[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN101303459A - Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device - Google Patents

Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device Download PDF

Info

Publication number
CN101303459A
CN101303459A CNA200710099043XA CN200710099043A CN101303459A CN 101303459 A CN101303459 A CN 101303459A CN A200710099043X A CNA200710099043X A CN A200710099043XA CN 200710099043 A CN200710099043 A CN 200710099043A CN 101303459 A CN101303459 A CN 101303459A
Authority
CN
China
Prior art keywords
layer
making
traveling wave
electroabsorption modulator
wave electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200710099043XA
Other languages
Chinese (zh)
Other versions
CN101303459B (en
Inventor
周敬涛
王宝军
朱洪亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN200710099043XA priority Critical patent/CN101303459B/en
Publication of CN101303459A publication Critical patent/CN101303459A/en
Application granted granted Critical
Publication of CN101303459B publication Critical patent/CN101303459B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种行波电吸收调制器和模斑转换器集成器件的制作方法,包括:在衬底上依次生长铟磷应力缓冲层、n-1.2Q四元层、n-铟磷空间层、下分别限制层、多量子阱、上分别限制层、缺陷扩散层;生长刻蚀出氧化硅掩膜保护电吸收调制器区,磷离子注入,退火,去掉氧化硅掩膜和缺陷扩散层;在模板转换器材料区刻蚀锥形上波导和下波导;依次外延p型磷化铟薄层、p型铟镓砷磷停止层、p型磷化铟盖层和p型铟镓砷接触层;刻蚀EA区的脊结构;刻蚀EA区的绝缘平面;制作氮化钽薄膜电阻;制作p型金属欧姆接触;制作N型金属欧姆接触;制作聚酰亚胺桥;在电吸收调制器材料区上制作钛金电极结构;减薄解理,完成制作。

Figure 200710099043

A method for manufacturing an integrated device of a traveling wave electroabsorption modulator and a mode-spot converter, comprising: sequentially growing an indium-phosphorus stress buffer layer, an n-1.2Q quaternary layer, an n-indium-phosphorus spacer layer, and a lower layer respectively on a substrate Confinement layer, multiple quantum wells, upper confinement layer and defect diffusion layer; grow and etch a silicon oxide mask to protect the electroabsorption modulator region, phosphorus ion implantation, annealing, remove silicon oxide mask and defect diffusion layer; Etch the tapered upper waveguide and lower waveguide in the device material area; epitaxially p-type indium phosphide thin layer, p-type indium gallium arsenide stop layer, p-type indium phosphide cap layer and p-type indium gallium arsenide contact layer in sequence; etch The ridge structure of the EA region; etching the insulating plane of the EA region; making tantalum nitride film resistors; making p-type metal ohmic contacts; making N-type metal ohmic contacts; making polyimide bridges; on the electroabsorption modulator material region Fabrication of titanium gold electrode structure; thinning and cleavage to complete fabrication.

Figure 200710099043

Description

行波电极电吸收调制器和模斑转换器集成器件的制作方法 Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device

技术领域 technical field

本发明属于半导体技术领域,涉及行波电极结构的电吸收调制器的制作方法,特别涉及到行波电吸收调制器和模斑转换器集成器件的制作方法。The invention belongs to the technical field of semiconductors, and relates to a method for manufacturing an electroabsorption modulator with a traveling wave electrode structure, in particular to a method for manufacturing an integrated device of a traveling wave electroabsorption modulator and a mode-spot converter.

背景技术 Background technique

近些年来,信息产业迅速发展,人们对网络的高速化需求越来越强烈,高频带宽度的调制器是实现系统高速化的关键器件,提高调制器的调制带宽是近年来的研究热点。采用集总型电极结构的电吸收调制器(EAM),由于它受到了RC限制,频带宽度可能太高,一般在20GHz左右,为了得到更高的频宽,可以采用行波电极结构的电吸收调制器(以下简称TEAM),它不同于集总式的EAM,没有电阻·电容(RC)限制,经过科学的设计可以达到40GHz或更高的带宽。In recent years, with the rapid development of the information industry, people's demand for high-speed networks has become more and more intense. Modulators with high-frequency bandwidths are key components for realizing high-speed systems. Improving the modulation bandwidth of modulators has become a research hotspot in recent years. The electroabsorption modulator (EAM) with a lumped electrode structure may be too high because of its RC limitation, generally around 20GHz. In order to obtain a higher bandwidth, electroabsorption with a traveling wave electrode structure can be used The modulator (hereinafter referred to as TEAM), which is different from the lumped EAM, has no resistance-capacitance (RC) limitation, and can reach a bandwidth of 40GHz or higher after scientific design.

