,参看图4示出了主要用参考数字40表示的具有受控速度的系统。固定了一个或多个反向散射检测器42,但源阵列44在检测器42附近或之间的方向45上以恒定的速度来回平移。该系统也可以使用在交错模式(interleaved mode)中,如以下描述。图4的实施例可以用来克服图2的实施例的缺点,该缺点即由于系统速度的变化所导致的图像扭曲倾向。根据阵列20的速度,物体可以呈现为被压缩或被拉长。
使用诸如图5示出的一个实施例可以获得另外的多功能性,其中,两个或多个一维X射线源阵列51、52被安装在圆筒54上。因为阵列能够以高速度电子地被开启或被关闭,只有产生正照射靶(未示出)的X射线束55的阵列被开启,并且其它的阵列则被关闭,因此,不需要将阵列彼此遮挡。这种模型的多功能性在于其结合交错模式的自然性能,如现在描述,以及持续地累加(accumulate)图像的自然性能。
在由于技术限制或设计的情况下,其中,两个源之间的最小距离是1cm,但特定应用所需分辨率要求源被布置为间隔4mm,则交错扫描能够是有用的。在圆筒上,三个一维阵列布置为彼此成120度,并垂直移位3.33mm。每个阵列均将扫描间隔1cm的线,但是因为垂直的移位,该圆筒的完全旋转得到的图像将具有3.33cm的分辨率。操作的这种模式被称为“交错模式”。对于图4所描述的系统,通过针对每个水平路径的阵列的垂直平移可以提供交错成像。
根据图2和4描述的实施例的平移的阵列在一个路径上逐行地构造了一个图像,并在固定的时间内(依赖于平移速度)在靶的单位面积上实施相同的X射线剂量。图5的旋转圆筒54能够为一维阵列的每个路径创建低统计(low statistics)图像,并将其添加到全局图像。这种原理可以称为“持续累加图像”(CAI)。当需要限制到靶的剂量或每个路径上的通量不足时,CAI原理是有用的。当靶图像中的细节令人满意时,操作者停止扫描。其中CAI有用的一个应用是:利用X射线激活触发器对怀疑包含简易爆炸装置(IED)的一件行李进行成像。在操作的这种模式中,每像素上的初始电流较低。以多个路径形成图像,以便避免触发器,但是足够看到内部有意义的细节。
以扫描时间为代价,圆筒系统能够补偿如果使用简单光栅扫描在一个阵列中所损失的源。
最后,如前所描述的,分立X射线源可以有利地用于X射线荧光映射或光谱成像,以便创建表面的几乎即时的材料识别。这种应用需要具有适合能量分辨率的检测器,以便识别荧光线。
根据本发明的另外的实施例,如上所述,以线性或二维阵列配置的碳纳米管X射线源被顺序地触发。当前存在或可以在将来开发出的其他分立X射线源也可以以基本类似的方式使用,并落在如这里描述的以及任何所附权利要求所限定的本发明的范围内。
用于这种应用的这种类型的X射线源阵列的使用由于以下原因特别有利:
·X射线源尤其在沿着X射线发射的线的尺寸上能够非常紧凑。
·X射线束的线性阵列的使用有利地减少与单点源有关的图像扭曲。
·这种产生X射线的方法提供了在图像采集、几何形状(geometry)以及覆盖率方面的灵活性,并在这些方面远优于当前基于单点X射线源的系统。
·通过使用X射线源的线性阵列的顺序触发,能够获得反向散射图像而没有源之间的串扰。
·当应用于同时捕获正被扫描的人的两个或多个视图的构造时,本发明有利地增加了被检测物体的吞吐量。
现在参考图6A描述了本发明的另外一个实施例。构造为线性阵列111或二维阵列的碳纳米管X射线源110的组被布置在正被扫描的人112的上面(如所示)或旁边。应当理解,人作为检测的代表物体而示出,但这里所指导的设备和方法对于任何物体,无论是有生命的还是无生命的物体,均具有价值重大的适用性。
散射检测器114,例如可以是反向散射或侧向散射的检测器,被布置为捕获散射的X射线。正被扫描的人走过X射线束116,或通过诸如输送机118或行人运输器被运输通过X射线束116。也可以提供把手119。根据已知算法,可以顺序激活分立源110以便提供空间分辨率。图6B描述了在穿过检测站的连续位置处的对象112,该检测站大体由参考数字100表示。检测站100具有前源160和后源162,前源160和后源162的每一个均包括线性阵列,诸如图6A所示的源111,每个线性阵列包括沿着垂直于纸页的轴线布置的多个分立X射线源。对象112以这种方式行走或由输送机118输送,以便在横贯检测站的过程中使人的不同部位被相应的源160和162扫描。
图7A和7B示出本发明的再一实施例,其处在靠近当前使用的金属检测器的构造中。如图7B的顶视图示出,X射线源阵列210发射X射线212,在图2A的正视图中能够最清楚地看到。当对象穿过检测站时,X射线212撞击对象112,该检测站大体用参考数字200表示。利用散射检测器220来检测由对象112或由对象的人携带或穿戴的物体散射的辐射。散射检测器220基于它们检测到的贯穿辐射产生散射信号,由处理器230处理该散射信号,以便根据已知算法检测并识别威胁物质和物体,或,另外地,以便在监视器240上显示被检测对象的适当处理后的图像。在任何情况下,均产生图像,而术语‘图像’,正如这里和所附权利要求所使用的,表示了与被检测物体的空间区别要素相对应的值的有序阵列。因为几何形状(geometry)将图像数据的扭曲和遮挡减到最小,所以依赖于形状识别的自动检测技术大大受益于减少的图像扭曲和遮挡。这些优点也可以被应用于传统的透射和反向散射的行李系统。
所有迄今为止描述的本发明的实施例意图仅仅是示例性的,对于本领域的技术人员,许多变型和修改将是明显的。所有的这些变型和修改意图落在为如任何一项所附权利要求限定的本发明的范围内。
Claims (12)
1.一种对物体成像的方法,所述方法包括:
a.以规定的时间模式激活分立的碳纳米管X射线源的阵列,以利用在空间定向上变化的束照射所述物体;
b.利用检测器检测与所述物体相互作用后散射的所述束的X射线,并产生检测器信号;以及
c.基于所述检测器信号的时间变化性构造所述物体的图像。
2.根据权利要求1所述的方法,其中所述激活步骤还包括相对于所述检测器移动所述分立的碳纳米管X射线源的阵列。
3.根据权利要求1所述的方法,其中所述激活步骤还包括绕着轴线相对于所述检测器旋转所述分立的碳纳米管X射线源的阵列。
4.根据权利要求1所述的方法,其中所述激活步骤还包括相对于所述检测器平移所述分立的碳纳米管X射线源的阵列。
5.根据权利要求4所述的方法,其中,所述分立的碳纳米管X射线源的阵列的特征在于阵列轴线,以及其中,所述激活步骤包括在横向于所述阵列轴线的方向上平移所述阵列。
6.根据权利要求1所述的方法,其中,所述规定的时间模式构成阿达玛码。
7.根据权利要求1所述的方法,其中,激活分立的碳纳米管X射线源的步骤包括激活场致发射源。
8.根据权利要求7所述的方法,其中,激活分立的碳纳米管X射线源的步骤包括激活多个场致发射源,每个场致发射源均包括反射靶。
9.根据权利要求7所述的方法,其中,激活分立的碳纳米管X射线源的步骤包括激活多个场致发射源,每个场致发射源均包括透射靶。
10.一种用于检查物体的检查系统,所述检查系统包括:
a.贯穿辐射的分立碳纳米管源的多个线性阵列;
b.至少一个散射检测器,所述至少一个散射检测器构造为基于检测由被检查的所述物体散射的贯穿辐射来产生散射信号;以及
c.处理器,所述处理器用于接收所述散射信号,并产生所述物体的图像。
