CN101224876B - A kind of preparation method of silicon nitride nanowire and nanoribbon - Google Patents
A kind of preparation method of silicon nitride nanowire and nanoribbon Download PDFInfo
- Publication number
- CN101224876B CN101224876B CN2008100639274A CN200810063927A CN101224876B CN 101224876 B CN101224876 B CN 101224876B CN 2008100639274 A CN2008100639274 A CN 2008100639274A CN 200810063927 A CN200810063927 A CN 200810063927A CN 101224876 B CN101224876 B CN 101224876B
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- nanobelts
- sintering furnace
- nanowires
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 37
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000002070 nanowire Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000002074 nanoribbon Substances 0.000 title claims 5
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000002127 nanobelt Substances 0.000 claims abstract description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims abstract description 10
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 10
- 238000005245 sintering Methods 0.000 claims description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 238000003912 environmental pollution Methods 0.000 abstract description 5
- 239000012299 nitrogen atmosphere Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 4
- 239000005543 nano-size silicon particle Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Silicon Compounds (AREA)
- Ceramic Products (AREA)
Abstract
一种氮化硅纳米线和纳米带的制备方法,它涉及一种氮化硅纳米线和纳米带的制备方法。它解决了现有技术中氮化硅纳米线和纳米带的制备工艺复杂、成本较高、污染环境的问题。制备方法:将工业硅粉装入坩埚后,在氮气氛下烧结,随炉冷却至室温,得氮化硅纳米线和氮化硅纳米带。本发明一种氮化硅纳米线和纳米带的制备方法,工艺简单、成本较低、不产生污染环境的有害气体。A method for preparing silicon nitride nanowires and nanobelts, which relates to a method for preparing silicon nitride nanowires and nanobelts. It solves the problems of complex preparation process, high cost and environmental pollution in the prior art of silicon nitride nanowires and nanobelts. Preparation method: put industrial silicon powder into a crucible, sinter in a nitrogen atmosphere, and cool to room temperature with the furnace to obtain silicon nitride nanowires and silicon nitride nanobelts. The invention discloses a method for preparing silicon nitride nanowires and nanobelts, which has simple process, low cost and no harmful gas that pollutes the environment.
Description
技术领域technical field
本发明涉及一种氮化硅纳米线和纳米带的制备方法。The invention relates to a method for preparing silicon nitride nanowires and nanobelts.
背景技术Background technique
氮化硅(Si3N4)是一种性能优异的陶瓷材料,有两种常见变体,即低温相α-Si3N4和稳定的六方相β-Si3N4。氮化硅具有高温条件下保持高强度,低密度,良好的抗腐蚀性、耐磨性、热震性能、蠕变性能,以及优异的化学稳定性等。氮化硅还是一种宽禁带半导体,可以获得较高的掺杂浓度,从而具备成为优良宿主材料的潜力,可应用于微电子和光电子领域,并能通过掺杂从而调整其电子和光学性能。随着科学技术的发展,一维纳米结构以其优异性能而受到越来越多的关注与重视;一维纳米材料,包括纳米管、纳米棒、金属及半导体纳米线、同轴纳米电缆、纳米带等。研究表明,一维纳米氮化硅材料不仅具有突出的机械性能,还在电子和光学元器件领域具有很大应用前景。Silicon nitride (Si 3 N 4 ) is an excellent ceramic material with two common variants, the low-temperature phase α-Si 3 N 4 and the stable hexagonal phase β-Si 3 N 4 . Silicon nitride has high strength and low density under high temperature conditions, good corrosion resistance, wear resistance, thermal shock performance, creep performance, and excellent chemical stability. Silicon nitride is also a wide bandgap semiconductor, which can obtain a higher doping concentration, so it has the potential to become an excellent host material. It can be used in the fields of microelectronics and optoelectronics, and its electronic and optical properties can be adjusted by doping . With the development of science and technology, one-dimensional nanostructures have received more and more attention and attention due to their excellent properties; one-dimensional nanomaterials, including nanotubes, nanorods, metal and semiconductor nanowires, coaxial nanocables, nano Bring and so on. Studies have shown that one-dimensional nano-silicon nitride materials not only have outstanding mechanical properties, but also have great application prospects in the fields of electronic and optical components.