电吸收调制器是双端耦合器件,它需要有较低的插入损耗和较高的偏调容差。为了提高电吸收调制器和光纤的耦合效率有效的降低器件的插入损耗,目前主要有两种方法:1)采用分别限制层大光腔结构,在有源区的两侧或者单侧生长很厚的四元材料,并且进行重掺杂,这样电场被限制在薄的有源层中,而光场则限制在四元层和有源层中,从而提高了电吸收调制器和光纤的耦合效率。(见文献:IEEE PHOTONICSTECHNOLOGY LETTERS.2004.16(2),pp.440-442.)2)集成模斑转换器。半导体模斑转换器可以几乎绝热地将有源器件的不对称的近场分布转换为对称的输入或者输出近场,这样既可以提高有源器件和光纤的耦合效率,又可以提高其偏调容差。(见文献:Semicond.Sci.Technol.,Vol.20,No.9,2005,pp.912-916)。The electro-absorption modulator is a double-terminal coupled device, which requires low insertion loss and high offset tolerance. In order to improve the coupling efficiency of the electro-absorption modulator and the optical fiber and effectively reduce the insertion loss of the device, there are currently two main methods: 1) Using a large optical cavity structure with separate confinement layers, growing very thick on both sides or one side of the active region The quaternary material is heavily doped, so that the electric field is confined in the thin active layer, while the optical field is confined in the quaternary layer and the active layer, thereby improving the coupling efficiency of the electroabsorption modulator and the fiber . (See literature: IEEE PHOTONICSTECHNOLOGY LETTERS.2004.16(2), pp.440-442.) 2) Integrated mode converter. The semiconductor mode spot converter can almost adiabatically convert the asymmetric near-field distribution of the active device into a symmetrical input or output near-field, which can not only improve the coupling efficiency of the active device and the optical fiber, but also improve its partial adjustment capacity Difference. (See literature: Semicond. Sci. Technol., Vol.20, No.9, 2005, pp.912-916).

发明内容 Contents of the invention

本发明的目的是提供一种行波电吸收调制器和模斑转换器集成器件的制作方法,它集成了终端负载薄膜电阻,可以优化负载电阻阻值提高调制带宽。采用行波电极结构获得较高的调制带宽,集成模斑转换器提高了有源器件和光纤的耦合效率。The purpose of the present invention is to provide a method for manufacturing an integrated device of a traveling wave electroabsorption modulator and a mode-spot converter, which integrates a terminal load film resistor, and can optimize the resistance value of the load resistor to improve the modulation bandwidth. A traveling-wave electrode structure is used to obtain higher modulation bandwidth, and the integrated mode spot converter improves the coupling efficiency of active devices and optical fibers.

本发明提供一种行波电吸收调制器和模斑转换器集成器件的制作方法,其特征在于,制作过程包括如下步骤:The invention provides a method for manufacturing an integrated device of a traveling wave electroabsorption modulator and a mode-spot converter, which is characterized in that the manufacturing process includes the following steps:

步骤1:在一衬底上采用金属有机气相沉积的方法依次生长铟磷应力缓冲层、n-1.2Q四元层、n-铟磷空间层、下分别限制层、多量子阱、上分别限制层、缺陷扩散层;Step 1: sequentially grow indium phosphorus stress buffer layer, n-1.2Q quaternary layer, n-indium phosphorus space layer, lower separate confinement layer, multiple quantum wells, upper separate confinement layer on a substrate by metal-organic vapor deposition method layer, defect diffusion layer;

步骤2:在缺陷扩散层上生长一层氧化硅掩膜,用湿法刻蚀掉模板转换器材料区的氧化硅掩膜,中间形成出氧化硅图形保护电吸收调制器材料区,进行磷离子注入,退火,实现量子阱混杂,使材料带隙波长蓝移,最后用化学试剂去掉氧化硅掩膜和缺陷扩散层;Step 2: grow a layer of silicon oxide mask on the defect diffusion layer, use wet etching to remove the silicon oxide mask in the template converter material area, form a silicon oxide pattern in the middle to protect the material area of the electroabsorption modulator, and conduct phosphorus ion Implantation, annealing, quantum well hybridization, blue-shifting the bandgap wavelength of the material, and finally removing the silicon oxide mask and defect diffusion layer with chemical reagents;

步骤3:在模板转换器材料区刻蚀模斑转换器的锥形上波导和下波导结构;Step 3: Etching the tapered upper waveguide and lower waveguide structures of the spot converter in the template converter material area;

步骤4:采用金属有机气相沉积的方法在器件上依次外延p型磷化铟薄层、p型铟镓砷磷选择化学停止层、p型磷化铟盖层和p型铟镓砷接触层;Step 4: epitaxially p-type indium phosphide thin layer, p-type indium gallium arsenide-phosphide selective chemical stop layer, p-type indium phosphide capping layer and p-type indium gallium arsenide contact layer on the device in sequence by metal-organic vapor deposition;

步骤5:采用化学湿法和反应离子干法刻蚀相结合的方法在电吸收调制器材料区处刻蚀脊结构;Step 5: Etching the ridge structure at the material region of the electroabsorption modulator by using a combination of chemical wet and reactive ion dry etching;

