CN101303459A - Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device - Google Patents
Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device Download PDFInfo
- Publication number
- CN101303459A CN101303459A CNA200710099043XA CN200710099043A CN101303459A CN 101303459 A CN101303459 A CN 101303459A CN A200710099043X A CNA200710099043X A CN A200710099043XA CN 200710099043 A CN200710099043 A CN 200710099043A CN 101303459 A CN101303459 A CN 101303459A
- Authority
- CN
- China
- Prior art keywords
- layer
- making
- traveling wave
- electroabsorption modulator
- wave electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 51
- 238000005530 etching Methods 0.000 claims abstract description 22
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000009792 diffusion process Methods 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 239000004642 Polyimide Substances 0.000 claims abstract description 9
- 239000011574 phosphorus Substances 0.000 claims abstract description 9
- 229920001721 polyimide Polymers 0.000 claims abstract description 9
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims abstract description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000137 annealing Methods 0.000 claims abstract description 4
- 238000003776 cleavage reaction Methods 0.000 claims abstract description 4
- 230000007017 scission Effects 0.000 claims abstract description 4
- 238000010521 absorption reaction Methods 0.000 claims description 9
- 239000003292 glue Substances 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- 238000001039 wet etching Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 230000002950 deficient Effects 0.000 claims 5
- 230000000873 masking effect Effects 0.000 claims 3
- 238000009413 insulation Methods 0.000 claims 2
- 239000012528 membrane Substances 0.000 claims 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- -1 phosphonium ion Chemical class 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000011435 rock Substances 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 16
- 238000005468 ion implantation Methods 0.000 abstract description 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 7
- ZNKMCMOJCDFGFT-UHFFFAOYSA-N gold titanium Chemical compound [Ti].[Au] ZNKMCMOJCDFGFT-UHFFFAOYSA-N 0.000 abstract description 6
- 229910001258 titanium gold Inorganic materials 0.000 abstract description 6
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 abstract description 5
- 239000010409 thin film Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000000407 epitaxy Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
一种行波电吸收调制器和模斑转换器集成器件的制作方法,包括:在衬底上依次生长铟磷应力缓冲层、n-1.2Q四元层、n-铟磷空间层、下分别限制层、多量子阱、上分别限制层、缺陷扩散层;生长刻蚀出氧化硅掩膜保护电吸收调制器区,磷离子注入,退火,去掉氧化硅掩膜和缺陷扩散层;在模板转换器材料区刻蚀锥形上波导和下波导;依次外延p型磷化铟薄层、p型铟镓砷磷停止层、p型磷化铟盖层和p型铟镓砷接触层;刻蚀EA区的脊结构;刻蚀EA区的绝缘平面;制作氮化钽薄膜电阻;制作p型金属欧姆接触;制作N型金属欧姆接触;制作聚酰亚胺桥;在电吸收调制器材料区上制作钛金电极结构;减薄解理,完成制作。
A method for manufacturing an integrated device of a traveling wave electroabsorption modulator and a mode-spot converter, comprising: sequentially growing an indium-phosphorus stress buffer layer, an n-1.2Q quaternary layer, an n-indium-phosphorus spacer layer, and a lower layer respectively on a substrate Confinement layer, multiple quantum wells, upper confinement layer and defect diffusion layer; grow and etch a silicon oxide mask to protect the electroabsorption modulator region, phosphorus ion implantation, annealing, remove silicon oxide mask and defect diffusion layer; Etch the tapered upper waveguide and lower waveguide in the device material area; epitaxially p-type indium phosphide thin layer, p-type indium gallium arsenide stop layer, p-type indium phosphide cap layer and p-type indium gallium arsenide contact layer in sequence; etch The ridge structure of the EA region; etching the insulating plane of the EA region; making tantalum nitride film resistors; making p-type metal ohmic contacts; making N-type metal ohmic contacts; making polyimide bridges; on the electroabsorption modulator material region Fabrication of titanium gold electrode structure; thinning and cleavage to complete fabrication.
Description
技术领域 technical field
本发明属于半导体技术领域,涉及行波电极结构的电吸收调制器的制作方法,特别涉及到行波电吸收调制器和模斑转换器集成器件的制作方法。The invention belongs to the technical field of semiconductors, and relates to a method for manufacturing an electroabsorption modulator with a traveling wave electrode structure, in particular to a method for manufacturing an integrated device of a traveling wave electroabsorption modulator and a mode-spot converter.
