CN101318107B - Preparation method for pure silicon beta molecular sieve film - Google Patents
Preparation method for pure silicon beta molecular sieve film Download PDFInfo
- Publication number
- CN101318107B CN101318107B CN2008100507171A CN200810050717A CN101318107B CN 101318107 B CN101318107 B CN 101318107B CN 2008100507171 A CN2008100507171 A CN 2008100507171A CN 200810050717 A CN200810050717 A CN 200810050717A CN 101318107 B CN101318107 B CN 101318107B
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- seed crystal
- carrier
- sieve membrane
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 13
- 239000010703 silicon Substances 0.000 title claims abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 239000002808 molecular sieve Substances 0.000 title claims description 121
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims description 121
- 239000012528 membrane Substances 0.000 claims abstract description 113
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 35
- 239000010935 stainless steel Substances 0.000 claims abstract description 35
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 20
- 239000011521 glass Substances 0.000 claims abstract description 18
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims abstract description 18
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims abstract description 18
- 239000000919 ceramic Substances 0.000 claims abstract description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000013078 crystal Substances 0.000 claims description 73
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000012153 distilled water Substances 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 27
- 239000000047 product Substances 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 15
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 8
- 239000002159 nanocrystal Substances 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 7
- 239000012452 mother liquor Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 6
- 238000005119 centrifugation Methods 0.000 claims description 6
- 238000002425 crystallisation Methods 0.000 claims description 6
- 230000008025 crystallization Effects 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 239000003921 oil Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 28
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 15
- 239000000969 carrier Substances 0.000 abstract description 12
- 238000013341 scale-up Methods 0.000 abstract description 2
- 238000002441 X-ray diffraction Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- 235000012431 wafers Nutrition 0.000 description 12
- 238000001878 scanning electron micrograph Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 6
- 230000034655 secondary growth Effects 0.000 description 6
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 6
- 235000019241 carbon black Nutrition 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
技术领域technical field
本发明属于纯硅beta分子筛膜制备领域,特别涉及到在多种载体上使用脱铝beta分子筛晶种在TEAOH-HF-SiO2-H2O的凝胶体系中二次生长制备高取向beta分子筛膜的方法。The invention belongs to the field of preparation of pure silicon beta molecular sieve membranes, in particular to the preparation of highly oriented beta molecular sieves by secondary growth in a TEAOH-HF-SiO 2 -H 2 O gel system using dealuminated beta molecular sieve seeds on various supports membrane method.
背景技术Background technique
近年来,集催化与分离于一体的分子筛膜的合成研究越来越受到人们的重视。对应用在膜反应器、膜选择传感器、光电材料等方面的分子筛膜的质量,包括薄、致密(无空隙)、方向性等,提出了更高的要求。尤其是提高分子筛膜的取向性对分子筛膜表面的光滑度和透明度有重要的影响。这对分子筛膜在光学、光催化、器件等应用方面有重要的意义。最近,高性能的分子筛膜还被应用于低介电常数材料和防腐蚀材料。低介电材料对克服电子微处理器上经常发生的串绕和传播延迟具有重要的意义。分子筛膜在防腐蚀材料方面的应用对军事工业等具有很好应用前景。因此合成高硅连续分子筛膜,降低膜的厚度,尤其是增加膜的有序性和均匀性以及提高膜中晶体的取向性已成为分子筛膜合成中焦点问题。In recent years, more and more attention has been paid to the synthesis of molecular sieve membranes integrating catalysis and separation. Higher requirements are put forward for the quality of molecular sieve membranes used in membrane reactors, membrane selective sensors, photoelectric materials, etc., including thinness, density (no voids), and directionality. In particular, improving the orientation of the molecular sieve membrane has an important influence on the smoothness and transparency of the surface of the molecular sieve membrane. This is of great significance to the application of molecular sieve membranes in optics, photocatalysis, and devices. Recently, high-performance molecular sieve membranes have also been applied to low dielectric constant materials and anti-corrosion materials. Low dielectric materials are of great significance to overcome crosstalk and propagation delays that often occur on electronic microprocessors. The application of molecular sieve membranes in anti-corrosion materials has a good application prospect in military industry and so on. Therefore, synthesizing high-silicon continuous molecular sieve membranes, reducing the thickness of the membrane, especially increasing the order and uniformity of the membrane and improving the orientation of crystals in the membrane have become the focus of molecular sieve membrane synthesis.
分子筛膜的合成主要步骤包括:(1)载体的处理和准备;(2)载体和反应液在一定条件下反应成膜。分子筛膜的合成主要有直接法和间接法。直接法是指把载体浸到反应溶液中,在一定条件下反应成膜;间接法是指先在载体表面引入一层均匀分散的分子筛晶种,然后水热合成分子筛膜,通常也称为二次生长法。分子筛最直接最简单的方法是直接法,也是目前最常用的合成方法。但是,采用直接法合成的分子筛很大程度上依赖载体和分子筛膜的种类,很难获得无缺陷、连续的分子筛膜,因此缺乏工业应用价值。而二次生长法最显著的优点就是将成核和生长过程分开,抑制了晶核转变成其它晶体,提高了分子筛膜的纯度。此外,二次生长法能缩短成核和晶化时间,提高结晶度。要实现分子筛膜的工业放大,除了要选择合适的合成方法,还要考虑载体、合成液等因素的影响。例如为了合成薄、密的分子筛膜,更佳的选择是凝胶体系。凝胶体系的粘性比较大,在合成过程中的毛细管吸力较小,这大大的降低了内层晶种晶化。相比之下,凝胶体系比澄清的合成液具有更具优势。The main steps of synthesis of molecular sieve membrane include: (1) treatment and preparation of carrier; (2) reaction of carrier and reaction liquid to form membrane under certain conditions. The synthesis of molecular sieve membrane mainly includes direct method and indirect method. The direct method refers to immersing the carrier in the reaction solution and reacting to form a film under certain conditions; the indirect method refers to firstly introducing a layer of uniformly dispersed molecular sieve seeds on the surface of the carrier, and then hydrothermally synthesizing the molecular sieve membrane, which is usually called a secondary method. growth method. The most direct and simplest method for molecular sieves is the direct method, which is also the most commonly used synthesis method at present. However, the molecular sieve synthesized by the direct method largely depends on the type of carrier and molecular sieve membrane, and it is difficult to obtain a defect-free and continuous molecular sieve membrane, so it lacks industrial application value. The most significant advantage of the secondary growth method is that it separates the nucleation and growth processes, inhibits the transformation of crystal nuclei into other crystals, and improves the purity of the molecular sieve membrane. In addition, the secondary growth method can shorten the nucleation and crystallization time and improve the crystallinity. In order to realize the industrial scale-up of molecular sieve membranes, in addition to selecting a suitable synthesis method, the influence of factors such as carrier and synthesis solution must also be considered. For example, in order to synthesize thin and dense molecular sieve membranes, the better choice is the gel system. The viscosity of the gel system is relatively large, and the capillary suction during the synthesis process is small, which greatly reduces the crystallization of the inner seed crystal. In contrast, gel systems have advantages over clear synthetic fluids.