11.一种用于检查物体的方法,所述方法包括:
a.利用贯穿辐射的分立碳纳米管源的多个线性阵列照射所述物体;
b.基于检测由被检查的所述物体散射的贯穿辐射来产生散射信号;以及
c.处理所述散射信号,以产生所述物体的图像。
12.根据权利要求11所述的方法,还包括在利用所述多个线性阵列照射的过程期间移动所述物体的步骤。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79429506P | 2006-04-21 | 2006-04-21 | |
US60/794,295 | 2006-04-21 | ||
PCT/US2007/066936 WO2008063695A2 (en) | 2006-04-21 | 2007-04-19 | X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101467071A CN101467071A (zh) | 2009-06-24 |
CN101467071B true CN101467071B (zh) | 2012-06-13 |
Family
ID=39430389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800218495A Active CN101467071B (zh) | 2006-04-21 | 2007-04-19 | 使用分立源阵列和多个准直束的对于行李和人员的x射线成像 |
Country Status (9)
Country | Link |
---|---|
US (1) | US7505562B2 (zh) |
EP (1) | EP2010943A2 (zh) |
JP (1) | JP2009534669A (zh) |
KR (1) | KR20090015929A (zh) |
CN (1) | CN101467071B (zh) |
IL (1) | IL194851A (zh) |
MX (1) | MX2008013595A (zh) |
RU (1) | RU2411506C2 (zh) |
WO (1) | WO2008063695A2 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9182516B2 (en) | 2007-02-01 | 2015-11-10 | Rapiscan Systems, Inc. | Personnel screening system |
US9285325B2 (en) | 2007-02-01 | 2016-03-15 | Rapiscan Systems, Inc. | Personnel screening system |
US9291741B2 (en) | 2007-02-01 | 2016-03-22 | Rapiscan Systems, Inc. | Personnel screening system |
US9891314B2 (en) | 2014-03-07 | 2018-02-13 | Rapiscan Systems, Inc. | Ultra wide band detectors |
US10134254B2 (en) | 2014-11-25 | 2018-11-20 | Rapiscan Systems, Inc. | Intelligent security management system |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7963695B2 (en) | 2002-07-23 | 2011-06-21 | Rapiscan Systems, Inc. | Rotatable boom cargo scanning system |
US8275091B2 (en) | 2002-07-23 | 2012-09-25 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US9958569B2 (en) | 2002-07-23 | 2018-05-01 | Rapiscan Systems, Inc. | Mobile imaging system and method for detection of contraband |
US6928141B2 (en) | 2003-06-20 | 2005-08-09 | Rapiscan, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US7856081B2 (en) | 2003-09-15 | 2010-12-21 | Rapiscan Systems, Inc. | Methods and systems for rapid detection of concealed objects using fluorescence |
US7809109B2 (en) * | 2004-04-09 | 2010-10-05 | American Science And Engineering, Inc. | Multiple image collection and synthesis for personnel screening |
US7471764B2 (en) | 2005-04-15 | 2008-12-30 | Rapiscan Security Products, Inc. | X-ray imaging system having improved weather resistance |
US7526064B2 (en) | 2006-05-05 | 2009-04-28 | Rapiscan Security Products, Inc. | Multiple pass cargo inspection system |
US7796733B2 (en) | 2007-02-01 | 2010-09-14 | Rapiscan Systems, Inc. | Personnel security screening system with enhanced privacy |
EP2165188A4 (en) * | 2007-06-21 | 2014-01-22 | Rapiscan Systems Inc | SYSTEMS AND METHODS FOR IMPROVING DIRECT SCREENING OF PEOPLE |
EP2223165B1 (en) * | 2007-11-19 | 2013-10-16 | American Science & Engineering, Inc. | Multiple image collection and synthesis for personnel screening |