背景技术 Background technique
近些年来,信息产业迅速发展,人们对网络的高速化需求越来越强烈,高频带宽度的调制器是实现系统高速化的关键器件,提高调制器的调制带宽是近年来的研究热点。采用集总型电极结构的电吸收调制器(EAM),由于它受到了RC限制,频带宽度可能太高,一般在20GHz左右,为了得到更高的频宽,可以采用行波电极结构的电吸收调制器(以下简称TEAM),它不同于集总式的EAM,没有电阻·电容(RC)限制,经过科学的设计可以达到40GHz或更高的带宽。In recent years, with the rapid development of the information industry, people's demand for high-speed networks has become more and more intense. Modulators with high-frequency bandwidths are key components for realizing high-speed systems. Improving the modulation bandwidth of modulators has become a research hotspot in recent years. The electroabsorption modulator (EAM) with a lumped electrode structure may be too high because of its RC limitation, generally around 20GHz. In order to obtain a higher bandwidth, electroabsorption with a traveling wave electrode structure can be used The modulator (hereinafter referred to as TEAM), which is different from the lumped EAM, has no resistance-capacitance (RC) limitation, and can reach a bandwidth of 40GHz or higher after scientific design.
电吸收调制器是双端耦合器件,它需要有较低的插入损耗和较高的偏调容差。为了提高电吸收调制器和光纤的耦合效率有效的降低器件的插入损耗,目前主要有两种方法:1)采用分别限制层大光腔结构,在有源区的两侧或者单侧生长很厚的四元材料,并且进行重掺杂,这样电场被限制在薄的有源层中,而光场则限制在四元层和有源层中,从而提高了电吸收调制器和光纤的耦合效率。(见文献:IEEE PHOTONICSTECHNOLOGY LETTERS.2004.16(2),pp.440-442.)2)集成模斑转换器。半导体模斑转换器可以几乎绝热地将有源器件的不对称的近场分布转换为对称的输入或者输出近场,这样既可以提高有源器件和光纤的耦合效率,又可以提高其偏调容差。(见文献:Semicond.Sci.Technol.,Vol.20,No.9,2005,pp.912-916)。The electro-absorption modulator is a double-terminal coupled device, which requires low insertion loss and high offset tolerance. In order to improve the coupling efficiency of the electro-absorption modulator and the optical fiber and effectively reduce the insertion loss of the device, there are currently two main methods: 1) Using a large optical cavity structure with separate confinement layers, growing very thick on both sides or one side of the active region The quaternary material is heavily doped, so that the electric field is confined in the thin active layer, while the optical field is confined in the quaternary layer and the active layer, thereby improving the coupling efficiency of the electroabsorption modulator and the fiber . (See literature: IEEE PHOTONICSTECHNOLOGY LETTERS.2004.16(2), pp.440-442.) 2) Integrated mode converter. The semiconductor mode spot converter can almost adiabatically convert the asymmetric near-field distribution of the active device into a symmetrical input or output near-field, which can not only improve the coupling efficiency of the active device and the optical fiber, but also improve its partial adjustment capacity Difference. (See literature: Semicond. Sci. Technol., Vol.20, No.9, 2005, pp.912-916).
发明内容 Contents of the invention
本发明的目的是提供一种行波电吸收调制器和模斑转换器集成器件的制作方法,它集成了终端负载薄膜电阻,可以优化负载电阻阻值提高调制带宽。采用行波电极结构获得较高的调制带宽,集成模斑转换器提高了有源器件和光纤的耦合效率。The purpose of the present invention is to provide a method for manufacturing an integrated device of a traveling wave electroabsorption modulator and a mode-spot converter, which integrates a terminal load film resistor, and can optimize the resistance value of the load resistor to improve the modulation bandwidth. A traveling-wave electrode structure is used to obtain higher modulation bandwidth, and the integrated mode spot converter improves the coupling efficiency of active devices and optical fibers.