beta分子筛膜由于其独特孔道结构和催化性能在分离和催化膜反应器上有着潜在的应用。但是关于beta分子筛膜的研究很少,绝大部分有关分子筛膜的研究都集中在小孔道和中等孔道的分子筛膜上。作为具有高硅铝比、大孔道的beta分子筛,在被用作低介电材料、防腐蚀材料和光学主体材料上,具有小孔道和中等孔道分子筛所不具备的优势。beta分子筛膜传统上主要在硅铝溶液体系下合成。这种体系下合成的beta分子筛膜的优点是晶粒较均一;缺点是晶粒之间没有很好的共生,而且没有取向。近年来,国内外科学家对在氢氟酸存在的中性凝胶体系下对beta分子筛膜的合成进行了广泛而深入的研究。在这种体系下合成的beta分子筛膜孔道内的缺陷较少,因此疏水性和热稳定性得到了很大的提高。但是较长的合成时间、无取向的表面、较厚的膜截面仍然限制beta分子筛膜在工业上的应用价值。如果能在中性凝胶体系中二次生长合成beta分子筛膜的前提下提高分子筛膜的性能,无疑将会有利于实现beta分子筛膜的工业应用,在此基础上扩大载体的选择范围,将会进一步扩大beta分子筛膜的应用范围。Beta molecular sieve membranes have potential applications in separation and catalytic membrane reactors due to their unique pore structure and catalytic performance. However, there are very few studies on beta molecular sieve membranes, and most of the studies on molecular sieve membranes are concentrated on the molecular sieve membranes with small and medium pores. As a beta molecular sieve with a high silicon-aluminum ratio and large pores, it has advantages that molecular sieves with small and medium pores do not have in being used as low-dielectric materials, anti-corrosion materials and optical main materials. Beta molecular sieve membranes are traditionally synthesized mainly in a silica-alumina solution system. The advantage of the beta molecular sieve membrane synthesized under this system is that the crystal grains are relatively uniform; the disadvantage is that there is no good intergrowth between the crystal grains and no orientation. In recent years, scientists at home and abroad have conducted extensive and in-depth research on the synthesis of beta molecular sieve membranes in the neutral gel system in the presence of hydrofluoric acid. The beta molecular sieve synthesized under this system has fewer defects in the membrane channel, so the hydrophobicity and thermal stability are greatly improved. But longer synthesis time, non-oriented surface, and thicker membrane section still limit the application value of beta molecular sieve membrane in industry. If the performance of the molecular sieve membrane can be improved under the premise of secondary growth and synthesis of the beta molecular sieve membrane in the neutral gel system, it will undoubtedly be beneficial to realize the industrial application of the beta molecular sieve membrane. On this basis, expanding the selection range of the carrier will be Further expand the application range of beta molecular sieve membrane.
发明内容Contents of the invention
本发明的目的在于提供一种纯硅、致密和连续beta分子筛膜的快速制备方法,采用本发明合成的beta分子筛膜适用载体广泛,操作简便,合成速度快,重复性高,性能优良,适于工业放大。The purpose of the present invention is to provide a rapid preparation method of pure silicon, dense and continuous beta molecular sieve membrane. The beta molecular sieve membrane synthesized by the present invention is applicable to a wide range of carriers, easy to operate, fast in synthesis speed, high in repeatability and excellent in performance, suitable for Industrial magnification.
具体步骤如下:Specific steps are as follows:
a)载体的预处理:首先将多种载体(单晶硅片、玻璃片、不锈钢片、不锈钢网、陶瓷片)分别进行洗涤预处理。将单晶硅片、玻璃片、不锈钢片、不锈钢网(200~400目)投入到2~10毫升异丙醇、5~20毫升乙醇、5~20毫升蒸馏水及0.2~1g盐酸的混合溶液中,超声波功率100~300瓦洗涤5~20分钟,取出后用蒸馏水冲洗干净,烘干;陶瓷片在细砂纸(400~800目)上打磨,然后在蒸馏水中100~300瓦功率超声清洗5~20分钟,取出后用蒸馏水冲洗干净,烘干;a) Pretreatment of carriers: firstly, various carriers (single crystal silicon slices, glass flakes, stainless steel flakes, stainless steel nets, and ceramic flakes) are washed and pretreated respectively. Put monocrystalline silicon slices, glass slices, stainless steel slices, and stainless steel mesh (200-400 mesh) into a mixed solution of 2-10 ml of isopropanol, 5-20 ml of ethanol, 5-20 ml of distilled water and 0.2-1 g of hydrochloric acid , ultrasonic power of 100-300 watts for 5-20 minutes, rinse with distilled water after taking it out, and dry; polish the ceramic sheet on fine sandpaper (400-800 mesh), and then ultrasonically clean it in distilled water with a power of 100-300 watts for 5-20 minutes. After 20 minutes, take it out, rinse it with distilled water, and dry it;
b)beta分子筛晶种溶液的配制:按2~6mol NaOH∶10~50mol白炭黑∶2~15mol四乙基氢氧化铵(TEAOH)∶0.2~2mol NaAlO2∶100~500mol H2O的比例,将各原料混合搅拌至均匀,然后在80~140℃温度下晶化6~14天,离心、水洗、干燥后得到纳米beta分子筛晶种粉末,然后对纳米beta分子筛晶种粉末进行脱铝处理,脱铝处理后的脱铝晶种粉末用蒸馏水配成10~30g/L的纳米晶的晶种溶液,加入氨水调pH值为9~11;b) Preparation of beta molecular sieve seed solution: 2-6mol NaOH: 10-50mol white carbon black: 2-15mol tetraethylammonium hydroxide (TEAOH): 0.2-2mol NaAlO 2 : 100-500mol H 2 O ratio , mix and stir all raw materials until uniform, then crystallize at 80-140°C for 6-14 days, centrifuge, wash and dry to obtain nano-beta molecular sieve seed crystal powder, and then dealuminate the nano-beta molecular sieve seed crystal powder , the dealuminated seed crystal powder after dealumination treatment is made into a 10-30 g/L nanocrystal seed crystal solution with distilled water, and ammonia water is added to adjust the pH value to 9-11;