步骤6:在电吸收调制器材料区采用湿法刻蚀到衬底,形成绝缘平面,作为行波电极微波传输线输入、输出部分绝缘介质;Step 6: Wet etch the material area of the electroabsorption modulator to the substrate to form an insulating plane, which is used as an insulating medium for the input and output part of the microwave transmission line of the traveling wave electrode;

步骤7:在衬底的绝缘平面的一侧边上采用带胶剥离的方法制作氮化钽薄膜电阻;Step 7: On one side of the insulating plane of the substrate, a tantalum nitride film resistor is manufactured by stripping with glue;

步骤8:在脊结构上采用带胶剥离的方法制作p型金属欧姆接触;Step 8: Make a p-type metal ohmic contact on the ridge structure by stripping with glue;

步骤9:在电吸收调制器材料区上的脊结构的两侧采用带胶剥离的方法制作N型金属欧姆接触;Step 9: making N-type metal ohmic contacts on both sides of the ridge structure on the material area of the electroabsorption modulator by stripping with glue;

步骤10:在电吸收调制器材料区上制作聚酰亚胺桥;Step 10: Fabricating polyimide bridges on the electroabsorption modulator material area;

步骤11:在电吸收调制器材料区上制作钛金行波电极结构;Step 11: Fabricate a titanium-gold traveling-wave electrode structure on the material area of the electroabsorption modulator;

步骤12:减薄解理,完成整个器件的制作。Step 12: Thinning and cleavage to complete the fabrication of the entire device.

其中所述的衬底为半绝缘磷化铟衬底。The substrate mentioned therein is a semi-insulating indium phosphide substrate.

其中所述的i-铟磷缺陷扩散层的厚度为200nm。The thickness of the i-indium phosphorus defect diffusion layer is 200nm.

其中所述的多量子阱的材料为铟镓砷磷。The material of the multiple quantum wells is InGaAsP.

其中所述的锥形上波导是采用反应离子干法刻蚀的方法,该锥形上波导的宽度从3μm线性减少到0μm;下波导采用湿法刻蚀的方法,其宽度为6μm。Wherein the tapered upper waveguide adopts the reactive ion dry etching method, and the width of the tapered upper waveguide is linearly reduced from 3 μm to 0 μm; the lower waveguide adopts the wet etching method, and its width is 6 μm.

其中所述的氮化钽薄膜电阻,其面电阻值为50Ω/□,通过调节薄膜电阻的宽度,可以实现50、40、30、20欧姆不同阻值的负载电阻。The tantalum nitride thin film resistor mentioned therein has a surface resistance value of 50Ω/□, and load resistances with different resistance values of 50, 40, 30, and 20 ohms can be realized by adjusting the width of the thin film resistor.

其中所述的缺陷扩散层的材料为i-磷化铟。The material of the defect diffusion layer is i-indium phosphide.

附图说明 Description of drawings

为了进一步说明本发明的方法,下面结合附图和具体实施例对本发明具体说明,其中:In order to further illustrate the method of the present invention, the present invention is specifically described below in conjunction with accompanying drawing and specific embodiment, wherein:

图1是一次外延后的截面图;Fig. 1 is a cross-sectional view after one epitaxy;

图2是P离子注入的立体示意图;FIG. 2 is a schematic perspective view of P ion implantation;

图3是光斑模式转换器的双波导结构的立体示意图;Fig. 3 is a three-dimensional schematic diagram of a double waveguide structure of a spot mode converter;

图4是二次外延后的截面图;Figure 4 is a cross-sectional view after secondary epitaxy;

图5是调制器区脊刻蚀示意图;Fig. 5 is a schematic diagram of modulator region ridge etching;

图6是P、N欧姆接触和薄膜电阻以及聚酰亚胺桥制作俯视图;Fig. 6 is a top view of P, N ohm contacts, thin film resistors and polyimide bridges;

图7是器件制作完成后的俯视图。Figure 7 is a top view of the device after fabrication.

具体实施方式 Detailed ways

图1是一次外延后的截面图。采用金属有机化学气相淀积(MOCVD)方法在衬底1上生长500nm厚的InP应力缓冲层2,它主要是调节晶格失配,然后在其上依次生长:n-1.2Q四元层3的厚度为50nm,该n-1.2Q四元层3做为模斑转换器的下波导的高折射率层;n-InP空间层4的厚度为0.25μm,该层需要重掺杂,因为N欧姆接触层要在其上制作;下分别限制层5的厚度为100nm,该层为了限制光场;InGaAsP多量子阱6;上分别限制层7的厚度为100nm,该层的作用和上分别限制层一样;缺陷扩散层8的厚度为200nm。采用等离子增强化学气相淀积(PECVD),生长4000

Figure A20071009904300101
的二氧化硅(SiO2)掩膜9。Figure 1 is a cross-sectional view after one epitaxy. A 500nm-thick InP stress buffer layer 2 is grown on the substrate 1 by metal-organic chemical vapor deposition (MOCVD), which mainly adjusts the lattice mismatch, and then sequentially grows on it: n-1.2Q quaternary layer 3 The thickness of the n-1.2Q quaternary layer 3 is used as the high refractive index layer of the lower waveguide of the mode spot converter; the thickness of the n-InP space layer 4 is 0.25 μm, and this layer needs to be heavily doped, because N The ohmic contact layer will be made on it; the thickness of the lower confinement layer 5 is 100nm respectively, and this layer is in order to confine the light field; InGaAsP multiquantum well 6; The layers are the same; the thickness of the defect diffusion layer 8 is 200 nm. Using plasma enhanced chemical vapor deposition (PECVD), grow 4000
Figure A20071009904300101
Silicon dioxide (SiO 2 ) mask 9 .