制备一维纳米氮化硅材料的方法很多,根据原料和制备工艺进行分类,主要可分为(1)碳纳米管-模板生长法、(2)纳米硅粉体或氧化硅粉体的高温氮化反应法、(3)利用固-液-气机制的纳米金属颗粒催化生长法、(4)高压釜低温反应法、(5)非晶态纳米氮化硼颗粒的控制结晶法;虽然制备方法各异,但却普遍存在工艺复杂、不易控制、成本较高、污染环境等不足,在很大程度上制约了一维纳米氮化硅材料的研究与应用。目前,有以SiCl4和Na3N为原料制备氮化硅纳米棒,但原料中SiCl4气体对人体伤害很大,容易造成环境污染,制备的工艺条件要求很苛刻,成本高,不利于控制和实际生产;名称为“氮化硅和碳化硅一维纳米结构及其制备方法(中国专利号:ZL03152915.1,申请日:2003年09月02日,公开日:2004年04月28日)”的专利中引入了金属元素作为催化剂,给提纯造成较大难度,工艺过程繁杂,不利于大量生产。名称为“一种α-Si3N4纳米线的制备方法(专利号:WO2006/067308A1,公开日:2006年6月29日)”的专利中存在工艺复杂、成本较高、污染环境及产物长度不可控的问题。There are many ways to prepare one-dimensional nano-silicon nitride materials, which can be classified according to raw materials and preparation processes, and can be mainly divided into (1) carbon nanotube-template growth method, (2) high-temperature nitrogen synthesis of nano-silicon powder or silicon oxide powder. chemical reaction method, (3) catalytic growth method of nano-metal particles using solid-liquid-gas mechanism, (4) autoclave low-temperature reaction method, (5) controlled crystallization method of amorphous nano-boron nitride particles; although the preparation method However, there are generally disadvantages such as complex process, difficult control, high cost, and environmental pollution, which largely restrict the research and application of one-dimensional nano-silicon nitride materials. At present, SiCl 4 and Na 3 N are used as raw materials to prepare silicon nitride nanorods, but the SiCl 4 gas in the raw materials is very harmful to the human body and is likely to cause environmental pollution. The preparation process conditions are very demanding, the cost is high, and it is not conducive to control. and actual production; titled "Silicon Nitride and Silicon Carbide One-Dimensional Nanostructure and Its Preparation Method" (Chinese Patent No.: ZL03152915.1, Application Date: September 2, 2003, Publication Date: April 28, 2004) "The patent introduces metal elements as catalysts, which makes the purification more difficult, and the process is complicated, which is not conducive to mass production. The patent titled "A Preparation Method for α-Si3N4 Nanowires (Patent No.: WO2006/067308A1, Publication Date: June 29, 2006)" has complex processes, high cost, environmental pollution and uncontrollable product length The problem.
发明内容Contents of the invention
本发明目的是为了解决现有技术中氮化硅纳米线和纳米带的制备工艺复 杂、成本较高、污染环境的问题,而提供一种氮化硅纳米线和纳米带的制备方法。The purpose of the present invention is to provide a method for preparing silicon nitride nanowires and nanobelts in order to solve the problems of complex preparation process, high cost and environmental pollution in the prior art.
一种氮化硅纳米线和纳米带的制备方法按以下步骤进行:一、将工业硅粉装入坩埚后放入气氛烧结炉中,抽真空,使气氛烧结炉的真空度低于10Pa;二、向气氛烧结炉内充入氮气,使炉内气体压强达0.1~2.0MPa;三、气氛烧结炉以5~30℃/min的速度升温到1200~1600℃,并保温烧结5~360min后随炉冷却至室温,得氮化硅纳米线和纳米带。A method for preparing silicon nitride nanowires and nanobelts is carried out according to the following steps: 1. Put industrial silicon powder into a crucible and put it into an atmosphere sintering furnace, and vacuumize the atmosphere sintering furnace so that the vacuum degree of the atmosphere sintering furnace is lower than 10 Pa; 2. 1. Fill nitrogen into the atmosphere sintering furnace to make the gas pressure in the furnace reach 0.1-2.0 MPa; 3. Heat up the atmosphere sintering furnace to 1200-1600°C at a speed of 5-30°C/min, keep it warm for 5-360min and then The furnace was cooled to room temperature to obtain silicon nitride nanowires and nanobelts.
本发明氮化硅纳米线和纳米带的制备方法中选用工业硅粉为原料,利于获取和降低成本,工艺简便、易于操作,反应过程中不产生任何污染环境的有害气体,利于环保和规模化生产,产物为单晶相α-Si3N4;所得氮化硅纳米线,粗细均匀,直径为30~200nm,其中以80~150nm为主,长度可控,最长可达毫米量级;所得氮化硅纳米带厚度为40~60nm,宽度为180~220nm。In the preparation method of silicon nitride nanowires and nanobelts of the present invention, industrial silicon powder is selected as a raw material, which is beneficial to acquisition and cost reduction, and the process is simple and easy to operate, and no harmful gas that pollutes the environment is produced during the reaction process, which is beneficial to environmental protection and scale. Production, the product is single crystal phase α-Si 3 N 4 ; the obtained silicon nitride nanowires are uniform in thickness, with a diameter of 30-200nm, of which 80-150nm is the main one, and the length is controllable, and the longest can reach the order of millimeters; The obtained silicon nitride nanobelt has a thickness of 40-60 nm and a width of 180-220 nm.