纳米beta沸石晶种脱铝处理:按照1~5克纳米beta晶种粉末加入20~120克60%的浓硝酸的比例,在60~120℃油浴中回流5~48小时,产物经过蒸馏水反复离心洗涤至中性,然后干燥;Dealumination of nano-beta zeolite seed crystals: According to the ratio of 1-5 grams of nano-beta seed crystal powder to 20-120 grams of 60% concentrated nitric acid, reflux in an oil bath at 60-120 ° C for 5-48 hours, and the product is passed through distilled water repeatedly Wash by centrifugation until neutral, then dry;
c)晶种化载体的制备:处理好的不同载体分别采用两种不同方法制备晶种化的载体。将单晶硅片、玻璃片、不锈钢片浸入到0.2%~10%聚二烯丙基二甲基胺盐酸盐(PDDA)溶液5~20分钟,再投入到脱铝晶种溶液中吸附晶种5~20分钟,然后将吸附晶种后的载体在蒸馏水中冲洗,在室温下干燥,形成的晶种层厚度为0.2~0.5微米;在不锈钢网和陶瓷片载体上预涂晶种是将2~5滴脱铝晶种溶液滴到不锈钢网和陶瓷片载体上,最后在500~700W的电炉上烘干,形成的晶种层厚度为10~30微米;c) Preparation of seeded carriers: two different methods were used to prepare seeded carriers for different processed carriers. Immerse monocrystalline silicon wafers, glass wafers, and stainless steel wafers in 0.2% to 10% polydiallyldimethylamine hydrochloride (PDDA) solution for 5 to 20 minutes, and then put them into the dealuminated seed crystal solution to absorb crystals. Seed for 5-20 minutes, then rinse the carrier after adsorbing the seed crystal in distilled water, dry at room temperature, and form a seed crystal layer with a thickness of 0.2-0.5 microns; 2-5 drops of dealuminated seed crystal solution are dripped onto the stainless steel mesh and ceramic sheet carrier, and finally dried in a 500-700W electric furnace, and the thickness of the formed seed crystal layer is 10-30 microns;
d)分子筛膜母液的制备:按0.1~10mol四乙基氢氧化胺(TEAOH)∶0.1~10mol正硅酸乙酯(TEOS)∶0.05~5mol氢氟酸(HF)∶0.5~50mol H2O的比例,将各原料混合搅拌至均匀;d) Preparation of molecular sieve membrane mother liquor: 0.1-10 mol tetraethylammonium hydroxide (TEAOH): 0.1-10 mol tetraethyl orthosilicate (TEOS): 0.05-5 mol hydrofluoric acid (HF): 0.5-50 mol H 2 O The ratio of each raw material is mixed and stirred until uniform;
e)分子筛膜的制备:将晶种化载体与分子筛膜母液一同放在反应釜中于140~170℃晶化2~5天,然后洗涤烘干;最后将洗涤烘干后的beta分子筛膜在管式炉中于500~700℃条件下的煅烧8~12小时,最后在单晶硅片、玻璃片、不锈钢片载体上形成膜的厚度为1~3微米,在不锈钢网和陶瓷片载体上形成膜的厚度为12~32微米。e) Preparation of molecular sieve membrane: put the seed crystal carrier and the mother liquor of the molecular sieve membrane together in a reaction kettle for crystallization at 140-170°C for 2-5 days, then wash and dry; finally wash and dry the beta molecular sieve membrane in Calcination in a tube furnace at 500-700°C for 8-12 hours, and finally form a film with a thickness of 1-3 microns on a single crystal silicon wafer, glass wafer, and stainless steel wafer carrier, and on a stainless steel mesh and ceramic wafer carrier The thickness of the formed film is 12-32 micrometers.
其中,以0.3~0.8mol TEAOH、0.5~5mol TEOS、0.2~2mol HF、2~10molH2O配制的分子筛膜母液,得到的beta分子筛膜的质量最佳。Among them, the molecular sieve membrane mother liquor prepared with 0.3-0.8mol TEAOH, 0.5-5mol TEOS, 0.2-2mol HF, and 2-10molH 2 O has the best quality of beta molecular sieve membrane.
上述步骤中所述的离心,是将脱铝处理的beta纳米晶溶液在离心机上离心获得均一的纳米晶的溶液,其首先在3000~5000转/分钟的条件下离心5~20分钟去除下层较大颗粒的纳米晶,然后在8000~10000转/分钟的条件下离心10~30分钟,去除上面的清液,留取下面的固体;The centrifugation described in the above steps is to centrifuge the dealuminated beta nanocrystal solution on a centrifuge to obtain a uniform nanocrystal solution, which is first centrifuged at 3000 to 5000 rpm for 5 to 20 minutes to remove the lower layer. For large-particle nanocrystals, centrifuge at 8,000 to 10,000 rpm for 10 to 30 minutes to remove the supernatant and retain the solid below;
水洗是将离心后的上层溶液倒掉后,再加入蒸馏水,反复3~5;Water washing is to pour off the upper layer solution after centrifugation, then add distilled water, repeat 3 to 5 times;
干燥是将离心后的固体晶种粉末放到70~80℃烘箱中干燥。Drying is to dry the centrifuged solid seed crystal powder in an oven at 70-80°C.
上述方法中所说的水均是指蒸馏水。Said water in the above-mentioned method all refers to distilled water.
采用本发明合成的beta分子筛膜经过X-射线衍射和扫描电镜照片检测表明没有杂晶生成,膜的表面生成一层致密连续的膜。The beta molecular sieve membrane synthesized by the invention is tested by X-ray diffraction and scanning electron microscope photos, showing that no miscellaneous crystals are formed, and a layer of dense and continuous membrane is formed on the surface of the membrane.