图2是P离子注入的立体示意图。刻蚀掉模板转换器材料区10的SiO2,只留下电吸收调制器材料区11的SiO2掩膜9,它的作用是在离子注入过程中保护电吸收调制器材料区11,使得此区材料表面不会被离子注入引入缺陷,而模板转换器材料区10则由于没有SiO2掩膜9的保护,能量为50KeV,剂量为1×1014cm-2的P离子注入到材料表面,缺陷扩散层8被离子注入引入缺陷,在随后的快速退火过程中,缺陷从缺陷扩散层8扩散到上分别限制层7和多量子阱6,改变了多量子阱6的能带结构,使模板转换器材料区10的材料带隙波长相对于电吸收调制器材料区11发生了“蓝移”现象,这就是离子注入诱导的量子阱混杂效应。这样做的目的是使模板转换器材料区10的材料带隙能大于电吸收调制器材料区11材料,这样波长略长于电吸收调制器材料区11材料带隙波长的输入光在模板转换器材料区10中传播时有很小的吸收,降低器件的插入损耗,最后用氢氟酸去掉氧化硅掩膜9,用盐酸和水的4∶1溶液腐蚀掉缺陷扩散层8。FIG. 2 is a schematic perspective view of P ion implantation. Etching away the SiO 2 in the template converter material region 10, leaving only the SiO 2 mask 9 in the electroabsorption modulator material region 11, its function is to protect the electroabsorption modulator material region 11 in the ion implantation process, so that the The surface of the material in the region will not be implanted with defects, while the template converter material region 10 is not protected by the SiO 2 mask 9, and P ions with an energy of 50KeV and a dose of 1×10 14 cm -2 are implanted on the surface of the material. The defect diffusion layer 8 is introduced into defects by ion implantation, and in the subsequent rapid annealing process, the defects diffuse from the defect diffusion layer 8 to the upper confinement layer 7 and the multiple quantum wells 6 respectively, changing the energy band structure of the multiple quantum wells 6, making the template The material bandgap wavelength of the converter material region 10 has a "blue shift" phenomenon relative to the electroabsorption modulator material region 11, which is the quantum well hybrid effect induced by ion implantation. The purpose of doing this is to make the material band gap of the template converter material region 10 larger than the material of the electroabsorption modulator material region 11, so that the input light with a wavelength slightly longer than the wavelength of the material band gap of the electroabsorption modulator material region 11 passes through the template converter material. There is little absorption when propagating in the region 10, which reduces the insertion loss of the device. Finally, the silicon oxide mask 9 is removed with hydrofluoric acid, and the defect diffusion layer 8 is etched away with a 4:1 solution of hydrochloric acid and water.

图3是光斑模式转换器的的双波导结构立体示意图。利用反应离子刻蚀刻出锥形上波导结构12,刻蚀条件为:Ar∶CH4∶H2=5∶18∶45,100W,6分钟,刻蚀深度为300nm,然后湿法腐蚀出下波导结构13,刻蚀条件为:液溴,10秒,刻蚀深度为800nm,双波导结构的光斑模式转换器可以几乎绝热的将有源器件的不对称的近场分布转换为对称的输入或者输出近场,有效地提高有源器件和光纤的耦合效率。Fig. 3 is a three-dimensional schematic diagram of a double waveguide structure of a spot mode converter. The tapered upper waveguide structure 12 is etched by reactive ion etching, the etching conditions are: Ar:CH4:H2=5:18:45, 100W, 6 minutes, the etching depth is 300nm, and then the lower waveguide structure 13 is etched out by wet method , the etching conditions are: liquid bromine, 10 seconds, and the etching depth is 800nm. The spot mode converter of the double waveguide structure can almost adiabatically convert the asymmetric near-field distribution of the active device into a symmetrical input or output near-field , effectively improve the coupling efficiency of active devices and optical fibers.