本发明提供一种行波电吸收调制器和模斑转换器集成器件的制作方法,其特征在于,制作过程包括如下步骤:The invention provides a method for manufacturing an integrated device of a traveling wave electroabsorption modulator and a mode-spot converter, which is characterized in that the manufacturing process includes the following steps:
步骤1:在一衬底上采用金属有机气相沉积的方法依次生长铟磷应力缓冲层、n-1.2Q四元层、n-铟磷空间层、下分别限制层、多量子阱、上分别限制层、缺陷扩散层;Step 1: sequentially grow indium phosphorus stress buffer layer, n-1.2Q quaternary layer, n-indium phosphorus space layer, lower separate confinement layer, multiple quantum wells, upper separate confinement layer on a substrate by metal-organic vapor deposition method layer, defect diffusion layer;
步骤2:在缺陷扩散层上生长一层氧化硅掩膜,用湿法刻蚀掉模板转换器材料区的氧化硅掩膜,中间形成出氧化硅图形保护电吸收调制器材料区,进行磷离子注入,退火,实现量子阱混杂,使材料带隙波长蓝移,最后用化学试剂去掉氧化硅掩膜和缺陷扩散层;Step 2: grow a layer of silicon oxide mask on the defect diffusion layer, use wet etching to remove the silicon oxide mask in the template converter material area, form a silicon oxide pattern in the middle to protect the material area of the electroabsorption modulator, and conduct phosphorus ion Implantation, annealing, quantum well hybridization, blue-shifting the bandgap wavelength of the material, and finally removing the silicon oxide mask and defect diffusion layer with chemical reagents;
步骤3:在模板转换器材料区刻蚀模斑转换器的锥形上波导和下波导结构;Step 3: Etching the tapered upper waveguide and lower waveguide structures of the spot converter in the template converter material area;
步骤4:采用金属有机气相沉积的方法在器件上依次外延p型磷化铟薄层、p型铟镓砷磷选择化学停止层、p型磷化铟盖层和p型铟镓砷接触层;Step 4: epitaxially p-type indium phosphide thin layer, p-type indium gallium arsenide-phosphide selective chemical stop layer, p-type indium phosphide capping layer and p-type indium gallium arsenide contact layer on the device in sequence by metal-organic vapor deposition;
步骤5:采用化学湿法和反应离子干法刻蚀相结合的方法在电吸收调制器材料区处刻蚀脊结构;Step 5: Etching the ridge structure at the material region of the electroabsorption modulator by using a combination of chemical wet and reactive ion dry etching;
步骤6:在电吸收调制器材料区采用湿法刻蚀到衬底,形成绝缘平面,作为行波电极微波传输线输入、输出部分绝缘介质;Step 6: Wet etch the material area of the electroabsorption modulator to the substrate to form an insulating plane, which is used as an insulating medium for the input and output part of the microwave transmission line of the traveling wave electrode;
步骤7:在衬底的绝缘平面的一侧边上采用带胶剥离的方法制作氮化钽薄膜电阻;Step 7: On one side of the insulating plane of the substrate, a tantalum nitride film resistor is manufactured by stripping with glue;
步骤8:在脊结构上采用带胶剥离的方法制作p型金属欧姆接触;Step 8: Make a p-type metal ohmic contact on the ridge structure by stripping with glue;
步骤9:在电吸收调制器材料区上的脊结构的两侧采用带胶剥离的方法制作N型金属欧姆接触;Step 9: making N-type metal ohmic contacts on both sides of the ridge structure on the material area of the electroabsorption modulator by stripping with glue;
步骤10:在电吸收调制器材料区上制作聚酰亚胺桥;Step 10: Fabricating polyimide bridges on the electroabsorption modulator material area;
步骤11:在电吸收调制器材料区上制作钛金行波电极结构;Step 11: Fabricate a titanium-gold traveling-wave electrode structure on the material area of the electroabsorption modulator;
步骤12:减薄解理,完成整个器件的制作。Step 12: Thinning and cleavage to complete the fabrication of the entire device.
其中所述的衬底为半绝缘磷化铟衬底。The substrate mentioned therein is a semi-insulating indium phosphide substrate.
其中所述的i-铟磷缺陷扩散层的厚度为200nm。The thickness of the i-indium phosphorus defect diffusion layer is 200nm.
其中所述的多量子阱的材料为铟镓砷磷。The material of the multiple quantum wells is InGaAsP.