EA011316B1 (ru) * | 2007-11-30 | 2009-02-27 | Фонд Сопровождения Инвестиционных Проектов "Генкей" | Способ и устройство получения информации о внутренней структуре объекта и способ создания изображения объекта |
WO2009082762A1 (en) * | 2007-12-25 | 2009-07-02 | Rapiscan Security Products, Inc. | Improved security system for screening people |
GB0809110D0 (en) | 2008-05-20 | 2008-06-25 | Rapiscan Security Products Inc | Gantry scanner systems |
US7809101B2 (en) | 2008-06-06 | 2010-10-05 | General Electric Company | Modular multispot X-ray source and method of making same |
US8148689B1 (en) | 2008-07-24 | 2012-04-03 | Braunheim Stephen T | Detection of distant substances |
US9310323B2 (en) | 2009-05-16 | 2016-04-12 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
WO2011011583A1 (en) * | 2009-07-24 | 2011-01-27 | Nucsafe, Inc. | Spatial sequenced backscatter portal |
SG178165A1 (en) | 2009-07-29 | 2012-03-29 | American Science & Eng Inc | Top-down x-ray inspection trailer |
US8275093B2 (en) * | 2009-07-30 | 2012-09-25 | American Science And Engineering, Inc. | Walk-through shoe inspection system |
US9687200B2 (en) | 2010-06-08 | 2017-06-27 | Accuray Incorporated | Radiation treatment delivery system with translatable ring gantry |
EP3569289B1 (en) * | 2010-02-24 | 2020-12-09 | Accuray, Inc. | Gantry image guided radiotherapy system and related target tracking methods |
BR112012023118A2 (pt) * | 2010-03-14 | 2016-05-24 | Rapiscan Systems Inc | sistema de triagem de pessoal |
WO2011115927A2 (en) | 2010-03-14 | 2011-09-22 | Rapiscan Systems, Inc. | Personnel screening system |
DE102010011662A1 (de) * | 2010-03-17 | 2011-09-22 | Siemens Aktiengesellschaft | Röntgensystem |
DE102010011661B4 (de) * | 2010-03-17 | 2019-06-06 | Siemens Healthcare Gmbh | Multifokusröhre |
WO2011156526A2 (en) | 2010-06-08 | 2011-12-15 | Accuray, Inc. | Imaging methods and target tracking for image-guided radiation treatment |
US8766764B2 (en) | 2010-09-23 | 2014-07-01 | Rapiscan Systems, Inc. | Automated personnel screening system and method |
US8654919B2 (en) | 2010-11-23 | 2014-02-18 | General Electric Company | Walk-through imaging system having vertical linear x-ray source |
US20120130145A1 (en) * | 2010-11-23 | 2012-05-24 | John Michael Sabol | System and method for performing a comprehensive health assessment |
CN102012527A (zh) * | 2010-11-25 | 2011-04-13 | 上海英迈吉东影图像设备有限公司 | 移动式x射线检查车及其检查方法 |
US9055886B1 (en) | 2011-01-05 | 2015-06-16 | Sandia Corporation | Automatic tool alignment in a backscatter x-ray scanning system |
US8536547B2 (en) | 2011-01-20 | 2013-09-17 | Accuray Incorporated | Ring gantry radiation treatment delivery system with dynamically controllable inward extension of treatment head |
US8908831B2 (en) | 2011-02-08 | 2014-12-09 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US9218933B2 (en) | 2011-06-09 | 2015-12-22 | Rapidscan Systems, Inc. | Low-dose radiographic imaging system |
US8976926B2 (en) | 2011-09-24 | 2015-03-10 | Southwest Research Institute | Portable 3-dimensional X-ray imaging system |
RU2014134521A (ru) * | 2012-01-24 | 2016-03-20 | Конинклейке Филипс Н.В. | Система радионуклидной визуализации |