图4是随后进行二次外延,依次是p型磷化铟薄层14、p型铟镓砷磷选择化学停止层15、p型磷化铟盖层16和p型铟镓砷接触层17。为了有效的控制刻蚀调制器脊结构18的深度,刻蚀需要两步进行,首先采用选择性的腐蚀液腐蚀到p型铟镓砷磷选择化学停止层15,选择化学停止层15的作用是阻挡选择性的腐蚀液继续腐蚀,控制调制器脊结构18的深度。p型磷化铟薄层14和p型磷化铟盖层16起到了电流通路和对多量子阱6的折射率限制作用。p型铟镓砷接触层17的作用是降低金属和器件的接触电阻。FIG. 4 is followed by secondary epitaxy, followed by p-type InP thin layer 14 , p-type InGaAsP selective chemical stop layer 15 , p-type InP cover layer 16 and p-type InGaAs contact layer 17 . In order to effectively control the depth of the etching modulator ridge structure 18, the etching needs to be carried out in two steps. First, a selective etching solution is used to etch the p-type InGaAsP selective chemical stop layer 15. The function of the selective chemical stop layer 15 is The selective etchant is blocked from further etching, and the depth of the modulator ridge structure 18 is controlled. The p-type indium phosphide thin layer 14 and the p-type indium phosphide capping layer 16 function as a current path and limit the refractive index of the multiple quantum wells 6 . The function of the p-type InGaAs contact layer 17 is to reduce the contact resistance between the metal and the device.

图5调制器区脊刻蚀示意图,为了有效的控制刻蚀调制器脊结构18的深度,刻蚀需要两步进行,首先采用选择性的腐蚀液腐蚀到p型铟镓砷磷选择化学停止层15,然后采用反应离子刻蚀刻到n-InP空间层4,刻蚀条件为:Ar∶CH4∶H2=5∶18∶45,100W,8分钟30秒,刻蚀深度为500nm以上,必须保证刻蚀到n-InP空间层4,因为N金属欧姆接触层22必须作在电导通的n-InP空间层4,这样才能使器件能够正常工作。Figure 5. Schematic diagram of modulator region ridge etching. In order to effectively control the depth of the etched modulator ridge structure 18, the etching needs to be performed in two steps. First, a selective etching solution is used to etch to the p-type InGaAsP selective chemical stop layer. 15. Then use reactive ion etching to etch to the n-InP space layer 4, the etching conditions are: Ar:CH4:H2=5:18:45, 100W, 8 minutes and 30 seconds, and the etching depth is more than 500nm. etch to the n-InP space layer 4, because the N metal ohmic contact layer 22 must be made on the electrically conductive n-InP space layer 4, so that the device can work normally.

图6是P、N欧姆接触和薄膜电阻以及聚酰亚胺桥制作俯视图,首先在电吸收调制器材料区11区采用湿法刻蚀到衬底1,形成绝缘平面20,作为行波电极微波传输线输入、输出部分绝缘介质;然后采用带胶剥离(lift-off)方法制做出氮化钽薄膜电阻19,氮化钽的厚度为1000

Figure A20071009904300121
其面电阻值为50Ω/□,通过调节薄膜电阻的宽度,可以实现50、40、30、20Q等不同阻值的负载电阻,这样可以通过改变负载电阻阻值来优化调制带宽。同样采用带胶剥离(lift-off)方法在调制器脊结构18上制作厚度为1000的p型Au/Zn欧姆接触层21,在调制器脊结构18的两侧制作厚度2000
Figure A20071009904300123
的N型Au/Ge/Ni欧姆接触层22。它们的作用是减小金属电极和材料的接触电阻。接下来在调制器脊结构18上作聚酰亚胺桥23,注意一定要露出调制器脊结构18上的p型Au/Zn欧姆接触层21,聚酰亚胺需要360℃高温固化50分钟,聚酰亚胺桥23的作用是为后来的钛金电极24提供电绝缘,同时缓和了调制器脊结构18的高度差,使得钛金电极24在脊台上平滑、连续。Figure 6 is a top view of P, N ohmic contacts, thin film resistors and polyimide bridges. First, the electroabsorption modulator material region 11 is wet-etched to the substrate 1 to form an insulating plane 20, which is used as a traveling wave electrode microwave The input and output parts of the transmission line are insulating media; then the tantalum nitride film resistor 19 is manufactured by using the lift-off method, and the thickness of the tantalum nitride is 1000
Figure A20071009904300121
Its surface resistance value is 50Ω/□. By adjusting the width of the thin film resistor, load resistors with different resistance values such as 50, 40, 30, and 20Ω can be realized. In this way, the modulation bandwidth can be optimized by changing the resistance value of the load resistor. Also use the tape stripping (lift-off) method to make a thickness of 1000 on the modulator ridge structure 18 The p-type Au/Zn ohmic contact layer 21 is made on both sides of the modulator ridge structure 18 with a thickness of 2000
Figure A20071009904300123
N-type Au/Ge/Ni ohmic contact layer 22. Their function is to reduce the contact resistance of metal electrodes and materials. Next, make a polyimide bridge 23 on the modulator ridge structure 18, and make sure to expose the p-type Au/Zn ohmic contact layer 21 on the modulator ridge structure 18. The polyimide needs to be cured at 360°C for 50 minutes. The function of the polyimide bridge 23 is to provide electrical insulation for the subsequent titanium gold electrode 24, and at the same time alleviate the height difference of the modulator ridge structure 18, so that the titanium gold electrode 24 is smooth and continuous on the ridge platform.