采用本发明合成的beta分子筛膜经过电感偶合等离子体原子发射光谱仪(ICP-AES)检测表明使用脱铝的beta分子筛晶种时,生成的beta分子筛膜的Si/Al比达到5014.3。The beta molecular sieve membrane synthesized by the present invention is tested by an inductively coupled plasma atomic emission spectrometer (ICP-AES) and shows that when the dealuminated beta molecular sieve seed crystal is used, the Si/Al ratio of the generated beta molecular sieve membrane reaches 5014.3.
采用本发明合成的beta分子筛膜,合成周期较短,只需要两天左右时间。By adopting the beta molecular sieve membrane synthesized by the present invention, the synthesis period is relatively short, only about two days.
采用本发明合成的beta分子筛膜在单晶硅片,玻璃片,不锈钢片等多种载体上都比较薄,连续并且致密,具有较好的重复性,适用于工业放大。The beta molecular sieve membrane synthesized by the invention is relatively thin, continuous and dense on various supports such as single crystal silicon sheet, glass sheet, stainless steel sheet, etc., has good repeatability, and is suitable for industrial amplification.
附图说明Description of drawings
图1:实施例1制备的单晶硅片载体表面beta分子筛膜正面和侧面的扫描电镜照片图;Fig. 1: the scanning electron micrograph picture of the front and side of the beta molecular sieve membrane on the surface of the single crystal silicon wafer carrier prepared in Example 1;
图2:实施例2制备的单晶硅片载体表面beta分子筛膜正面的扫描电镜照片图和X-射线衍射图;Fig. 2: the scanning electron micrograph figure and the X-ray diffraction figure of the beta molecular sieve membrane front side of the single crystal silicon chip carrier surface prepared in
图3:实施例3制备的单晶硅片载体表面beta分子筛膜正面的扫描电镜照片图和X-射线衍射图;Fig. 3: the scanning electron micrograph figure and the X-ray diffraction figure of the beta molecular sieve film front side of the single crystal silicon wafer carrier surface prepared in embodiment 3;
图4:实施例4制备的玻璃片载体表面beta分子筛膜正面和侧面的扫描电镜照片图;Fig. 4: the scanning electron micrograph figure of the beta molecular sieve membrane front and side of the glass flake carrier surface that embodiment 4 prepares;
图5:实施例5制备的玻璃片载体表面beta分子筛膜正面的扫描电镜照片图和X-射线衍射图;Fig. 5: the scanning electron micrograph figure and the X-ray diffraction figure of the beta molecular sieve membrane front side of the glass flake carrier surface prepared in
图6:实施例6制备的不锈钢片载体表面beta分子筛膜正面和侧面的扫描电镜照片图;Fig. 6: the scanning electron micrograph figure of the beta molecular sieve membrane front and side of the surface of the stainless steel sheet carrier prepared in
图7:实施例7制备的不锈钢片载体表面beta分子筛膜正面的扫描电镜照片图和X-射线衍射图;Fig. 7: the scanning electron micrograph figure and the X-ray diffraction figure of the beta molecular sieve membrane front surface of the stainless steel sheet carrier surface prepared in embodiment 7;
图8:实施例8制备的不锈钢网载体表面beta分子筛膜正面和侧面的扫描电镜照片图;Fig. 8: the scanning electron micrograph figure of the beta molecular sieve membrane front and side of the surface of the stainless steel net carrier prepared in embodiment 8;
图9:实施例9制备的不锈钢网载体表面beta分子筛膜正面的扫描电镜照片图和X-射线衍射图;Fig. 9: the scanning electron micrograph picture and the X-ray diffraction picture of the beta molecular sieve membrane front side of the surface of the stainless steel net carrier prepared in embodiment 9;
图10:实施例10制备的陶瓷片载体表面beta分子筛膜正面和侧面的扫描电镜照片图;Fig. 10: the scanning electron micrograph figure of the beta molecular sieve membrane front and side of the surface of the ceramic sheet carrier prepared in
图11:实施例11制备的陶瓷片载体表面beta分子筛膜正面的扫描电镜照片图和X-射线衍射图扫描电镜照片。Figure 11: Scanning electron micrographs and X-ray diffraction images of the front surface of the beta molecular sieve membrane on the surface of the ceramic sheet carrier prepared in Example 11.
如图1所示,可见晶体间共生的很好,表面致密平整,膜的厚度为2.0微米;As shown in Figure 1, it can be seen that the symbiosis between crystals is very good, the surface is dense and flat, and the thickness of the film is 2.0 microns;
如图2所示,从扫描电镜照片图可见晶体间共生的很好,膜的表面致密平整,X-射线衍射图中出现的7.88度的beta的(101)晶面特征峰,由图可知合成产物确实为希望得到的产物,且峰强度很高,证明晶化度好。As shown in Figure 2, it can be seen from the scanning electron microscope photo that the crystal intergrowth is very good, the surface of the film is dense and smooth, and the characteristic peak of the (101) crystal plane of beta at 7.88 degrees appears in the X-ray diffraction pattern, which shows that the synthesis The product is indeed the desired product, and the peak intensity is very high, which proves that the crystallinity is good.