JP2015513075A (ja) | 2012-02-14 | 2015-04-30 | アメリカン サイエンス アンド エンジニアリング,インコーポレイテッドAmerican Science and Engineering,Inc. | 波長シフトファイバ結合シンチレーション検出器を用いるx線検査 |
US10670740B2 (en) | 2012-02-14 | 2020-06-02 | American Science And Engineering, Inc. | Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors |
CN103308535B (zh) * | 2012-03-09 | 2016-04-13 | 同方威视技术股份有限公司 | 用于射线扫描成像的设备和方法 |
WO2013187970A2 (en) * | 2012-05-14 | 2013-12-19 | The General Hospital Corporation | Method for coded-source phase contrast x-ray imaging |
KR101305300B1 (ko) * | 2012-10-11 | 2013-09-06 | 사단법인 대덕원자력포럼 | 밀리미터파 검색시스템 및 상기 검색시스템을 이용한 화물 및 승객에 대한 통합검색방법 |
CN103776848B (zh) * | 2012-10-24 | 2017-08-29 | 同方威视技术股份有限公司 | 射线发射装置和成像系统 |
CN103901485A (zh) * | 2012-12-27 | 2014-07-02 | 同方威视技术股份有限公司 | 一种人体安检系统 |
CN103892853A (zh) * | 2012-12-27 | 2014-07-02 | 同方威视技术股份有限公司 | 检查系统和检查方法 |
CN103901488A (zh) * | 2012-12-27 | 2014-07-02 | 同方威视技术股份有限公司 | 固定式ct装置 |
EP2941775A4 (en) | 2013-01-07 | 2016-08-24 | Rapiscan Systems Inc | X-RAY SCANNING DEVICE WITH PARTIAL ENERGY DISCRIMINATION DETECTOR ARRAY |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
US9778391B2 (en) * | 2013-03-15 | 2017-10-03 | Varex Imaging Corporation | Systems and methods for multi-view imaging and tomography |
WO2014187169A1 (zh) * | 2013-05-23 | 2014-11-27 | 安徽启路达光电科技有限公司 | 一种多通道快速安检系统 |
JP6188470B2 (ja) * | 2013-07-24 | 2017-08-30 | キヤノン株式会社 | 放射線発生装置及びそれを用いた放射線撮影システム |
US20150043712A1 (en) | 2013-08-07 | 2015-02-12 | Carestream Health, Inc. | Imaging system and method for portable stereoscopic tomography |
US9535019B1 (en) | 2013-10-04 | 2017-01-03 | American Science And Engineering, Inc. | Laterally-offset detectors for long-range x-ray backscatter imaging |
US9519853B2 (en) | 2013-11-01 | 2016-12-13 | James P Tolle | Wearable, non-visible identification device for friendly force identification and intruder detection |
US9557427B2 (en) | 2014-01-08 | 2017-01-31 | Rapiscan Systems, Inc. | Thin gap chamber neutron detectors |
US10413268B2 (en) | 2014-02-26 | 2019-09-17 | Carestream Health, Inc. | Hybrid imaging apparatus and methods for interactive procedures |
US11280898B2 (en) | 2014-03-07 | 2022-03-22 | Rapiscan Systems, Inc. | Radar-based baggage and parcel inspection systems |
US9934930B2 (en) * | 2014-04-18 | 2018-04-03 | Fei Company | High aspect ratio x-ray targets and uses of same |
US10228487B2 (en) | 2014-06-30 | 2019-03-12 | American Science And Engineering, Inc. | Rapidly relocatable modular cargo container scanner |
CN104101910A (zh) * | 2014-07-04 | 2014-10-15 | 清华大学 | 基于分布式辐射源的x射线背散射通道式车辆安检系统和方法 |
CN104133251B (zh) * | 2014-07-04 | 2017-08-25 | 清华大学 | 移动式背散射成像安检设备及方法 |
US9594033B2 (en) * | 2014-07-22 | 2017-03-14 | The Boeing Company | Visible X-ray indication and detection system for X-ray backscatter applications |
JP6441015B2 (ja) * | 2014-10-06 | 2018-12-19 | キヤノンメディカルシステムズ株式会社 | X線診断装置及びx線管制御方法 |
US10737111B2 (en) * | 2014-12-16 | 2020-08-11 | Rensselaer Polytechnic Institute | X-optogenetics / U-optogenetics |
US9572544B2 (en) | 2014-12-17 | 2017-02-21 | Carestream Health, Inc. | Deployable guard for mobile x-ray system |