图7是器件制作完成后的俯视图,整个电极图形如图所示,采用溅射方法生长5000

Figure A20071009904300131
钛金电极17,然后刻蚀出行波电极图形。该电极在输入输出的部分设计的特征阻抗为50Ω,一端直接在绝缘平面20上,作为微波输入端,一端压在氮化钽薄膜电阻19上,形成负载电阻电路。Figure 7 is a top view of the device after the device is fabricated. The entire electrode pattern is shown in the figure, and the sputtering method is used to grow 5000
Figure A20071009904300131
Titanium gold electrode 17, and then etch the traveling wave electrode pattern. The designed characteristic impedance of the input and output part of the electrode is 50Ω, one end is directly on the insulating plane 20 as a microwave input end, and the other end is pressed on the tantalum nitride film resistor 19 to form a load resistance circuit.

综上所述,本发明的制作方法为:In summary, the preparation method of the present invention is:

1)在一衬底1上采用金属有机气相沉积的方法依次生长铟磷应力缓冲层2、n-1.2Q四元层3、n-铟磷空间层4、下分别限制层5、多量子阱6、上分别限制层7、缺陷扩散层8;1) On a substrate 1, an indium-phosphorus stress buffer layer 2, an n-1.2Q quaternary layer 3, an n-indium-phosphorus spacer layer 4, a lower confinement layer 5, and multiple quantum wells are sequentially grown on a substrate 1 by metal-organic vapor deposition. 6. Upper confinement layer 7 and defect diffusion layer 8 respectively;

2)生长一层氧化硅掩膜9,用湿法刻蚀掉模板转换器材料区10的氧化硅掩膜,中间形成出氧化硅图形保护电吸收调制器材料区11,进行磷离子注入,退火,实现量子阱混杂,使材料带隙波长蓝移,最后用化学试剂去掉氧化硅掩膜9和缺陷扩散层8;2) Grow a layer of silicon oxide mask 9, etch away the silicon oxide mask in the template converter material region 10 by a wet method, form a silicon oxide pattern in the middle to protect the electroabsorption modulator material region 11, perform phosphorus ion implantation, and anneal , realize quantum well hybridization, make the material bandgap wavelength blue-shift, and finally remove the silicon oxide mask 9 and defect diffusion layer 8 with chemical reagents;

3)在模板转换器材料区10刻蚀模斑转换器的锥形上波导12和下波导13结构;3) etching the tapered upper waveguide 12 and lower waveguide 13 structures of the speckle converter in the template converter material region 10;

4)采用金属有机气相沉积的方法在器件上依次外延p型磷化铟薄层14、p型铟镓砷磷选择化学停止层15、p型磷化铟盖层16和p型铟镓砷接触层17;4) Epitaxially p-type indium phosphide thin layer 14, p-type indium gallium arsenide phosphide selective chemical stop layer 15, p-type indium phosphide capping layer 16 and p-type indium gallium arsenide contact on the device by metal-organic vapor deposition method layer 17;

5)采用化学湿法和反应离子干法刻蚀相结合的方法在处刻蚀脊结构18;5) Etching the ridge structure 18 by using a method combining chemical wet etching and reactive ion dry etching;

6)在电吸收调制器材料区11区采用湿法刻蚀到衬底1,形成绝缘平面20,作为行波电极微波传输线输入、输出部分绝缘介质;6) Wet etch the substrate 1 in the material area 11 of the electroabsorption modulator to form an insulating plane 20, which is used as an insulating medium for the input and output part of the microwave transmission line of the traveling wave electrode;

7)在衬底1的绝缘平面的一侧边上采用带胶剥离的方法制作氮化钽薄膜电阻19;7) On one side of the insulating plane of the substrate 1, a tantalum nitride thin film resistor 19 is produced by stripping with glue;

8)在脊结构18上采用带胶剥离的方法制作p型金属欧姆接触21;8) Fabricate a p-type metal ohmic contact 21 on the ridge structure 18 by stripping with glue;

9)在电吸收调制器材料区11上的脊结构18的两侧采用带胶剥离的方法制作N型金属欧姆接触22;9) On both sides of the ridge structure 18 on the material region 11 of the electroabsorption modulator, N-type metal ohmic contacts 22 are fabricated by stripping with glue;

10)在电吸收调制器材料区11上制作聚酰亚胺桥23;10) making a polyimide bridge 23 on the electroabsorption modulator material region 11;

11)在电吸收调制器材料11上制作钛金行波电极结构24;11) Fabricate a titanium-gold traveling-wave electrode structure 24 on the electroabsorption modulator material 11;

12)减薄解理,完成整个器件的制作。12) Thinning and cleavage to complete the fabrication of the entire device.