如图3所示,从扫描电镜照片可见晶体间共生的仍然很好,虽然膜仍旧很致密但是表面不平整,X-射线衍射图中出现了beta的(101)晶面特征峰,由图可知合成产物确实为希望得到的产物,且峰强度仍然很高,晶化度较好;As shown in Figure 3, it can be seen from the scanning electron microscope that the symbiosis between the crystals is still very good. Although the film is still very dense, the surface is not smooth, and the characteristic peak of the (101) crystal plane of beta appears in the X-ray diffraction diagram. It can be seen from the figure The synthetic product is indeed the desired product, and the peak intensity is still high, and the crystallinity is better;
如图4所示,可见晶体间共生的很好,表面致密平整,膜的厚度为2.3微米。X-射线衍射图中出现了beta的(101)晶面特征峰,由图可知合成产物确实为希望得到的产物,且峰强度仍然很高,晶化度较好;As shown in Figure 4, it can be seen that the symbiosis between crystals is very good, the surface is dense and smooth, and the thickness of the film is 2.3 microns. The (101) crystal plane characteristic peak of beta appeared in the X-ray diffraction diagram, and it can be seen from the figure that the synthesized product is indeed the desired product, and the peak intensity is still very high, and the crystallinity is better;
如图5所示,可见晶体间共生的较好,表面较致密平整,X-射线衍射图中出现了beta的特征峰,晶化度较差;As shown in Figure 5, it can be seen that the symbiosis between crystals is better, the surface is denser and smoother, the characteristic peak of beta appears in the X-ray diffraction pattern, and the crystallinity is poor;
如图6所示,从扫描电镜照片可见晶体间共生的较好,膜很致密平整,膜的厚度为1.6微米;As shown in Figure 6, it can be seen from the scanning electron microscope photo that the crystal intergrowth is better, the film is very dense and smooth, and the thickness of the film is 1.6 microns;
如图7所示,扫描电镜照片可见晶体间共生的较好,表面较致密较平整。X-射线衍射图中出现了beta的特征峰,由图可知合成产物确实为希望得到的产物,但晶化度较差;As shown in Figure 7, the scanning electron microscope photo shows that the crystal intergrowth is better, and the surface is denser and smoother. The characteristic peak of beta appeared in the X-ray diffraction diagram, and it can be seen from the figure that the synthesized product is indeed the desired product, but the crystallinity is relatively poor;
如图8所示,从扫描电镜照片可见晶体间共生的较好,膜很致密平整,膜的厚度为23.7微米;As shown in Figure 8, it can be seen from the scanning electron microscope photo that the symbiosis between crystals is better, the film is very dense and flat, and the thickness of the film is 23.7 microns;
如图9所示,扫描电镜照片可见晶体间共生的较差,表面较致密较平整。X-射线衍射图中出现了beta的特征峰,由图可知合成产物确实为希望得到的产物,晶化度较好;As shown in FIG. 9 , the scanning electron microscope photo shows that the symbiosis between crystals is poor, and the surface is denser and smoother. The characteristic peak of beta appeared in the X-ray diffraction diagram, and it can be seen from the figure that the synthesized product is indeed the desired product, and the crystallinity is better;
如图10所示,从扫描电镜照片可见晶体见共生的较好,膜很致密,较平整,膜的厚度为15.3微米;As shown in Figure 10, it can be seen from the scanning electron microscope photo that the crystals are well intergrown, the film is very dense and smooth, and the thickness of the film is 15.3 microns;
如图11所示,扫描电镜照片可见晶体间共生的较好,表面致密较平整,但表面落有小晶粒。X-射线衍射图中出现了beta的特征峰,由图可知合成产物确实为希望得到的产物,晶化度较好。As shown in Figure 11, the scanning electron microscope photo shows that the intergrowth of crystals is better, and the surface is dense and smooth, but there are small grains on the surface. The characteristic peak of beta appeared in the X-ray diffraction pattern, and it can be seen from the figure that the synthesized product is indeed the desired product, and the crystallinity is better.
具体实施方式Detailed ways
下面应用实施例对本发明作进一步的阐述:The following application examples will further elaborate the present invention:
实施例1Example 1
一种以单晶硅片(北京有色金属研究院)为载体的beta分子筛膜的制备方法。A method for preparing a beta molecular sieve membrane with a single crystal silicon wafer (Beijing Institute of Nonferrous Metals) as a carrier.
步骤一晶种的制备:纳米beta分子筛晶种溶液的反应配比为:4.5molNaOH∶25mol SiO2(白炭黑)∶9.0mol四乙基氢氧化铵(TEAOH)∶0.5molNaAlO2∶360mol H2O。将3.0克白炭黑加入5.89克、45%wt四乙基氢氧化胺溶液、0.36克氢氧化钠、0.082克铝酸钠、9.72克蒸馏水的混合溶液中,在电磁搅拌器上搅拌至均匀,然后将反应混合溶液转移至反应釜内衬中,装釜,密封,100℃晶化10天。产物反复经过离心,水洗,待水溶液至中性,干燥;纳米beta沸石晶种脱铝处理:按照1克beta沸石晶种加入60克60%的浓硝酸的比例,在80℃油浴中回流24小时,产物经过蒸馏水反复离心洗涤至中性,然后干燥;纳米beta分子筛晶种经过脱铝处理后配成10g/L的晶种乳液,为了防止晶种团聚,加氨水溶液调节晶种溶液的pH值为10。Step 1 Preparation of seed crystals: the reaction ratio of nano-beta molecular sieve seed crystal solution is: 4.5molNaOH: 25mol SiO2 (white carbon black): 9.0mol tetraethylammonium hydroxide (TEAOH): 0.5molNaAlO2 : 360mol H2 O. Add 3.0 grams of white carbon black to a mixed solution of 5.89 grams, 45%wt tetraethylammonium hydroxide solution, 0.36 grams of sodium hydroxide, 0.082 grams of sodium aluminate, and 9.72 grams of distilled water, and stir until uniform on an electromagnetic stirrer. Then the reaction mixed solution was transferred to the lining of the reaction kettle, the kettle was installed, sealed, and crystallized at 100° C. for 10 days. The product is repeatedly centrifuged, washed with water, and the aqueous solution is neutralized, then dried; dealumination of nano-beta zeolite seed crystals: add 60 g of 60% concentrated nitric acid to 1 g of beta zeolite seeds, and reflux in an oil bath at 80 ° C for 24 hours, the product was repeatedly centrifuged and washed with distilled water to neutrality, and then dried; the nano-beta molecular sieve crystal seed crystal was dealt with to form a 10g/L seed crystal emulsion. The value is 10.
离心是首先在3000转/分钟的条件下离心5分钟去除下层较大颗粒,然后在8000转/分钟的条件下离心15分钟,去除上面的清液,留取下面的固体。Centrifugation is to firstly centrifuge at 3000 rpm for 5 minutes to remove the larger particles in the lower layer, and then centrifuge at 8000 rpm for 15 minutes to remove the supernatant and retain the solid below.
水洗是将离心后的上层溶液倒掉后,再加入蒸馏水,反复3次。Water washing is to pour off the supernatant solution after centrifugation, and then add distilled water, repeating 3 times.
干燥是将离心后的固体晶种粉末放到80℃烘箱中干燥。Drying is to dry the centrifuged solid seed crystal powder in an oven at 80°C.