US9924911B2 (en) | 2015-03-19 | 2018-03-27 | Carestream Health, Inc. | Tomosynthesis collimation |
JP6746603B2 (ja) | 2015-03-20 | 2020-08-26 | ラピスカン システムズ、インコーポレイテッド | 手持ち式携帯型後方散乱検査システム |
DE102015213285A1 (de) | 2015-07-15 | 2017-02-02 | Siemens Healthcare Gmbh | Röntgeneinrichtung für die inverse Computertomographie |
CN108450030B (zh) | 2015-09-10 | 2021-02-26 | 美国科学及工程股份有限公司 | 使用行间自适应电磁x射线扫描的反向散射表征 |
US10345479B2 (en) | 2015-09-16 | 2019-07-09 | Rapiscan Systems, Inc. | Portable X-ray scanner |
US10952689B2 (en) * | 2016-06-10 | 2021-03-23 | Principle Imaging Corporation | Multi-axis linear X-ray imaging system |
GB2572700A (en) | 2016-09-30 | 2019-10-09 | American Science & Eng Inc | X-Ray source for 2D scanning beam imaging |
CN110462390B (zh) * | 2017-04-07 | 2022-03-08 | 柯尼卡美能达株式会社 | 质量检查方法 |
EP3631834A4 (en) | 2017-05-25 | 2021-02-24 | Micro-X Limited | DEVICE FOR GENERATING RADIO FREQUENCY MODULATED X-RADIATION |
US10585206B2 (en) * | 2017-09-06 | 2020-03-10 | Rapiscan Systems, Inc. | Method and system for a multi-view scanner |
CN108227027B (zh) * | 2017-12-29 | 2020-12-01 | 同方威视技术股份有限公司 | 车载背散射检查系统 |
CN108008458B (zh) * | 2017-12-29 | 2020-09-08 | 同方威视技术股份有限公司 | 车载背散射检查系统 |
DE102018109595A1 (de) * | 2018-04-20 | 2019-10-24 | Carl Zeiss Meditec Ag | Röntgenstrahlungsgerät für medizinische Anwendungen |
GB2590561B (en) | 2018-06-20 | 2021-12-08 | American Science & Eng Inc | Wavelength-shifting sheet-coupled scintillation detectors |
WO2020041161A1 (en) | 2018-08-20 | 2020-02-27 | Viken Detection Corporation | Pass-through x-ray backscatter personnel scanner |
US11119057B2 (en) * | 2018-10-16 | 2021-09-14 | Oceaneering International, Inc. | Trip avoidance x-ray inspection |
US11898909B2 (en) * | 2019-06-20 | 2024-02-13 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed fluorescence imaging system |
US11925328B2 (en) | 2019-06-20 | 2024-03-12 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed hyperspectral imaging system |
US11389066B2 (en) | 2019-06-20 | 2022-07-19 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US12013496B2 (en) | 2019-06-20 | 2024-06-18 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed laser mapping imaging system |
US11193898B1 (en) | 2020-06-01 | 2021-12-07 | American Science And Engineering, Inc. | Systems and methods for controlling image contrast in an X-ray system |
US11175245B1 (en) | 2020-06-15 | 2021-11-16 | American Science And Engineering, Inc. | Scatter X-ray imaging with adaptive scanning beam intensity |
EP3933881A1 (en) | 2020-06-30 | 2022-01-05 | VEC Imaging GmbH & Co. KG | X-ray source with multiple grids |
FR3113132B1 (fr) * | 2020-07-30 | 2022-12-02 | Thales Sa | Dispositif d’imagerie par photons X rétrodiffusés |
US11340361B1 (en) | 2020-11-23 | 2022-05-24 | American Science And Engineering, Inc. | Wireless transmission detector panel for an X-ray scanner |
US11409019B1 (en) | 2021-04-19 | 2022-08-09 | Micro-X Limited | Device for producing high resolution backscatter images |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU385209A1 (ru) * | 1971-11-04 | 1973-05-29 | Устройство для абсорбционного | рентгенорадиометрического анализа' | |