本发明的优点在于:The advantages of the present invention are:

采用行波电极结构,电吸收调制器的调制带宽没有RC限制,可以实现40GHz或更高的调制带宽。电极结构经过模拟计算,有效的降低的器件的微波传输损耗和反射损耗。With the traveling-wave electrode structure, the modulation bandwidth of the electroabsorption modulator has no RC limitation, and a modulation bandwidth of 40 GHz or higher can be achieved. The electrode structure has been simulated and calculated to effectively reduce the microwave transmission loss and reflection loss of the device.

电吸收调制器的两端集成了模斑转换器可以几乎绝热地将有源器件的不对称的近场分布转换为对称的输入或者输出近场,这样既可以提高有源器件和光纤的耦合效率,又可以提高其偏调容差,从而有效的减小器件的插入损耗。The two ends of the electroabsorption modulator integrate mode spot converters, which can almost adiabatically convert the asymmetric near-field distribution of the active device into a symmetrical input or output near-field, which can improve the coupling efficiency of the active device and the fiber , and can improve its offset tolerance, thereby effectively reducing the insertion loss of the device.

器件把微波输出端的负载电阻集成到器件上,可以通过改变薄膜电阻的条宽改变阻值,因此,可以通过降低负载电阻阻值来优化调制器调制带宽。The device integrates the load resistor of the microwave output terminal into the device, and the resistance value can be changed by changing the strip width of the thin film resistor, so the modulation bandwidth of the modulator can be optimized by reducing the resistance value of the load resistor.

器件制作只需要两次外延、工艺简单可行,制作成本低。The fabrication of the device only needs two epitaxy, the process is simple and feasible, and the fabrication cost is low.

Claims (7)

1, a kind of method for making of going ripple electroabsorption modulator and module spot converter integrated device is characterized in that manufacturing process comprises the steps:
Step 1: the method that adopts metal organic chemical vapor deposition on the substrate grow successively indium phosphorus stress-buffer layer, n-1.2Q quaternary layer, n-indium phosphorus space layer, down respectively limiting layer, Multiple Quantum Well, on limiting layer, defective diffusion layer respectively;
Step 2: growth one deck silicon oxide masking film on the defective diffusion layer, fall the silicon oxide masking film in template converter material district with wet etching, the centre forms monox figure protection electroabsorption modulator material sections, carrying out phosphonium ion injects, annealing, realize quantum well mixing, make the material band gap wavelength blue shift, remove silicon oxide masking film and defective diffusion layer with chemical reagent at last;
Step 3: waveguide and following waveguiding structure in the taper of template converter material district etching spot-size converter;
Step 4: extension p type indium phosphide thin layer, p type InGaAsP select chemistry to stop layer, p type indium phosphide cap rock and p type indium gallium arsenic contact layer to the method for employing metal organic chemical vapor deposition successively on device;
Step 5: the method that employing wet chemical and reactive ion dry etching combine is at electroabsorption modulator material sections place etching ridge structure;
Step 6: adopt wet etching to substrate in the electroabsorption modulator material sections, form the insulation plane, as the input of traveling wave electrode microwave transmission line, output insulating medium;
Step 7: the method that adopts band glue to peel off on a side on the insulation plane of substrate is made tantalum nitride membrane resistance;
Step 8: the method that adopts band glue to peel off on ridge structure is made p type metal Ohmic contact;
Step 9: the method that the both sides of the ridge structure on the electroabsorption modulator material sections adopt band glue to peel off is made N type metal Ohmic contact;
Step 10: on the electroabsorption modulator material sections, make the polyimide bridge;
Step 11: on the electroabsorption modulator material sections, make titanium traveling wave electrode structure;
Step 12: the attenuate cleavage, finish the making of entire device.
2, the method for making of traveling wave electrode electro-absorption modulator according to claim 1 and module spot converter integrated device is characterized in that, wherein said substrate is the semi-insulating inp substrate.
3, the method for making of traveling wave electrode electro-absorption modulator according to claim 1 and module spot converter integrated device is characterized in that, the thickness of wherein said i-indium phosphorus defective diffusion layer is 200nm.
4, the method for making of traveling wave electrode electro-absorption modulator according to claim 1 and module spot converter integrated device is characterized in that, the material of wherein said Multiple Quantum Well is an InGaAsP.
5, the method for making of traveling wave electrode electro-absorption modulator according to claim 1 and module spot converter integrated device, it is characterized in that, waveguide is the method that adopts the reactive ion dry etching in the wherein said taper, and the width of waveguide reduces to 0 μ m from 3 μ m linearities in this taper; The method of wet etching is adopted in following waveguide, and its width is 6 μ m.
6, the method for making of traveling wave electrode electro-absorption modulator according to claim 1 and module spot converter integrated device, it is characterized in that, wherein said tantalum nitride membrane resistance, its face resistance value is 50 Ω/, by regulating the width of sheet resistance, can realize the pull-up resistor of 50,40,30,20 ohm of different resistances.
7, the method for making of traveling wave electrode electro-absorption modulator according to claim 1 and module spot converter integrated device is characterized in that, the material of wherein said defective diffusion layer is the i-indium phosphide.
CN200710099043XA 2007-05-10 2007-05-10 Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device Expired - Fee Related CN101303459B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710099043XA CN101303459B (en) 2007-05-10 2007-05-10 Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710099043XA CN101303459B (en) 2007-05-10 2007-05-10 Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device