附图说明Description of drawings
图1为具体实施方式七中所制备氮化硅纳米线和纳米带的电镜扫描图。Fig. 1 is a scanning electron microscope image of silicon nitride nanowires and nanobelts prepared in Embodiment 7.
具体实施方式Detailed ways
具体实施方式一:本实施方式一种氮化硅纳米线和纳米带的制备方法按以下步骤进行:一、将工业硅粉装入坩埚后放入气氛烧结炉中,抽真空,使气氛烧结炉的真空度低于10Pa;二、向气氛烧结炉内充入氮气,使炉内气体压强达0.1~2.0MPa;三、气氛烧结炉以5~30℃/min的速度升温到1200~1600℃,并保温烧结5~360min后随炉冷却至室温,得氮化硅纳米线和纳米带。Embodiment 1: In this embodiment, a method for preparing silicon nitride nanowires and nanobelts is carried out according to the following steps: 1. Put industrial silicon powder into a crucible and put it into an atmosphere sintering furnace, and then vacuumize the atmosphere sintering furnace. The vacuum degree of the atmosphere sintering furnace is lower than 10Pa; 2. Fill nitrogen into the atmosphere sintering furnace to make the gas pressure in the furnace reach 0.1-2.0MPa; 3. The temperature of the atmosphere sintering furnace is raised to 1200-1600°C at a speed of 5-30°C/min. And heat-preserve and sinter for 5-360 minutes, and then cool down to room temperature with the furnace to obtain silicon nitride nanowires and nanobelts.
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中所用工业硅粉的粉体粒径为1~5μm。其它步骤及参数与具体实施方式一相同。Embodiment 2: This embodiment differs from Embodiment 1 in that the particle size of the industrial silicon powder used in step 1 is 1-5 μm. Other steps and parameters are the same as those in Embodiment 1.
具体实施方式三:本实施方式与具体实施方式一不同的是步骤一中所用工业硅粉的粉体粒径为3μm。其它步骤及参数与具体实施方式一相同。Embodiment 3: The difference between this embodiment and Embodiment 1 is that the particle size of the industrial silicon powder used in step 1 is 3 μm. Other steps and parameters are the same as those in Embodiment 1.
具体实施方式四:本实施方式与具体实施方式一不同的是步骤二中炉内气体压强达1MPa。其它步骤及参数与具体实施方式一相同。Embodiment 4: This embodiment differs from Embodiment 1 in that the gas pressure in the furnace in step 2 reaches 1 MPa. Other steps and parameters are the same as those in Embodiment 1.
具体实施方式五:本实施方式与具体实施方式一不同的是步骤三中气氛烧结炉以10℃/min的速度升温到1400℃,并保温烧结100min。其它步骤及参数与具体实施方式一相同。Embodiment 5: This embodiment differs from Embodiment 1 in that in Step 3, the atmosphere sintering furnace is heated to 1400° C. at a rate of 10° C./min, and kept for sintering for 100 minutes. Other steps and parameters are the same as those in Embodiment 1.
具体实施方式六:本实施方式与具体实施方式一不同的是步骤三中气氛烧结炉以15℃/min的速度升温到1500℃,并保温烧结240min。其它步骤及参数与具体实施方式一相同。Embodiment 6: The difference between this embodiment and Embodiment 1 is that in Step 3, the temperature of the atmosphere sintering furnace is raised to 1500° C. at a rate of 15° C./min, and the temperature is maintained for 240 minutes for sintering. Other steps and parameters are the same as those in Embodiment 1.
具体实施方式七:本实施方式一种氮化硅纳米线和纳米带的制备方法按以下步骤进行:一、将工业硅粉装入坩埚后放入气氛烧结炉中,抽真空,使气氛烧结炉的真空度为0.1Pa;二、向气氛烧结炉内充入氮气,使炉内气体压强达1MPa;三、气氛烧结炉以13℃/min的速度升温到1500℃,并保温烧结240min后随炉冷却至室温,得氮化硅纳米线和纳米带。Specific Embodiment Seven: In this embodiment, a method for preparing silicon nitride nanowires and nanobelts is carried out according to the following steps: 1. Put industrial silicon powder into the crucible and put it into the atmosphere sintering furnace, and then vacuumize the atmosphere sintering furnace. The vacuum degree of the atmosphere sintering furnace is 0.1Pa; 2. Fill nitrogen into the atmosphere sintering furnace to make the gas pressure in the furnace reach 1MPa; 3. The temperature of the atmosphere sintering furnace is raised to 1500°C at a speed of 13°C/min, and it is kept for 240 minutes after sintering. Cool to room temperature to obtain silicon nitride nanowires and nanobelts.
本实施方式制备的氮化硅纳米线和纳米带,由图1可以看出,产物形貌为纳米线和纳米带;纳米线直径为60~120nm,长度达毫米量级;纳米带厚度为40~60nm,宽度为180~220nm。The silicon nitride nanowires and nanobelts prepared in this embodiment can be seen from Fig. 1 that the morphology of the product is nanowires and nanobelts; the diameter of the nanowires is 60-120 nm, and the length is on the order of millimeters; the thickness of the nanobelts is 40 nm. ~60nm, the width is 180~220nm.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100639274A CN101224876B (en) | 2008-01-28 | 2008-01-28 | A kind of preparation method of silicon nitride nanowire and nanoribbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100639274A CN101224876B (en) | 2008-01-28 | 2008-01-28 | A kind of preparation method of silicon nitride nanowire and nanoribbon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101224876A CN101224876A (en) | 2008-07-23 |
CN101224876B true CN101224876B (en) | 2011-07-06 |
Family
ID=39857117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100639274A Expired - Fee Related CN101224876B (en) | 2008-01-28 | 2008-01-28 | A kind of preparation method of silicon nitride nanowire and nanoribbon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101224876B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102807196B (en) * | 2012-08-26 | 2013-12-25 | 西安科技大学 | Method for preparing silicon nitride nano material |
CN107342403B (en) * | 2017-06-09 | 2019-11-12 | 江永斌 | Nano material and its preparation method and application containing silicon nitride |
CN110436934B (en) * | 2019-07-09 | 2022-02-11 | 南昌大学 | Preparation method of high alpha-phase silicon nitride powder and ultra-long silicon nitride nanowire |
CN111620699B (en) * | 2020-06-03 | 2021-08-17 | 北京科技大学 | Ceramic sponge material with resilient nanofiber framework and preparation method |
CN112047742B (en) * | 2020-09-03 | 2022-03-15 | 中钢南京环境工程技术研究院有限公司 | Low-cost preparation method of large-size silicon nitride nanobelt aerogel |
CN116768635B (en) * | 2023-07-10 | 2023-11-28 | 兰溪泛翌精细陶瓷有限公司 | Modified silicon nitride composite material and preparation method thereof |
-
2008
- 2008-01-28 CN CN2008100639274A patent/CN101224876B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101224876A (en) | 2008-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101224877B (en) | Method for preparing silicon nitride nano-wire | |
CN101224876B (en) | A kind of preparation method of silicon nitride nanowire and nanoribbon | |
CN101104515B (en) | Preparing method of SiC nano-wire | |
Chen et al. | Thermochemistry and growth mechanism of SiC nanowires | |
Ding et al. | The synthesis of titanium nitride whiskers on the surface of graphite by molten salt media | |
Wang et al. | Sol–gel synthesis of Si3N4 nanowires and nanotubes | |
CN101386409A (en) | A method for preparing silicon carbide nanowires | |
Feng et al. | Precise control on the growth of SiC nanowires | |
CN102126710B (en) | Method for preparing boron nitride nanowire by cracking of polymer | |
CN101327929A (en) | Method for rapid preparation of SiC nanowires | |
CN102730685A (en) | Method for preparing one-dimensional hafnium carbide nanometer material | |
CN107758633B (en) | Preparation method of long straight boron nitride nanowire | |
CN101864619A (en) | Method for preparing micro-nano diameter silicon carbide short fibers and whiskers from rice husk | |
CN105502315A (en) | Method for synchronously growing ultralong silicon nitride nanomaterials in situ and ex situ | |
CN105000562A (en) | Preparation method of silicon carbide hollow sphere | |
CN103011166B (en) | Synthesis method of SiC/SiO2 nanowire reinforcement body | |
CN103145129B (en) | Method for preparing silicon carbide nano-fibre | |
CN104891456B (en) | A kind of one-dimensional α Si3N4Nano material and preparation method thereof | |
CN100430516C (en) | Preparation method of silicon carbide nanowires on the surface of carbon/carbon composite materials | |
CN101177268A (en) | A method for preparing cubic silicon carbide nanowires at low temperature | |
CN107572525A (en) | The preparation method of two-dimentional hafnium carbide nanometer sheet | |
CN112794330B (en) | A kind of preparation method of boron carbide nanowires | |
CN101323975A (en) | Preparation of SnO2Method for preparing -ZnO heterogeneous nano branch structure | |
CN101597059A (en) | Preparation method of SiC nanowire | |
CN100384725C (en) | Method for preparing silicon carbide nano line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110706 Termination date: 20120128 |