DK131955C (da) | 1973-10-09 | 1976-02-23 | I Leunbach | Fremgangsmade og anleg til bestemmelse af elektrontetheden i et delvolumen af et legeme |
US4064440A (en) | 1976-06-22 | 1977-12-20 | Roder Frederick L | X-ray or gamma-ray examination device for moving objects |
DE2939146A1 (de) | 1979-09-27 | 1981-04-16 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Verfahren zur untersuchung eines koerpers mit durchdringender strahlung |
US4525854A (en) | 1983-03-22 | 1985-06-25 | Troxler Electronic Laboratories, Inc. | Radiation scatter apparatus and method |
US4799247A (en) | 1986-06-20 | 1989-01-17 | American Science And Engineering, Inc. | X-ray imaging particularly adapted for low Z materials |
US4809312A (en) | 1986-07-22 | 1989-02-28 | American Science And Engineering, Inc. | Method and apparatus for producing tomographic images |
GB8623196D0 (en) | 1986-09-26 | 1986-10-29 | Robinson M | Visual screening system |
DE8717508U1 (de) | 1987-10-19 | 1989-01-05 | Heimann Gmbh, 6200 Wiesbaden | Röntgenscanner |
US4825454A (en) | 1987-12-28 | 1989-04-25 | American Science And Engineering, Inc. | Tomographic imaging with concentric conical collimator |
US4864142A (en) | 1988-01-11 | 1989-09-05 | Penetron, Inc. | Method and apparatus for the noninvasive interrogation of objects |
US5179581A (en) | 1989-09-13 | 1993-01-12 | American Science And Engineering, Inc. | Automatic threat detection based on illumination by penetrating radiant energy |
US5247561A (en) | 1991-01-02 | 1993-09-21 | Kotowski Andreas F | Luggage inspection device |
DE4215343A1 (de) | 1992-05-09 | 1993-11-11 | Philips Patentverwaltung | Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens |
US5430787A (en) | 1992-12-03 | 1995-07-04 | The United States Of America As Represented By The Secretary Of Commerce | Compton scattering tomography |
US5600303A (en) | 1993-01-15 | 1997-02-04 | Technology International Incorporated | Detection of concealed explosives and contraband |
DE4311174C2 (de) | 1993-04-05 | 1996-02-15 | Heimann Systems Gmbh & Co | Röntgenprüfanlage für Container und Lastkraftwagen |
DE19532965C2 (de) | 1995-09-07 | 1998-07-16 | Heimann Systems Gmbh & Co | Röntgenprüfanlage für großvolumige Güter |
US6018562A (en) | 1995-11-13 | 2000-01-25 | The United States Of America As Represented By The Secretary Of The Army | Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography |
US5764683B1 (en) | 1996-02-12 | 2000-11-21 | American Science & Eng Inc | Mobile x-ray inspection system for large objects |
US5696806A (en) | 1996-03-11 | 1997-12-09 | Grodzins; Lee | Tomographic method of x-ray imaging |
US5638420A (en) | 1996-07-03 | 1997-06-10 | Advanced Research And Applications Corporation | Straddle inspection system |
EP0910807B1 (en) | 1996-07-12 | 2003-03-19 | American Science & Engineering, Inc. | Side scatter tomography system |
EP1015913A1 (en) | 1996-07-22 | 2000-07-05 | American Science & Engineering, Inc. | System for rapid x-ray inspection of enclosures |