其中所述的锥形上波导是采用反应离子干法刻蚀的方法,该锥形上波导的宽度从3μm线性减少到0μm;下波导采用湿法刻蚀的方法,其宽度为6μm。Wherein the tapered upper waveguide adopts the reactive ion dry etching method, and the width of the tapered upper waveguide is linearly reduced from 3 μm to 0 μm; the lower waveguide adopts the wet etching method, and its width is 6 μm.
其中所述的氮化钽薄膜电阻,其面电阻值为50Ω/□,通过调节薄膜电阻的宽度,可以实现50、40、30、20欧姆不同阻值的负载电阻。The tantalum nitride thin film resistor mentioned therein has a surface resistance value of 50Ω/□, and load resistances with different resistance values of 50, 40, 30, and 20 ohms can be realized by adjusting the width of the thin film resistor.
其中所述的缺陷扩散层的材料为i-磷化铟。The material of the defect diffusion layer is i-indium phosphide.
附图说明 Description of drawings
为了进一步说明本发明的方法,下面结合附图和具体实施例对本发明具体说明,其中:In order to further illustrate the method of the present invention, the present invention is specifically described below in conjunction with accompanying drawing and specific embodiment, wherein:
图1是一次外延后的截面图;Fig. 1 is a cross-sectional view after one epitaxy;
图2是P离子注入的立体示意图;FIG. 2 is a schematic perspective view of P ion implantation;
图3是光斑模式转换器的双波导结构的立体示意图;Fig. 3 is a three-dimensional schematic diagram of a double waveguide structure of a spot mode converter;
图4是二次外延后的截面图;Figure 4 is a cross-sectional view after secondary epitaxy;
图5是调制器区脊刻蚀示意图;Fig. 5 is a schematic diagram of modulator region ridge etching;
图6是P、N欧姆接触和薄膜电阻以及聚酰亚胺桥制作俯视图;Fig. 6 is a top view of P, N ohm contacts, thin film resistors and polyimide bridges;
图7是器件制作完成后的俯视图。Figure 7 is a top view of the device after fabrication.
具体实施方式 Detailed ways
图1是一次外延后的截面图。采用金属有机化学气相淀积(MOCVD)方法在衬底1上生长500nm厚的InP应力缓冲层2,它主要是调节晶格失配,然后在其上依次生长:n-1.2Q四元层3的厚度为50nm,该n-1.2Q四元层3做为模斑转换器的下波导的高折射率层;n-InP空间层4的厚度为0.25μm,该层需要重掺杂,因为N欧姆接触层要在其上制作;下分别限制层5的厚度为100nm,该层为了限制光场;InGaAsP多量子阱6;上分别限制层7的厚度为100nm,该层的作用和上分别限制层一样;缺陷扩散层8的厚度为200nm。采用等离子增强化学气相淀积(PECVD),生长4000的二氧化硅(SiO2)掩膜9。Figure 1 is a cross-sectional view after one epitaxy. A 500nm-thick InP
图2是P离子注入的立体示意图。刻蚀掉模板转换器材料区10的SiO2,只留下电吸收调制器材料区11的SiO2掩膜9,它的作用是在离子注入过程中保护电吸收调制器材料区11,使得此区材料表面不会被离子注入引入缺陷,而模板转换器材料区10则由于没有SiO2掩膜9的保护,能量为50KeV,剂量为1×1014cm-2的P离子注入到材料表面,缺陷扩散层8被离子注入引入缺陷,在随后的快速退火过程中,缺陷从缺陷扩散层8扩散到上分别限制层7和多量子阱6,改变了多量子阱6的能带结构,使模板转换器材料区10的材料带隙波长相对于电吸收调制器材料区11发生了“蓝移”现象,这就是离子注入诱导的量子阱混杂效应。这样做的目的是使模板转换器材料区10的材料带隙能大于电吸收调制器材料区11材料,这样波长略长于电吸收调制器材料区11材料带隙波长的输入光在模板转换器材料区10中传播时有很小的吸收,降低器件的插入损耗,最后用氢氟酸去掉氧化硅掩膜9,用盐酸和水的4∶1溶液腐蚀掉缺陷扩散层8。FIG. 2 is a schematic perspective view of P ion implantation. Etching away the SiO 2 in the template
图3是光斑模式转换器的的双波导结构立体示意图。利用反应离子刻蚀刻出锥形上波导结构12,刻蚀条件为:Ar∶CH4∶H2=5∶18∶45,100W,6分钟,刻蚀深度为300nm,然后湿法腐蚀出下波导结构13,刻蚀条件为:液溴,10秒,刻蚀深度为800nm,双波导结构的光斑模式转换器可以几乎绝热的将有源器件的不对称的近场分布转换为对称的输入或者输出近场,有效地提高有源器件和光纤的耦合效率。Fig. 3 is a three-dimensional schematic diagram of a double waveguide structure of a spot mode converter. The tapered
图4是随后进行二次外延,依次是p型磷化铟薄层14、p型铟镓砷磷选择化学停止层15、p型磷化铟盖层16和p型铟镓砷接触层17。为了有效的控制刻蚀调制器脊结构18的深度,刻蚀需要两步进行,首先采用选择性的腐蚀液腐蚀到p型铟镓砷磷选择化学停止层15,选择化学停止层15的作用是阻挡选择性的腐蚀液继续腐蚀,控制调制器脊结构18的深度。p型磷化铟薄层14和p型磷化铟盖层16起到了电流通路和对多量子阱6的折射率限制作用。p型铟镓砷接触层17的作用是降低金属和器件的接触电阻。FIG. 4 is followed by secondary epitaxy, followed by p-type InP
图5调制器区脊刻蚀示意图,为了有效的控制刻蚀调制器脊结构18的深度,刻蚀需要两步进行,首先采用选择性的腐蚀液腐蚀到p型铟镓砷磷选择化学停止层15,然后采用反应离子刻蚀刻到n-InP空间层4,刻蚀条件为:Ar∶CH4∶H2=5∶18∶45,100W,8分钟30秒,刻蚀深度为500nm以上,必须保证刻蚀到n-InP空间层4,因为N金属欧姆接触层22必须作在电导通的n-InP空间层4,这样才能使器件能够正常工作。Figure 5. Schematic diagram of modulator region ridge etching. In order to effectively control the depth of the etched
图6是P、N欧姆接触和薄膜电阻以及聚酰亚胺桥制作俯视图,首先在电吸收调制器材料区11区采用湿法刻蚀到衬底1,形成绝缘平面20,作为行波电极微波传输线输入、输出部分绝缘介质;然后采用带胶剥离(lift-off)方法制做出氮化钽薄膜电阻19,氮化钽的厚度为1000其面电阻值为50Ω/□,通过调节薄膜电阻的宽度,可以实现50、40、30、20Q等不同阻值的负载电阻,这样可以通过改变负载电阻阻值来优化调制带宽。同样采用带胶剥离(lift-off)方法在调制器脊结构18上制作厚度为1000的p型Au/Zn欧姆接触层21,在调制器脊结构18的两侧制作厚度2000的N型Au/Ge/Ni欧姆接触层22。它们的作用是减小金属电极和材料的接触电阻。接下来在调制器脊结构18上作聚酰亚胺桥23,注意一定要露出调制器脊结构18上的p型Au/Zn欧姆接触层21,聚酰亚胺需要360℃高温固化50分钟,聚酰亚胺桥23的作用是为后来的钛金电极24提供电绝缘,同时缓和了调制器脊结构18的高度差,使得钛金电极24在脊台上平滑、连续。Figure 6 is a top view of P, N ohmic contacts, thin film resistors and polyimide bridges. First, the electroabsorption
图7是器件制作完成后的俯视图,整个电极图形如图所示,采用溅射方法生长5000钛金电极17,然后刻蚀出行波电极图形。该电极在输入输出的部分设计的特征阻抗为50Ω,一端直接在绝缘平面20上,作为微波输入端,一端压在氮化钽薄膜电阻19上,形成负载电阻电路。Figure 7 is a top view of the device after the device is fabricated. The entire electrode pattern is shown in the figure, and the sputtering method is used to grow 5000
综上所述,本发明的制作方法为:In summary, the preparation method of the present invention is:
1)在一衬底1上采用金属有机气相沉积的方法依次生长铟磷应力缓冲层2、n-1.2Q四元层3、n-铟磷空间层4、下分别限制层5、多量子阱6、上分别限制层7、缺陷扩散层8;1) On a
2)生长一层氧化硅掩膜9,用湿法刻蚀掉模板转换器材料区10的氧化硅掩膜,中间形成出氧化硅图形保护电吸收调制器材料区11,进行磷离子注入,退火,实现量子阱混杂,使材料带隙波长蓝移,最后用化学试剂去掉氧化硅掩膜9和缺陷扩散层8;2) Grow a layer of
3)在模板转换器材料区10刻蚀模斑转换器的锥形上波导12和下波导13结构;3) etching the tapered
4)采用金属有机气相沉积的方法在器件上依次外延p型磷化铟薄层14、p型铟镓砷磷选择化学停止层15、p型磷化铟盖层16和p型铟镓砷接触层17;4) Epitaxially p-type indium phosphide
5)采用化学湿法和反应离子干法刻蚀相结合的方法在处刻蚀脊结构18;5) Etching the
6)在电吸收调制器材料区11区采用湿法刻蚀到衬底1,形成绝缘平面20,作为行波电极微波传输线输入、输出部分绝缘介质;6) Wet etch the
7)在衬底1的绝缘平面的一侧边上采用带胶剥离的方法制作氮化钽薄膜电阻19;7) On one side of the insulating plane of the
8)在脊结构18上采用带胶剥离的方法制作p型金属欧姆接触21;8) Fabricate a p-type
9)在电吸收调制器材料区11上的脊结构18的两侧采用带胶剥离的方法制作N型金属欧姆接触22;9) On both sides of the
10)在电吸收调制器材料区11上制作聚酰亚胺桥23;10) making a
11)在电吸收调制器材料11上制作钛金行波电极结构24;11) Fabricate a titanium-gold traveling-
12)减薄解理,完成整个器件的制作。12) Thinning and cleavage to complete the fabrication of the entire device.
本发明的优点在于:The advantages of the present invention are:
采用行波电极结构,电吸收调制器的调制带宽没有RC限制,可以实现40GHz或更高的调制带宽。电极结构经过模拟计算,有效的降低的器件的微波传输损耗和反射损耗。With the traveling-wave electrode structure, the modulation bandwidth of the electroabsorption modulator has no RC limitation, and a modulation bandwidth of 40 GHz or higher can be achieved. The electrode structure has been simulated and calculated to effectively reduce the microwave transmission loss and reflection loss of the device.
电吸收调制器的两端集成了模斑转换器可以几乎绝热地将有源器件的不对称的近场分布转换为对称的输入或者输出近场,这样既可以提高有源器件和光纤的耦合效率,又可以提高其偏调容差,从而有效的减小器件的插入损耗。The two ends of the electroabsorption modulator integrate mode spot converters, which can almost adiabatically convert the asymmetric near-field distribution of the active device into a symmetrical input or output near-field, which can improve the coupling efficiency of the active device and the fiber , and can improve its offset tolerance, thereby effectively reducing the insertion loss of the device.
器件把微波输出端的负载电阻集成到器件上,可以通过改变薄膜电阻的条宽改变阻值,因此,可以通过降低负载电阻阻值来优化调制器调制带宽。The device integrates the load resistor of the microwave output terminal into the device, and the resistance value can be changed by changing the strip width of the thin film resistor, so the modulation bandwidth of the modulator can be optimized by reducing the resistance value of the load resistor.
器件制作只需要两次外延、工艺简单可行,制作成本低。The fabrication of the device only needs two epitaxy, the process is simple and feasible, and the fabrication cost is low.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710099043XA CN101303459B (en) | 2007-05-10 | 2007-05-10 | Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710099043XA CN101303459B (en) | 2007-05-10 | 2007-05-10 | Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101303459A true CN101303459A (en) | 2008-11-12 |
CN101303459B CN101303459B (en) | 2010-04-07 |
Family
ID=40113442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710099043XA Expired - Fee Related CN101303459B (en) | 2007-05-10 | 2007-05-10 | Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101303459B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101697341B (en) * | 2009-10-29 | 2011-11-30 | 浙江大学 | Method for mixing quantum wells |
CN109696725A (en) * | 2017-10-23 | 2019-04-30 | 中兴光电子技术有限公司 | A kind of spot-size converter and its manufacturing method |
WO2019123067A1 (en) * | 2017-12-19 | 2019-06-27 | International Business Machines Corporation | Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (euv) lithography |
CN114137748A (en) * | 2021-04-29 | 2022-03-04 | 苏州极刻光核科技有限公司 | Method for preparing terminal load of electro-optical modulator and structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100342601C (en) * | 2004-12-13 | 2007-10-10 | 中国科学院半导体研究所 | Method for making laser-electric absorption modulator-spot-size converter single chip integration |
CN1854877A (en) * | 2005-04-28 | 2006-11-01 | 中国科学院半导体研究所 | Monochip integrating method for electric absorbing modulator of light amplifier and moulding spot converter |
CN1909309B (en) * | 2005-08-04 | 2010-04-14 | 中国科学院半导体研究所 | Integrated method of electroabsorption modulated laser and mode spot converter |
-
2007
- 2007-05-10 CN CN200710099043XA patent/CN101303459B/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101697341B (en) * | 2009-10-29 | 2011-11-30 | 浙江大学 | Method for mixing quantum wells |
CN109696725A (en) * | 2017-10-23 | 2019-04-30 | 中兴光电子技术有限公司 | A kind of spot-size converter and its manufacturing method |
CN109696725B (en) * | 2017-10-23 | 2021-02-12 | 中兴光电子技术有限公司 | Spot transformer and manufacturing method thereof |
WO2019123067A1 (en) * | 2017-12-19 | 2019-06-27 | International Business Machines Corporation | Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (euv) lithography |
GB2583206A (en) * | 2017-12-19 | 2020-10-21 | Ibm | Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography |
US11037786B2 (en) | 2017-12-19 | 2021-06-15 | International Business Machines Corporation | Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography |
US11177130B2 (en) | 2017-12-19 | 2021-11-16 | International Business Machines Corporation | Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography |
GB2583206B (en) * | 2017-12-19 | 2022-09-07 | Ibm | Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography |
CN114137748A (en) * | 2021-04-29 | 2022-03-04 | 苏州极刻光核科技有限公司 | Method for preparing terminal load of electro-optical modulator and structure |
Also Published As
Publication number | Publication date |
---|---|
CN101303459B (en) | 2010-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107615140A (en) | Semiconductor light modulation element | |
US9280004B2 (en) | Method for manufacturing semiconductor modulator and semiconductor modulator | |
CN101471541A (en) | Method for making laminated travelling wave electroabsorption modulation laser with epitaxial selection region | |
CN102023455B (en) | N-InP-based monolithic integrated optical logic gate and manufacturing method thereof | |
CN112072466A (en) | Semiconductor laser and preparation method thereof | |
JPH07135369A (en) | Semiconductor laser and its fabrication | |
CN101738748B (en) | Method for preparing high-speed electrical absorption modulator | |
CN102055133B (en) | Making method of electrical absorption modulation tunneling injection type distributed feedback semiconductor laser | |
CN101303459B (en) | Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device | |
US8384980B2 (en) | Semiconductor optical modulation device, Mach-Zehnder interferometer type semiconductor optical modulator, and method for producing semiconductor optical modulation device | |
US6924918B2 (en) | Optical modulator and method of manufacturing the same | |
EP3963677B1 (en) | Monolithically integrated gain element | |
CN103605218B (en) | Waveguide electro-optic modulator and preparation method thereof | |
JP2016161890A (en) | Optical device | |
JP2006276497A (en) | Method for manufacturing optical semiconductor element | |
CN100349337C (en) | Method for making semiconductor laser and spot-size converter by double waveguide technology | |
CN112366518B (en) | Distributed feedback laser and preparation method thereof | |
US7638856B2 (en) | Optoelectronic transmitter integrated circuit and method of fabricating the same using selective growth process | |
US9176360B2 (en) | Method for producing spot-size convertor | |
CN1630149A (en) | Fabrication method of electroabsorption modulation distributed feedback semiconductor laser device | |
CN112636178B (en) | Laser chip and preparation method | |
US10969543B2 (en) | Semiconductor integrated optical device, and method of fabricating semiconductor integrated optical device | |
EP3416252A1 (en) | One step sibh for integrated circuits | |
US20230251417A1 (en) | Semiconductor optical integrated element | |
JP2017211550A (en) | Mach-Zehnder modulator and method for manufacturing a Mach-Zehnder modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100407 Termination date: 20130510 |