步骤二晶种化载体的制备:将单晶硅片投入到5毫升异丙醇、10毫升乙醇、10毫升蒸馏水及0.5g盐酸的混合溶液中,超声波(KQ-100DE型数控超声波清洗器,昆山市超声仪器有限公司)100瓦洗涤10分钟;取出后用蒸馏水冲洗干净,烘干;烘干后的载体浸入到0.5%聚二烯丙基二甲基胺盐酸盐(PDDA)溶液中浸泡10分钟,取出后用蒸馏水冲洗掉表面的PDDA溶液,然后投入到10g/L脱铝晶种乳液中10分钟,最后将吸附晶种的载体用蒸馏水冲洗,自然晾干,形成的晶种层的厚度为0.35微米。
步骤三分子筛膜的制备:反应母液的配比为:0.5mol TEAOH∶1.0molTEOS∶0.5mol HF∶8.0mol H2O。将9.47克TEOS加入到7.44克、45%wt四乙基氢氧化胺溶液和1.77克蒸馏水的混合溶液中,在电磁搅拌器上搅拌6h至均匀,然后将均匀的凝胶转入到晶种化载体预先垂直放入的反应釜中,最后将1毫升氢氟酸(HF)缓慢加入到凝胶中,装釜,密封,140℃晶化2天。反应后取出反应膜,产物经过蒸馏水反复洗涤3次,然后80度烘箱干燥,在500℃条件下的煅烧8个小时除去模板剂。得到以单晶硅片为载体的beta分子筛膜(M1),厚度是2.0微米。Step 3 Preparation of molecular sieve membrane: The ratio of the reaction mother liquor is: 0.5mol TEAOH: 1.0mol TEOS: 0.5mol HF: 8.0mol H 2 O. Add 9.47 grams of TEOS to a mixed solution of 7.44 grams, 45%wt tetraethylammonium hydroxide solution and 1.77 grams of distilled water, stir on a magnetic stirrer for 6h until uniform, and then transfer the homogeneous gel to the seeding The carrier was placed vertically in the reaction kettle in advance, and finally 1 ml of hydrofluoric acid (HF) was slowly added to the gel, the kettle was filled, sealed, and crystallized at 140°C for 2 days. After the reaction, the reaction film was taken out, and the product was repeatedly washed with distilled water for 3 times, then dried in an oven at 80°C, and calcined at 500°C for 8 hours to remove the template agent. A beta molecular sieve membrane (M1) with a single crystal silicon wafer as a carrier is obtained, with a thickness of 2.0 microns.
实施例2Example 2
一种以单晶硅片为载体beta分子筛膜的制备方法。A method for preparing a beta molecular sieve membrane using a single crystal silicon chip as a carrier.
除了将载体投入10g/L晶种乳液延长为12分钟外,其它与实施例1相同,得到以单晶硅片为载体的beta分子筛膜(M2),厚度是2.2微米。Except that the carrier was dropped into 10g/L seed crystal emulsion to prolong for 12 minutes, the others were the same as in Example 1 to obtain a beta molecular sieve membrane (M2) with a single crystal silicon chip as a carrier, with a thickness of 2.2 microns.
实施例3Example 3
一种以单晶硅片为载体beta分子筛膜的制备方法。A method for preparing a beta molecular sieve membrane using a single crystal silicon chip as a carrier.
除了把晶种化载体平铺在釜底外,其它与实施例1相同,得到以单晶硅片为载体的beta分子筛膜(M3),厚度是2.5微米。Except that the seed crystal carrier was laid flat on the bottom of the kettle, the others were the same as in Example 1 to obtain a beta molecular sieve membrane (M3) with a single crystal silicon chip as a carrier, with a thickness of 2.5 microns.
实施例4Example 4
一种以玻璃片(长春市华宇玻璃仪器有限公司)为载体的beta分子筛膜的制备方法。A method for preparing a beta molecular sieve membrane with a glass sheet (Changchun Huayu Glass Instrument Co., Ltd.) as a carrier.
除了把载体改为玻璃片外,其它与实施例1相同,得到以玻璃片为载体的beta分子筛膜(M4),厚度是2.3微米。Except changing carrier into glass sheet, other is identical with embodiment 1, obtains the beta molecular sieve membrane (M4) that takes glass sheet as carrier, and thickness is 2.3 microns.
实施例5Example 5
一种以玻璃片为载体的beta分子筛膜的制备方法。The invention discloses a method for preparing a beta molecular sieve membrane with a glass sheet as a carrier.
除了把载体改为玻璃片,反应母液的硅源改为加入2.73克白炭黑外,其它与实施例1相同,得到以玻璃片为载体的beta分子筛膜(M5),厚度是2.2微米。Except that carrier is changed into glass sheet, the silicon source of reaction mother liquor is changed into and adds 2.73 grams of white carbon blacks, other is the same as embodiment 1, obtains the beta molecular sieve membrane (M5) with glass sheet as carrier, and thickness is 2.2 microns.
实施例6Example 6
一种以不锈钢片(长春市翔晨化工有限公司)为载体的beta分子筛膜的制备方法。A method for preparing a beta molecular sieve membrane with a stainless steel sheet (Changchun Xiangchen Chemical Co., Ltd.) as a carrier.
除了把载体改为不锈钢片外,其它与实施例1相同,得到以不锈钢片为载体的beta分子筛膜(M6),厚度是1.6微米。Except that the carrier is changed into a stainless steel sheet, the others are the same as in Example 1 to obtain a beta molecular sieve membrane (M6) with a stainless steel sheet as a carrier, and the thickness is 1.6 microns.
实施例7Example 7
一种以不锈钢片为载体的beta分子筛膜的制备方法。A method for preparing a beta molecular sieve membrane with a stainless steel sheet as a carrier.
除了把载体改为不锈钢片,反应母液硅源改为加入2.73克白炭黑外,其它与实施例1相同,得到以不锈钢片为载体的beta分子筛膜(M7),厚度是1.5微米。Except that the carrier is changed into a stainless steel sheet, and the silicon source of the reaction mother liquid is changed into 2.73 grams of white carbon black, the others are the same as in Example 1 to obtain a beta molecular sieve membrane (M7) with a stainless steel sheet as a carrier, and the thickness is 1.5 microns.
实施例8Example 8
一种以不锈钢网(300目,新乡市巴山精密滤材有限公司)为载体的beta分子筛膜的制备方法。A preparation method of a beta molecular sieve membrane with a stainless steel mesh (300 mesh, Xinxiang Bashan Precision Filter Material Co., Ltd.) as a carrier.
1.分子筛晶种的制备:与实施例1相同;1. Preparation of molecular sieve seed crystals: same as in Example 1;
2.晶种化载体的制备:不锈钢网载体的预处理与实施例1相同;烘干后的载体在上面涂上配制好的脱铝晶种乳液3滴,然后在600瓦功率的电炉子上快速烘干制备紧密排列的晶种层后待用,晶种层的厚度为22.0微米;2. Preparation of the seed crystal carrier: the pretreatment of the stainless steel mesh carrier is the same as in Example 1; the carrier after drying is coated with 3 drops of the prepared dealuminated seed crystal emulsion, and then placed on an electric stove with a power of 600 watts Prepare the closely arranged seed crystal layer by rapid drying and set aside, the thickness of the seed crystal layer is 22.0 microns;
3.分子筛膜的制备:与实施例1相同;3. The preparation of molecular sieve membrane: same as embodiment 1;
得到以不锈钢网为载体的beta分子筛膜(M8),厚度是23.7微米。A beta molecular sieve membrane (M8) with a stainless steel mesh as a carrier is obtained, and the thickness is 23.7 microns.
下面为等离子体发射光谱测试脱铝beta分子筛晶种、M8beta分子筛膜的Si/Al比。The following is the Si/Al ratio of the dealuminated beta molecular sieve seed and M8beta molecular sieve membrane tested by plasma emission spectroscopy.
表1:脱铝beta分子筛晶种、M8 beta分子筛膜的Si/Al比Table 1: Si/Al ratio of dealuminated beta molecular sieve seeds and M8 beta molecular sieve membrane
Si(wt%) Al(wt%) Si/Al(mol/mol)Si(wt%) Al(wt%) Si/Al(mol/mol)
beta脱铝晶种 30.5 0.03 980.4beta dealuminated seed 30.5 0.03 980.4
M8beta分子筛膜 36.4 0.007 5014.3M8beta molecular sieve membrane 36.4 0.007 5014.3
实施例9Example 9
一种以不锈钢网为载体的beta分子筛膜的制备方法。The invention discloses a method for preparing a beta molecular sieve membrane with a stainless steel mesh as a carrier.
分子筛膜的反应液为:0.6mol TEAOH∶1.0mol TEOS∶0.5mol HF∶8.0mol H2O,将9.47克TEOS加入到8.93克四乙基氢氧化胺(45%)和0.96克蒸馏水的混合溶液中外,其它与实施例8相同,得到以不锈钢网为载体的beta分子筛膜(M9)。厚度是22.3微米The reaction solution of the molecular sieve membrane is: 0.6mol TEAOH: 1.0mol TEOS: 0.5mol HF: 8.0mol H 2 O, 9.47 grams of TEOS are added to the mixed solution of 8.93 grams of tetraethylammonium hydroxide (45%) and 0.96 grams of distilled water Chinese and foreign, other is the same as embodiment 8, obtains the beta molecular sieve membrane (M9) that is carrier with stainless steel mesh. Thickness is 22.3 microns
实施例10Example 10
一种以陶瓷片(大连化学物理研究所商品)为载体的beta分子筛膜的制备方法。A method for preparing a beta molecular sieve membrane with a ceramic sheet (product of Dalian Institute of Chemical Physics) as a carrier.
1.分子筛晶种的制备:与实施例1相同;1. Preparation of molecular sieve seed crystals: same as in Example 1;
2.晶种化载体的制备:载体陶瓷片首先在细砂纸上(600目)打磨,然后在100瓦超声清洗10分钟,然后用蒸馏水冲洗,烘干待用。烘干后的载体在上面涂上3滴脱铝晶种乳液,然后在600瓦功率的电炉子上快速烘干制备紧密排列的晶种层后待用,晶种层厚度为13.8微米;2. Preparation of the seed crystal carrier: the carrier ceramic sheet was first polished on fine sandpaper (600 mesh), then ultrasonically cleaned at 100 watts for 10 minutes, then rinsed with distilled water, and dried for use. The dried carrier is coated with 3 drops of dealuminated seed crystal emulsion, and then quickly dried on an electric furnace with a power of 600 watts to prepare a closely arranged seed crystal layer for use, and the thickness of the seed crystal layer is 13.8 microns;
3.分子筛膜的制备:与实施例1相同;3. The preparation of molecular sieve membrane: same as embodiment 1;
得到以不锈钢网为载体的beta分子筛膜(M10)。厚度是15.3微米A beta molecular sieve membrane (M10) with a stainless steel mesh as a carrier is obtained. Thickness is 15.3 microns
实施例11Example 11
一种以陶瓷片为载体的beta分子筛膜的制备方法。The invention discloses a method for preparing a beta molecular sieve membrane with a ceramic sheet as a carrier.
分子筛膜的反应液配比为:0.5mol TEAOH∶0.9mol TEOS∶0.5mol HFmol∶8.0mol H2O。将8.52克TEOS加入到7.44克四乙基氢氧化胺(45%)和1.77克蒸馏水的混合溶液中外,其它与实施例10相同,得到以陶瓷片为载体的beta分子筛膜(M11)。厚度是15.7微米。The reaction solution ratio of the molecular sieve membrane is: 0.5mol TEAOH: 0.9mol TEOS: 0.5mol HFmol: 8.0mol H2O . Except that 8.52 grams of TEOS were added to the mixed solution of 7.44 grams of tetraethylammonium hydroxide (45%) and 1.77 grams of distilled water, the others were the same as in Example 10 to obtain the beta molecular sieve membrane (M11) with the ceramic sheet as the carrier. The thickness is 15.7 microns.
表2为上述实施例在不同载体、不同条件下二次生长水热合成beta分子筛膜的结果。Table 2 shows the results of secondary growth hydrothermally synthesized beta molecular sieve membranes in different carriers and conditions in the above examples.
表2:不同载体、不同条件下二次生长水热合成beta分子筛膜的结果Table 2: Results of secondary growth hydrothermal synthesis of beta molecular sieve membranes under different carriers and conditions
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100507171A CN101318107B (en) | 2008-05-20 | 2008-05-20 | Preparation method for pure silicon beta molecular sieve film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100507171A CN101318107B (en) | 2008-05-20 | 2008-05-20 | Preparation method for pure silicon beta molecular sieve film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101318107A CN101318107A (en) | 2008-12-10 |
CN101318107B true CN101318107B (en) | 2011-07-13 |
Family
ID=40178529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100507171A Expired - Fee Related CN101318107B (en) | 2008-05-20 | 2008-05-20 | Preparation method for pure silicon beta molecular sieve film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101318107B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101823725B (en) * | 2010-04-29 | 2012-01-11 | 吉林大学 | Method for preparing height-oriented molecular sieve membrane |
CN101862602B (en) * | 2010-05-24 | 2012-08-22 | 江西师范大学 | Preparation method and application of Ti-Beta molecular sieve membrane in separating organic matters |
CN102107879B (en) * | 2011-01-17 | 2012-11-21 | 大连理工大学 | Method for synthesizing Beta zeolite molecular sieve |
CN103449475A (en) * | 2012-05-29 | 2013-12-18 | 上海中科高等研究院 | Preparation method of AlPO-18 molecular sieve membrane |
CN103041716A (en) * | 2013-01-24 | 2013-04-17 | 哈尔滨工业大学 | Preparation method of silicon dioxide film with quasi-symmetric film structure |
CN104150503B (en) * | 2014-08-25 | 2016-07-13 | 南京工业大学 | Preparation method of SAPO-18 molecular sieve membrane |
US10994246B2 (en) * | 2016-02-19 | 2021-05-04 | Hitachi Zosen Corporation | Zeolite separation membrane and production method therefor |
CN107986296B (en) * | 2016-10-27 | 2020-11-10 | 中国科学院大连化学物理研究所 | A-type molecular sieve with high silica-alumina ratio and preparation method thereof |
CN108217665B (en) * | 2016-12-09 | 2021-08-17 | 中国科学院大连化学物理研究所 | A kind of pure silicon nanometer Beta molecular sieve and preparation method thereof |
CN108178162B (en) * | 2018-01-27 | 2019-09-24 | 吴蓓蓓 | A kind of synthetic method of economy Beta molecular screen membrane |
CN108751222A (en) * | 2018-06-25 | 2018-11-06 | 天津理工大学 | A kind of preparation method and its acoustic applications of the MFI molecular sieves with interaction twin pattern |
CN111871219B (en) * | 2018-10-10 | 2022-09-30 | 邱海兵 | Preparation method of inorganic reverse osmosis membrane for water treatment |
CN110255578B (en) * | 2019-07-16 | 2022-07-05 | 吉林大学 | Method for synthesizing pure silicon Beta molecular sieve by hydrothermal fluorine-free synthesis |
CN111992051B (en) * | 2020-09-10 | 2023-09-29 | 南京惟新环保装备技术研究院有限公司 | ZSM-5 type molecular sieve membrane capable of improving orientation and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935646A (en) * | 1996-08-23 | 1999-08-10 | Gas Research Institute | Molecular sieving silica membrane fabrication process |
CN1737085A (en) * | 2005-06-17 | 2006-02-22 | 朱广山 | LTA and FAU molecular screen nanocrystalline preparation method |
-
2008
- 2008-05-20 CN CN2008100507171A patent/CN101318107B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935646A (en) * | 1996-08-23 | 1999-08-10 | Gas Research Institute | Molecular sieving silica membrane fabrication process |
CN1737085A (en) * | 2005-06-17 | 2006-02-22 | 朱广山 | LTA and FAU molecular screen nanocrystalline preparation method |
Non-Patent Citations (1)
Title |
---|
尹肖菊.沸石分子筛膜的制备和性质研究.《吉林大学博士学位论文》.2007,第93,94页. * |
Also Published As
Publication number | Publication date |
---|---|
CN101318107A (en) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101318107B (en) | Preparation method for pure silicon beta molecular sieve film | |
CN102285666B (en) | Method for preparing chabazite and chabazite film | |
CN101857462B (en) | Preparation method for molecular sieve coating material on porous silicon carbide ceramic surface | |
CN106268933B (en) | Core-shell ZSM-5/SAPO-5 composite molecular sieve membrane and its preparation method and its application in biomass gas purification | |
CN105921033A (en) | Method for preparing CHA molecular sieve membrane in clear liquid | |
EP1129767A1 (en) | Mordenite zeolite membrane and method for producing the same | |
CN103877865A (en) | Method for synthesizing NaA molecular sieve membrane | |
CN105289323A (en) | Method for preparing high performance silicalite zeolite membrane | |
CN101823725B (en) | Method for preparing height-oriented molecular sieve membrane | |
CN107628630B (en) | A kind of hollow B-ZSM-5 molecular sieve and its preparation method and application | |
WO2025055948A1 (en) | Two-dimensional mww zeolite with high crystallinity and its preparation method | |
CN111054222B (en) | Successive transfer synthesis method of molecular sieve membrane | |
JP2002201020A (en) | Zeolite seed crystal, and method for producing zeolite membrane using the seed crystal | |
Yu et al. | Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance | |
CN101279208B (en) | Method for preparing Y type molecular sieve film | |
CN109502606B (en) | Preparation method of ZSM-35 molecular sieve | |
CN102274743B (en) | High intercrystal poriness zeolite coating material on surface of porous silicon carbide carrier and preparation method thereof | |
CN104941451A (en) | Method for synthesizing NaA molecular sieve membrane by employing mesoporous zeolite crystal | |
CN116116245B (en) | Method for preparing high-efficiency separation molecular sieve membrane by water-organic solvent heat, high-efficiency separation molecular sieve membrane and application | |
CN111085259A (en) | Silicon oxide and SAPO-34 zeolite composite material and synthetic method thereof | |
KR101693599B1 (en) | Method for manufacturing zeolite membrane | |
CN101279209A (en) | Preparation method of high permeability type A molecular sieve membrane | |
JP7493266B2 (en) | Method for successive synthesis of molecular sieving membranes | |
EP1980314A1 (en) | Process for production of zeolite separation membrane | |
CN103449472A (en) | T type zeolite membrane and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110713 Termination date: 20120520 |