US5763886A (en) | 1996-08-07 | 1998-06-09 | Northrop Grumman Corporation | Two-dimensional imaging backscatter probe |
US5974111A (en) | 1996-09-24 | 1999-10-26 | Vivid Technologies, Inc. | Identifying explosives or other contraband by employing transmitted or scattered X-rays |
WO1998020366A1 (en) | 1996-11-08 | 1998-05-14 | American Science And Engineering, Inc. | Coded aperture x-ray imaging system |
US5912460A (en) | 1997-03-06 | 1999-06-15 | Schlumberger Technology Corporation | Method for determining formation density and formation photo-electric factor with a multi-detector-gamma-ray tool |
US6081580A (en) | 1997-09-09 | 2000-06-27 | American Science And Engineering, Inc. | Tomographic inspection system |
JPH11164829A (ja) | 1997-12-03 | 1999-06-22 | Toshiba Corp | 架台移動ヘリカルスキャンct装置 |
WO1999039189A2 (en) | 1998-01-28 | 1999-08-05 | American Science And Engineering, Inc. | Gated transmission and scatter detection for x-ray imaging |
US6094472A (en) * | 1998-04-14 | 2000-07-25 | Rapiscan Security Products, Inc. | X-ray backscatter imaging system including moving body tracking assembly |
US6236709B1 (en) | 1998-05-04 | 2001-05-22 | Ensco, Inc. | Continuous high speed tomographic imaging system and method |
US6442233B1 (en) | 1998-06-18 | 2002-08-27 | American Science And Engineering, Inc. | Coherent x-ray scatter inspection system with sidescatter and energy-resolved detection |
EP1135700B1 (en) | 1998-11-30 | 2005-03-02 | American Science & Engineering, Inc. | Fan and pencil beams from a common source for x-ray inspection |
US6421420B1 (en) | 1998-12-01 | 2002-07-16 | American Science & Engineering, Inc. | Method and apparatus for generating sequential beams of penetrating radiation |
US6249567B1 (en) | 1998-12-01 | 2001-06-19 | American Science & Engineering, Inc. | X-ray back scatter imaging system for undercarriage inspection |
US6567496B1 (en) | 1999-10-14 | 2003-05-20 | Sychev Boris S | Cargo inspection apparatus and process |
US6459761B1 (en) | 2000-02-10 | 2002-10-01 | American Science And Engineering, Inc. | Spectrally shaped x-ray inspection system |
US6553096B1 (en) * | 2000-10-06 | 2003-04-22 | The University Of North Carolina Chapel Hill | X-ray generating mechanism using electron field emission cathode |
FR2818116B1 (fr) * | 2000-12-19 | 2004-08-27 | Ge Med Sys Global Tech Co Llc | Appareil de mammographie |
US6473487B1 (en) | 2000-12-27 | 2002-10-29 | Rapiscan Security Products, Inc. | Method and apparatus for physical characteristics discrimination of objects using a limited view three dimensional reconstruction |
RU2231101C2 (ru) * | 2002-02-14 | 2004-06-20 | Кумахов Мурадин Абубекирович | Устройства для получения изображения внутренней структуры объекта |
US6879657B2 (en) | 2002-05-10 | 2005-04-12 | Ge Medical Systems Global Technology, Llc | Computed tomography system with integrated scatter detectors |
JP4314008B2 (ja) | 2002-10-01 | 2009-08-12 | 株式会社東芝 | X線ctスキャナ |
JP2005110722A (ja) * | 2003-10-02 | 2005-04-28 | Shimadzu Corp | X線管およびx線撮影装置 |