Publications (2)

Publication Number Publication Date
CN101303459A true CN101303459A (en) 2008-11-12
CN101303459B CN101303459B (en) 2010-04-07

Family

ID=40113442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710099043XA Expired - Fee Related CN101303459B (en) 2007-05-10 2007-05-10 Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device

Country Status (1)

Country Link
CN (1) CN101303459B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697341B (en) * 2009-10-29 2011-11-30 浙江大学 Method for mixing quantum wells
CN109696725A (en) * 2017-10-23 2019-04-30 中兴光电子技术有限公司 A kind of spot-size converter and its manufacturing method
WO2019123067A1 (en) * 2017-12-19 2019-06-27 International Business Machines Corporation Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (euv) lithography
CN114137748A (en) * 2021-04-29 2022-03-04 苏州极刻光核科技有限公司 Method for preparing terminal load of electro-optical modulator and structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342601C (en) * 2004-12-13 2007-10-10 中国科学院半导体研究所 Method for making laser-electric absorption modulator-spot-size converter single chip integration
CN1854877A (en) * 2005-04-28 2006-11-01 中国科学院半导体研究所 Monochip integrating method for electric absorbing modulator of light amplifier and moulding spot converter
CN1909309B (en) * 2005-08-04 2010-04-14 中国科学院半导体研究所 Integrated method of electroabsorption modulated laser and mode spot converter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697341B (en) * 2009-10-29 2011-11-30 浙江大学 Method for mixing quantum wells
CN109696725A (en) * 2017-10-23 2019-04-30 中兴光电子技术有限公司 A kind of spot-size converter and its manufacturing method
CN109696725B (en) * 2017-10-23 2021-02-12 中兴光电子技术有限公司 Spot transformer and manufacturing method thereof
WO2019123067A1 (en) * 2017-12-19 2019-06-27 International Business Machines Corporation Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (euv) lithography
GB2583206A (en) * 2017-12-19 2020-10-21 Ibm Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography
US11037786B2 (en) 2017-12-19 2021-06-15 International Business Machines Corporation Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography
US11177130B2 (en) 2017-12-19 2021-11-16 International Business Machines Corporation Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography
GB2583206B (en) * 2017-12-19 2022-09-07 Ibm Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography
CN114137748A (en) * 2021-04-29 2022-03-04 苏州极刻光核科技有限公司 Method for preparing terminal load of electro-optical modulator and structure

Also Published As

Publication number Publication date
CN101303459B (en) 2010-04-07

Similar Documents

Publication Publication Date Title
CN107615140A (en) Semiconductor light modulation element
US9280004B2 (en) Method for manufacturing semiconductor modulator and semiconductor modulator
CN101471541A (en) Method for making laminated travelling wave electroabsorption modulation laser with epitaxial selection region
CN102023455B (en) N-InP-based monolithic integrated optical logic gate and manufacturing method thereof
CN112072466A (en) Semiconductor laser and preparation method thereof
JPH07135369A (en) Semiconductor laser and its fabrication
CN101738748B (en) Method for preparing high-speed electrical absorption modulator
CN102055133B (en) Making method of electrical absorption modulation tunneling injection type distributed feedback semiconductor laser
CN101303459B (en) Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device
US8384980B2 (en) Semiconductor optical modulation device, Mach-Zehnder interferometer type semiconductor optical modulator, and method for producing semiconductor optical modulation device
US6924918B2 (en) Optical modulator and method of manufacturing the same
EP3963677B1 (en) Monolithically integrated gain element
CN103605218B (en) Waveguide electro-optic modulator and preparation method thereof
JP2016161890A (en) Optical device
JP2006276497A (en) Method for manufacturing optical semiconductor element
CN100349337C (en) Method for making semiconductor laser and spot-size converter by double waveguide technology
CN112366518B (en) Distributed feedback laser and preparation method thereof
US7638856B2 (en) Optoelectronic transmitter integrated circuit and method of fabricating the same using selective growth process
US9176360B2 (en) Method for producing spot-size convertor
CN1630149A (en) Fabrication method of electroabsorption modulation distributed feedback semiconductor laser device
CN112636178B (en) Laser chip and preparation method
US10969543B2 (en) Semiconductor integrated optical device, and method of fabricating semiconductor integrated optical device
EP3416252A1 (en) One step sibh for integrated circuits
US20230251417A1 (en) Semiconductor optical integrated element
JP2017211550A (en) Mach-Zehnder modulator and method for manufacturing a Mach-Zehnder modulator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100407

Termination date: 20130510