US7333587B2 (en) | 2004-02-27 | 2008-02-19 | General Electric Company | Method and system for imaging using multiple offset X-ray emission points |
JP2005237779A (ja) * | 2004-02-27 | 2005-09-08 | Shimadzu Corp | X線ct装置 |
US7330529B2 (en) * | 2004-04-06 | 2008-02-12 | General Electric Company | Stationary tomographic mammography system |
US20070009088A1 (en) | 2005-07-06 | 2007-01-11 | Edic Peter M | System and method for imaging using distributed X-ray sources |
-
2007
- 2007-04-19 CN CN2007800218495A patent/CN101467071B/zh active Active
- 2007-04-19 RU RU2008146009/28A patent/RU2411506C2/ru not_active IP Right Cessation
- 2007-04-19 JP JP2009506767A patent/JP2009534669A/ja active Pending
- 2007-04-19 US US11/737,317 patent/US7505562B2/en active Active
- 2007-04-19 MX MX2008013595A patent/MX2008013595A/es active IP Right Grant
- 2007-04-19 WO PCT/US2007/066936 patent/WO2008063695A2/en active Application Filing
- 2007-04-19 EP EP07868238A patent/EP2010943A2/en not_active Withdrawn
- 2007-04-19 KR KR1020087028326A patent/KR20090015929A/ko not_active Application Discontinuation
-
2008
- 2008-10-22 IL IL194851A patent/IL194851A/en not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9182516B2 (en) | 2007-02-01 | 2015-11-10 | Rapiscan Systems, Inc. | Personnel screening system |
US9285325B2 (en) | 2007-02-01 | 2016-03-15 | Rapiscan Systems, Inc. | Personnel screening system |
US9291741B2 (en) | 2007-02-01 | 2016-03-22 | Rapiscan Systems, Inc. | Personnel screening system |
US9891314B2 (en) | 2014-03-07 | 2018-02-13 | Rapiscan Systems, Inc. | Ultra wide band detectors |
US10134254B2 (en) | 2014-11-25 | 2018-11-20 | Rapiscan Systems, Inc. | Intelligent security management system |
Also Published As
Publication number | Publication date |
---|---|
WO2008063695A2 (en) | 2008-05-29 |
IL194851A0 (en) | 2009-08-03 |
JP2009534669A (ja) | 2009-09-24 |
RU2411506C2 (ru) | 2011-02-10 |
US7505562B2 (en) | 2009-03-17 |
US20070258562A1 (en) | 2007-11-08 |
KR20090015929A (ko) | 2009-02-12 |
EP2010943A2 (en) | 2009-01-07 |
IL194851A (en) | 2012-06-28 |
CN101467071A (zh) | 2009-06-24 |
MX2008013595A (es) | 2009-03-06 |
WO2008063695A3 (en) | 2008-11-20 |
RU2008146009A (ru) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101467071B (zh) | 使用分立源阵列和多个准直束的对于行李和人员的x射线成像 | |
US7869566B2 (en) | Integrated multi-sensor systems for and methods of explosives detection | |
US9020100B2 (en) | Multiple image collection and synthesis for personnel screening | |
EP2223165B1 (en) | Multiple image collection and synthesis for personnel screening | |
US9086497B2 (en) | Multi-view cargo scanner | |
US7400701B1 (en) | Backscatter inspection portal | |
US9128198B2 (en) | Time of flight backscatter imaging system | |
US6459764B1 (en) | Drive-through vehicle inspection system | |
US8345819B2 (en) | Top-down X-ray inspection trailer | |
US7742563B2 (en) | X-ray source and detector configuration for a non-translational x-ray diffraction system | |
US20150014526A1 (en) | Method of Electron Beam Transport in an X-Ray Scanner | |
US20100166285A1 (en) | System and method for acquiring image data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |