CN101190133B - 超声波诊断系统中宽波束的发射方法和装置 - Google Patents
超声波诊断系统中宽波束的发射方法和装置 Download PDFInfo
- Publication number
- CN101190133B CN101190133B CN200610157173.XA CN200610157173A CN101190133B CN 101190133 B CN101190133 B CN 101190133B CN 200610157173 A CN200610157173 A CN 200610157173A CN 101190133 B CN101190133 B CN 101190133B
- Authority
- CN
- China
- Prior art keywords
- sub
- aperture
- focus
- sound field
- array element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
- A61B8/145—Echo-tomography characterised by scanning multiple planes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
- G01S15/8927—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52019—Details of transmitters
- G01S7/5202—Details of transmitters for pulse systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52085—Details related to the ultrasound signal acquisition, e.g. scan sequences
- G01S7/52095—Details related to the ultrasound signal acquisition, e.g. scan sequences using multiline receive beamforming
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/26—Sound-focusing or directing, e.g. scanning
- G10K11/34—Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
- G10K11/341—Circuits therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0883—Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/486—Diagnostic techniques involving arbitrary m-mode
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Computer Networks & Wireless Communication (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- General Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Acoustics & Sound (AREA)
- Hematology (AREA)
- Multimedia (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
一种超声波诊断系统中宽波束的发射方法和装置。所述方法将超声探头的发射孔径分成N个子孔径以及将焦点横向切分为N个子焦点,所述N个子孔径与所述N个子焦点建立一一对应关系,每个子孔径有M个阵元,全部都聚焦于与该孔径对应的子焦点,脉冲发生器激励超声探头的N个子孔径获得一个横向拉伸的发射声场,所述N个子孔径的发射声场分别在其对应的子焦点聚焦后相叠加,最后形成一个能覆盖所有接收线宽波束的声场;所述N和M均为大于2的整数。本发明方法通过对探头划分子孔径并使各子孔径分别聚焦后叠加声场的方法,使得在发射单极性或者双极性发射波形的超声机器发射能覆盖所有接收线范围的宽波束成为可能。
Description
技术领域
本发明涉及医用超声波诊断系统的成像技术,尤其涉及超声波诊断系统宽波束的发射方法和装置。
背景技术
超声波诊断系统快速成像技术的研究有着重要意义,可以说实现快速成像可以帮助我们为实现一些高级技术提供一个基础,这个基础就是数据率,单位时间获得的信息量更大导致可以进行更好更细致的图像分析,从而更好的实现各种技术。具体的可以包括以下几点:
1、对3D/4D成像的帮助
不管是3D还是4D,都是以需要海量的数据为前提的,现在我们的3D成像速度还与其它大公司有较大的距离,主要原因在于我们的帧率低,成像速度的限制直接导致3D图像速度的限制。
2、对血流成像的帮助
血流成像的帧率与图像质量一样直接影响到使用者对机器的影响,是重要的机器等级评价标准。我们现在的血流成像帧率低,还没有办法与高档机器的C模式帧率相比,因此快速成像就显得很重要。简单的说,快速成像的原理在于用一次发射的接收数据生成多条扫描线数据,这样,实际上就帮助我们并行获得扫描线数据,这样的直接结果是成倍地提高血流成像的帧率。
3、对心脏成像的帮助
对于运动速度快的心脏,帧率在某些时候是比图像质量要重要的。
4、对图像质量的帮助
在现有的许多技术中,都可以归结为图像质量与帧率的平衡关系,例如:
i)合成孔径是使用两次发射合成一条信噪比高的扫描线;
ii)复合成像是多次从不同方向发射合成扫描线来减少斑点提高质量;
iii)编码激励中的Golay码发射需要多次发射以降低纵向旁瓣的影响;
iv)心脏B成像通过使用低密度扫描来获得高帧率。
其中i)~iii)都是牺牲帧率提高质量,而iv)是使用质量换帧率。通过快速成像,可以缓解这种矛盾,使这些技术得到更好的实现
4、对心脏相关技术的帮助
对于现有的高档机器,许多都有关于心脏的临床技术,比如解剖M型和心脏运动的相关分析。这些都利用了心脏某个部位在图像中位置的随时间的变化的信息来进行临床的评价以及指标计算为了得到连续的图像和精确的结果,这就对心脏图像的时间分辨率给出了严格的要求,而时间分辨率就是图像的帧率。
为了提高帧率,多波束接收技术是现在的研究热点,多波束接收即通过一次发射接收多条扫描线来减少生成一帧图像所需的时间,从而大大提高帧率。这种技术的一个主要问题就是失真,如果发射的波束不足以覆盖所有的扫描线,那么获得扫描线就会形成失真;因此,多波束技术的一个很重要的问题就是如何使发射的波束能够涵盖接收扫描线的范围,即发射宽波束技术。
名称为“System method and machine readable program for performing ultrasonic fat beam transmission and multilane receive imaging”的美国US6,585,648号专利公开一种发射宽波束的方法,该方法是将多次发射的发射波形加起来一起发射从而得到宽的发射波束。其思想是对于单波束,每个波束的发射都对应了多个阵元的不同延时发射波形,对于不同的扫描线,这些发射波形延时不一样,将多次发射集合到一次发射,将在同一个阵元的多次发射波形相加,就得到了宽波束的该阵元的复合发射波形(composite waveform),由于延时不同,从而每个阵元得到的发射波形也是不一致的,这种波形的发射结果实际上也可以看作是多次单波束发射的声场的叠加结果,因此得到宽波束。
名称为“Numerical optimization of ultrasound beam path”的美国US6,282,963号专利公开一种优化波束的方法,其主要思想是通过优化发射变迹曲线得到宽波束。通过建立发射波束的数学模型(主要考虑变迹曲线的影响),并且提出了评价宽波束的若干准则,通过优化方法优化该数学方程,从而得到最优的发射变迹曲线。
上述现有技术的缺点在于:描述的方法主要是通过发射任意波形(US6,585,648号专利)或者控制发射变迹曲线(US6,282,963号专利)从而获得宽波束,然而实际上这种方案实现的前提是超声系统前端可以发射任意波形,这对于许多只能发射单极电平或者双极电平激励波形的超声机器而言是不可行的。
发明内容
本发明要解决的技术问题是针对上述现有技术的缺点,提出一种在单极或者双极的超声系统中实现宽波束发射的方法及其装置。
本发明采用如下技术方案:设计一种超声波诊断系统中宽波束的发射方法,其关键点在于:将超声探头的发射孔径分成N个子孔径以及将焦点横向切分为N个子焦点,所述N个子孔径与所述N个子焦点建立一一对应关系,每个子孔径有M个阵元,全部都聚焦于与该孔径对应的子焦点,脉冲发生器激励超声探头的N个子孔径获得一个横向拉伸的发射声场,所述N个子孔径的发射声场分别在其对应的子焦点聚焦,各子孔径的声场相叠加,最后形成一个能覆盖所有接收线宽波束的声场;所述N和M均为大于2的整数。
所述发射孔径等距分成N个子孔径,所述焦点被横向切分为等距离分布的N个子焦点,每个子孔径有M个阵元,且全部都聚焦于与所述子孔径对应的子焦点。
本发明解决技术问题所采用的技术方案还包括:设计一种超声波诊断系统中宽波束的发射装置,包括探头、发射/接收转换器和脉冲发生器;所述脉冲发生器根据发射波形与发射延时将数字信号转化为模拟电信号激励探头阵元,阵元受激振荡产生声波穿透机体组织并且产生回波,探头发射后进入接收模式;所述探头的发射孔径分成N个子孔径,所述探头的焦点横向切分为N个子焦点,所述N个子孔径分别与所述N个子焦点建立一一对应关系,每个子孔径有M个阵元,全部都聚焦于与该孔径对应的子焦点,脉冲发生器激励超声探头的N个子孔径获得一个横向拉伸的发射声场,所述N个子孔径的发射声场分别在其对应的子焦点聚焦,各子孔径的声场相叠加,最后形成一个能覆盖所有接收线宽波束的声场;所述N和M均为大于2的整数。
所述N个子孔径和所述N个子焦点等距离分布,每个子孔径有M个阵元,且全部都聚焦于与所述子孔径对应的子焦点。
所述N个子孔径有多种排列方式,可以是依次按顺序排布或是所述N个子孔径的N*M个阵元相间排布。
与现有技术相比较,本发明的超声波诊断系统中宽波束的发射装置具有如下优点:通过对探头划分多子孔径并使各子孔径分别聚焦后叠加声场的方法,使得在发射单极性或者双极性发射波形的超声机器发射能覆盖所有接收线范围的宽波束成为可能。
附图说明
图1是超声成像系统的原理方框图;
图2是单波束情况下强聚焦在焦点处的声场横切面示意图;
图3是本发明发射孔径分组方法举例;
图4是本发明子孔径聚焦方法示意图;
图5是本发明子焦点设置示意图;
图6是具有四个子焦点位置的声场横切面;
图7是与图6对应的有四个子焦点时最终形成宽波束的示意图。
具体实施方式
以下结合附图及附图所示之实施例对本发明装置和方法作进一步详述。
图1为医用超声成像系统的原理方框图,对于超声探头的每个通道,在发射时设置发射波形以及发射延时,脉冲发生器将发射波形的数字信号转化为模拟电信号激励探头阵元,阵元受激振荡产生的声波穿透机体组织并且产生回波,探头发射后进入接收模式,若干个通道接收的回波数据经过波束合成器形成扫描线数据,当前的扫描线数据仍然是高频数据,因此需要经过检测器进行解调以及信号处理,经过数字扫描转换的数据就可以由显示器进行显示。
在常规的单波束发射情况下,为了提高图像的横向分辨率,常常希望声束在横向上能量越集中越好,即声束越细越好,因此,使用强聚焦从而尽可能的将声场的能量聚集在接收线的上。对于给定的发射孔径,通过计算每个阵元到焦点处的时间来计算延时,通过在不同时刻激励阵元从而形成一束聚焦的声束,图2是单波束情况下声场在焦点处的横切面,接收线的位置在横向距离的0点,该点的能量最集中,因此,接收线能有比较好的横向分辨率。
为了接收多波束,我们需要的是声场能量聚集于一个区域,该区域涵盖了所有接收线的范围,并且在该范围的声场能量能够平坦,最理想的声场就是一个长方体状的声场,本发明要解决的技术问题就是提出一种能够发射宽波束的方法及其装置。本发明通过将发射孔径分为子孔径,这些子孔径每一个都聚焦到声场中不同的点位置,通过这种发射方法,子孔径的声场相互叠加,从而形成一个均匀宽波束的声场。
本发明将超声探头的发射孔径分成N个子孔径以及将焦点横向切分为N个子焦点,N个子孔径分别与N个子焦点建立一一对应关系,每个子孔径有M个阵元,全部都聚焦于与该子孔径对应的子焦点,脉冲发生器激励超声探头的N个子孔径获得一个横向拉伸的发射声场,所述N个子孔径的发射声场分别在其对应的子焦点聚焦,各子孔径的声场相叠加,最后形成一个能覆盖所有接收线宽波束的声场;所述N和M均为大于2的整数,因此,所述子孔径的分类数量和分类方法有各种实施方式。
图3表示了将16个阵元的发射孔径分为4个子孔径的其中三种排布方法,中间的一行表示4个子孔径的阵元依次按顺序排布,第一行和最后一行表示4个子孔径的阵元按一定规律相间排布。所述子孔径的分组方法所遵循的限制准则在于合理设定阵元的指向角、阵元间距以及焦区位置,划分了子孔径后,子孔径中阵元间距有可能会变大,阵元的间距过大,会引起旁瓣和栅瓣的增大;阵元的指向角越小,则要求子孔径的阵元间距要足够小,否则子孔径形成的声场无法聚焦或者聚焦不理想,如果随着焦区的深度不同,可以分组的数量也应该有所限制,越浅的焦区的发射孔径分组数量应该越少。因此,在分组过程中,分组的数量以及分组的方法都可以通过这些参数的综合考虑来获得最优的分组方案。
将焦点深度位置根据发射孔径的中央两边等距设置与子孔径相同数量的子焦点,每个子焦点对应一个子孔径,该子孔径发射聚焦于该子焦点,如图4所示。假设FLen为焦区宽度,如果每次发射的接收扫描线数为RLnum,线间距为RLdist,那么可以知道发射声场的宽度D应该大于接收线涵盖的范围,即:
FLen=(RLnum-1)*RLdist 公式1
假设发射孔径分为K组,图5是划分子焦点的一个方法,焦区为发射孔径对应发射孔径中央区域,覆盖接收扫描线的范围,f1和fK分别设置于焦区两旁,其它点均匀分布于其中,即:
f1=-FLen/2
fK=FLen/2 公式2
fi=(i-1)□(fK-f1)/(K-1)+f1
假设{xi}(i=1…N)为发射孔径的N个阵元,发射孔径划分为K个子孔径,{Fk}(k=1…K)为子焦点,那么每个阵元的延时可以表示为:
G(xi)={Fk|xi所属的子孔径组属的子焦点}
Tdist(i)=d(xi,G(xi))/vsound 公式3
Tdelay(i)=max(Tdist(i))-Tdist(i)
其中,G(xi)表示的是xi对应的子焦点,vsound为声速,Tdist为阵元到对应子焦点声音需要的时间,Tdelay为该阵元的发射延时。
当每个阵元根据各自的延时发射后,得到的声场是可以分解的,每个子孔径都有其各自的子焦点,如图6所示,在每个子焦点的深度,得到的是子孔径发射声束聚焦于子焦点的声束,图6中表示有四个子焦点的情况,四个子孔径的声场互相叠加,得到一个宽波束声场,如图7所示,根据设计,该宽波束覆盖的区域覆盖了所有接收线的范围,因此,该区域的回波包括了所有接收线的信息,通过并行的波束合成方法,可以获得各条接收线的回波数据。
Claims (8)
1.一种超声波诊断系统中宽波束的发射方法,其特征在于:
将超声探头的发射孔径分成N个子孔径以及将焦点横向切分为N个子焦点,所述N个子孔径与所述N个子焦点建立一一对应关系,每个子孔径有M个阵元,全部都聚焦于与该子孔径对应的子焦点,脉冲发生器激励超声探头的N个子孔径获得一个横向拉伸的发射声场,所述N个子孔径的发射声场分别在其对应的子焦点聚焦,各子孔径的声场相叠加,最后形成一个能覆盖所有接收线宽波束的声场;所述N和M均为大于2的整数。
2.根据权利要求1所述的超声波诊断系统中宽波束的发射方法,其特征在于:所述发射孔径等距分成N个子孔径,所述焦点被横向切分为等距离分布的N个子焦点,每个子孔径有M个阵元,且全部都聚焦于与所述子孔径对应的子焦点。
3.根据权利要求1或2所述的超声波诊断系统中宽波束的发射方法,其特征在于:所述N个子孔径依次按顺序排布。
4.根据权利要求1或2所述的超声波诊断系统中宽波束的发射方法,其特征在于:所述N个子孔径的N*M个阵元相间排布。
5.一种超声波诊断系统中宽波束的发射装置,包括探头、发射/接收转换器和脉冲发生器;所述脉冲发生器根据发射波形与发射延时将数字信号转化为模拟电信号激励探头阵元,阵元受激振荡产生声波穿透机体组织并且产生回波,探头发射后进入接收模式;其特征在于:
所述探头的发射孔径分成N个子孔径,所述探头的焦点横向切分为N个子焦点,所述N个子孔径分别与所述N个子焦点建立一一对应关系,每个子孔径有M个阵元,全部都聚焦于与该子孔径对应的子焦点,脉冲发生器激励超声探头的N个子孔径获得一个横向拉伸的发射声场,所述N个子孔径的发射声场分别在其对应的子焦点聚焦,各子孔径的声场相叠加,最后形成一个能覆盖所有接收线宽波束的声场;所述N和M均为大于2的整数。
6.根据权利要求5所述的超声波诊断系统中宽波束的发射装置,其特征在于:所述N个子孔径和所述N个子焦点等距离分布,每个子孔径有M个阵元,且全部都聚焦于与所述子孔径对应的子焦点。
7.根据权利要求5所述的超声波诊断系统中宽波束的发射装置,其特征在于:所述N个子孔径依次按顺序排布。
8.根据权利要求5所述的超声波诊断系统中宽波束的发射装置,其特征在于:所述N个子孔径的N*M个阵元相间排布。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610157173.XA CN101190133B (zh) | 2006-11-28 | 2006-11-28 | 超声波诊断系统中宽波束的发射方法和装置 |
US11/855,418 US8057393B2 (en) | 2006-11-28 | 2007-09-14 | Method and device for transmission of a wide-beam in an ultrasonic diagnostic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610157173.XA CN101190133B (zh) | 2006-11-28 | 2006-11-28 | 超声波诊断系统中宽波束的发射方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101190133A CN101190133A (zh) | 2008-06-04 |
CN101190133B true CN101190133B (zh) | 2011-05-18 |
Family
ID=39464559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610157173.XA Active CN101190133B (zh) | 2006-11-28 | 2006-11-28 | 超声波诊断系统中宽波束的发射方法和装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US8057393B2 (zh) |
CN (1) | CN101190133B (zh) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8409099B2 (en) * | 2004-08-26 | 2013-04-02 | Insightec Ltd. | Focused ultrasound system for surrounding a body tissue mass and treatment method |
CN101313354B (zh) | 2005-11-23 | 2012-02-15 | 因赛泰克有限公司 | 超高密度超声阵列中的分级切换 |
US20100030076A1 (en) * | 2006-08-01 | 2010-02-04 | Kobi Vortman | Systems and Methods for Simultaneously Treating Multiple Target Sites |
EP2088932B1 (en) | 2006-10-25 | 2020-04-08 | Maui Imaging, Inc. | Method and apparatus to produce ultrasonic images using multiple apertures |
US9282945B2 (en) | 2009-04-14 | 2016-03-15 | Maui Imaging, Inc. | Calibration of ultrasound probes |
US9339256B2 (en) | 2007-10-01 | 2016-05-17 | Maui Imaging, Inc. | Determining material stiffness using multiple aperture ultrasound |
US9247926B2 (en) | 2010-04-14 | 2016-02-02 | Maui Imaging, Inc. | Concave ultrasound transducers and 3D arrays |
JP5666446B2 (ja) | 2008-08-08 | 2015-02-12 | マウイ イマギング,インコーポレーテッド | マルチアパーチャ方式の医用超音波技術を用いた画像形成方法及びアドオンシステムの同期方法 |
US8425424B2 (en) | 2008-11-19 | 2013-04-23 | Inightee Ltd. | Closed-loop clot lysis |
KR101659723B1 (ko) | 2009-04-14 | 2016-09-26 | 마우이 이미징, 인코포레이티드 | 복수 개구 초음파 어레이 정렬 설비 |
WO2011024074A2 (en) | 2009-08-26 | 2011-03-03 | Insightec Ltd. | Asymmetric phased-array ultrasound transducer |
US8661873B2 (en) * | 2009-10-14 | 2014-03-04 | Insightec Ltd. | Mapping ultrasound transducers |
US9192353B2 (en) * | 2009-10-27 | 2015-11-24 | Innurvation, Inc. | Data transmission via wide band acoustic channels |
CN102113900B (zh) * | 2010-01-05 | 2015-07-15 | 深圳迈瑞生物医疗电子股份有限公司 | 彩色血流动态帧相关方法和装置 |
CA2789129C (en) * | 2010-02-08 | 2017-08-22 | Dalhousie University | Ultrasound imaging system using beamforming techniques for phase coherence grating lobe suppression |
KR102121040B1 (ko) | 2010-02-18 | 2020-06-09 | 마우이 이미징, 인코포레이티드 | 초음파 이미지를 구성하는 방법 및 이를 위한 다중-개구 초음파 이미징 시스템 |
US9668714B2 (en) | 2010-04-14 | 2017-06-06 | Maui Imaging, Inc. | Systems and methods for improving ultrasound image quality by applying weighting factors |
US9852727B2 (en) | 2010-04-28 | 2017-12-26 | Insightec, Ltd. | Multi-segment ultrasound transducers |
US8932237B2 (en) | 2010-04-28 | 2015-01-13 | Insightec, Ltd. | Efficient ultrasound focusing |
WO2012051305A2 (en) | 2010-10-13 | 2012-04-19 | Mau Imaging, Inc. | Multiple aperture probe internal apparatus and cable assemblies |
EP2785253B1 (en) | 2011-12-01 | 2023-11-15 | Maui Imaging, Inc. | Motion detection using ping-based and multiple aperture doppler ultrasound |
US9265484B2 (en) | 2011-12-29 | 2016-02-23 | Maui Imaging, Inc. | M-mode ultrasound imaging of arbitrary paths |
CN104620128B (zh) | 2012-08-10 | 2017-06-23 | 毛伊图像公司 | 多孔径超声探头的校准 |
IN2015DN00764A (zh) | 2012-09-06 | 2015-07-03 | Maui Imaging Inc | |
US9510806B2 (en) | 2013-03-13 | 2016-12-06 | Maui Imaging, Inc. | Alignment of ultrasound transducer arrays and multiple aperture probe assembly |
US9883848B2 (en) | 2013-09-13 | 2018-02-06 | Maui Imaging, Inc. | Ultrasound imaging using apparent point-source transmit transducer |
EP3182900B1 (en) | 2014-08-18 | 2019-09-25 | Maui Imaging, Inc. | Network-based ultrasound imaging system |
US10856846B2 (en) | 2016-01-27 | 2020-12-08 | Maui Imaging, Inc. | Ultrasound imaging with sparse array probes |
US10315222B2 (en) | 2016-05-04 | 2019-06-11 | Invensense, Inc. | Two-dimensional array of CMOS control elements |
US10325915B2 (en) | 2016-05-04 | 2019-06-18 | Invensense, Inc. | Two-dimensional array of CMOS control elements |
US10445547B2 (en) | 2016-05-04 | 2019-10-15 | Invensense, Inc. | Device mountable packaging of ultrasonic transducers |
US10656255B2 (en) | 2016-05-04 | 2020-05-19 | Invensense, Inc. | Piezoelectric micromachined ultrasonic transducer (PMUT) |
US10670716B2 (en) * | 2016-05-04 | 2020-06-02 | Invensense, Inc. | Operating a two-dimensional array of ultrasonic transducers |
US10408797B2 (en) | 2016-05-10 | 2019-09-10 | Invensense, Inc. | Sensing device with a temperature sensor |
US10632500B2 (en) | 2016-05-10 | 2020-04-28 | Invensense, Inc. | Ultrasonic transducer with a non-uniform membrane |
US10441975B2 (en) | 2016-05-10 | 2019-10-15 | Invensense, Inc. | Supplemental sensor modes and systems for ultrasonic transducers |
US10562070B2 (en) | 2016-05-10 | 2020-02-18 | Invensense, Inc. | Receive operation of an ultrasonic sensor |
US11673165B2 (en) | 2016-05-10 | 2023-06-13 | Invensense, Inc. | Ultrasonic transducer operable in a surface acoustic wave (SAW) mode |
US10706835B2 (en) | 2016-05-10 | 2020-07-07 | Invensense, Inc. | Transmit beamforming of a two-dimensional array of ultrasonic transducers |
US10600403B2 (en) | 2016-05-10 | 2020-03-24 | Invensense, Inc. | Transmit operation of an ultrasonic sensor |
US10539539B2 (en) | 2016-05-10 | 2020-01-21 | Invensense, Inc. | Operation of an ultrasonic sensor |
US10452887B2 (en) | 2016-05-10 | 2019-10-22 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers |
US10891461B2 (en) | 2017-05-22 | 2021-01-12 | Invensense, Inc. | Live fingerprint detection utilizing an integrated ultrasound and infrared sensor |
US10474862B2 (en) | 2017-06-01 | 2019-11-12 | Invensense, Inc. | Image generation in an electronic device using ultrasonic transducers |
CN109069115B (zh) * | 2017-06-06 | 2020-09-25 | 深圳迈瑞生物医疗电子股份有限公司 | 一种在超声扫描中成像的方法、装置及系统 |
US10643052B2 (en) | 2017-06-28 | 2020-05-05 | Invensense, Inc. | Image generation in an electronic device using ultrasonic transducers |
CN107402388B (zh) * | 2017-07-19 | 2018-09-18 | 武汉启佑生物医疗电子有限公司 | 一种超声成像装置的宽声场成像方法 |
US10997388B2 (en) | 2017-12-01 | 2021-05-04 | Invensense, Inc. | Darkfield contamination detection |
US10936841B2 (en) | 2017-12-01 | 2021-03-02 | Invensense, Inc. | Darkfield tracking |
US10984209B2 (en) | 2017-12-01 | 2021-04-20 | Invensense, Inc. | Darkfield modeling |
US11151355B2 (en) | 2018-01-24 | 2021-10-19 | Invensense, Inc. | Generation of an estimated fingerprint |
US10755067B2 (en) | 2018-03-22 | 2020-08-25 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers |
US10936843B2 (en) | 2018-12-28 | 2021-03-02 | Invensense, Inc. | Segmented image acquisition |
CN109674491A (zh) * | 2019-02-13 | 2019-04-26 | 飞依诺科技(苏州)有限公司 | 超声成像宽波束发射方法及发射系统 |
US11188735B2 (en) | 2019-06-24 | 2021-11-30 | Invensense, Inc. | Fake finger detection using ridge features |
WO2020264046A1 (en) | 2019-06-25 | 2020-12-30 | Invensense, Inc. | Fake finger detection based on transient features |
US11176345B2 (en) | 2019-07-17 | 2021-11-16 | Invensense, Inc. | Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness |
US11216632B2 (en) | 2019-07-17 | 2022-01-04 | Invensense, Inc. | Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness |
US11232549B2 (en) | 2019-08-23 | 2022-01-25 | Invensense, Inc. | Adapting a quality threshold for a fingerprint image |
US11392789B2 (en) | 2019-10-21 | 2022-07-19 | Invensense, Inc. | Fingerprint authentication using a synthetic enrollment image |
CN115551650A (zh) | 2020-03-09 | 2022-12-30 | 应美盛公司 | 具有非均匀厚度的接触层的超声指纹传感器 |
US11243300B2 (en) | 2020-03-10 | 2022-02-08 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers and a presence sensor |
US11328165B2 (en) | 2020-04-24 | 2022-05-10 | Invensense, Inc. | Pressure-based activation of fingerprint spoof detection |
US11995909B2 (en) | 2020-07-17 | 2024-05-28 | Tdk Corporation | Multipath reflection correction |
CN116421218A (zh) * | 2021-10-22 | 2023-07-14 | 武汉联影医疗科技有限公司 | 一种超声波发射方法和系统 |
CN114098809B (zh) * | 2021-11-29 | 2024-07-12 | 无锡海鹰电子医疗系统有限公司 | 一种超声诊断仪发射系统及其快速优化方法 |
CN117379093B (zh) * | 2023-12-11 | 2024-03-15 | 深圳英美达医疗技术有限公司 | 一种基于环阵换能器的超声成像方法及超声探头系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6282963B1 (en) * | 1999-10-12 | 2001-09-04 | General Electric Company | Numerical optimization of ultrasound beam path |
US6585648B1 (en) * | 2002-11-15 | 2003-07-01 | Koninklijke Philips Electronics N.V. | System, method and machine readable program for performing ultrasonic fat beam transmission and multiline receive imaging |
US6926671B2 (en) * | 2002-02-05 | 2005-08-09 | Hitachi Medical Corporation | Ultrasonic imaging apparatus and method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482059B2 (en) * | 1997-05-09 | 2002-11-19 | Mccarthy Peter T. | High efficiency hydrofoil and swim fin designs |
US6193659B1 (en) * | 1997-07-15 | 2001-02-27 | Acuson Corporation | Medical ultrasonic diagnostic imaging method and apparatus |
US5951479A (en) * | 1998-09-29 | 1999-09-14 | General Electric Company | Method and apparatus for synthetic transmit aperture imaging |
US20020068869A1 (en) * | 2000-06-27 | 2002-06-06 | Axel Brisken | Drug delivery catheter with internal ultrasound receiver |
JP4022393B2 (ja) * | 2001-12-12 | 2007-12-19 | 株式会社日立メディコ | 超音波診断装置 |
US6905465B2 (en) * | 2002-04-05 | 2005-06-14 | Angelsen Bjoern A. J. | Corrections for pulse reverberations and phasefront aberrations in ultrasound imaging |
US20100217124A1 (en) * | 2006-06-27 | 2010-08-26 | Koninklijke Philips Electronics, N.V. | Ultrasound imaging system and method using multiline acquisition with high frame rate |
-
2006
- 2006-11-28 CN CN200610157173.XA patent/CN101190133B/zh active Active
-
2007
- 2007-09-14 US US11/855,418 patent/US8057393B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6282963B1 (en) * | 1999-10-12 | 2001-09-04 | General Electric Company | Numerical optimization of ultrasound beam path |
US6926671B2 (en) * | 2002-02-05 | 2005-08-09 | Hitachi Medical Corporation | Ultrasonic imaging apparatus and method |
US6585648B1 (en) * | 2002-11-15 | 2003-07-01 | Koninklijke Philips Electronics N.V. | System, method and machine readable program for performing ultrasonic fat beam transmission and multiline receive imaging |
Non-Patent Citations (1)
Title |
---|
JP特开2006-223737A 2006.08.31 |
Also Published As
Publication number | Publication date |
---|---|
US20080125660A1 (en) | 2008-05-29 |
CN101190133A (zh) | 2008-06-04 |
US8057393B2 (en) | 2011-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101190133B (zh) | 超声波诊断系统中宽波束的发射方法和装置 | |
CN101190134B (zh) | 超声波诊断系统中的多波束发射和接收方法及其装置 | |
US20210338205A1 (en) | System and Method for Shear Wave Elastography by Transmitting Ultrasound with Subgroups of Ultrasound Transducer Elements | |
CN102667522B (zh) | 采用聚焦扫描线波束形成的超声剪切波成像 | |
CN106061398B (zh) | 超声成像方法和系统 | |
CN105530870B (zh) | 一种超声成像方法和系统 | |
US20100217124A1 (en) | Ultrasound imaging system and method using multiline acquisition with high frame rate | |
CN104487002B (zh) | 超声波检查装置 | |
US11391838B2 (en) | Ultrasound transducer arrays with variable patch geometries | |
US20080119735A1 (en) | Ultrasound imaging system and method with offset alternate-mode line | |
CN107949331A (zh) | 超声流体频谱多普勒成像方法和系统 | |
US20180348624A1 (en) | Three-Dimensional (3-D) Imaging with a Row-Column Addressed (RCA) Transducer Array using Synthetic Aperture Sequential Beamforming (SASB) | |
CN100586395C (zh) | 等相位二维阵列探头 | |
CN111110277B (zh) | 超声成像方法、超声设备及存储介质 | |
JP2006506159A (ja) | 超音波画像化システムにおいてマルチラインビームからbフローデータとbモードデータとを取得する方法および装置 | |
US8430819B2 (en) | System and method for ultrasound imaging with a configurable receive aperture | |
US20240366969A1 (en) | Focused ultrasound treatment system based on ultrasound imaging | |
US20100191115A1 (en) | Ultrasound imaging system and method | |
CN107970043B (zh) | 一种剪切波的检测方法及装置 | |
US10304226B2 (en) | Ultrasound focal zone system and method | |
CN112368600B (zh) | 通过稀疏采样进行的超声成像和相关联的设备、系统和方法 | |
US20050075570A1 (en) | Ultrasonic diagnosing apparatus | |
CN100594392C (zh) | 多区彩色多普勒波束发射方法 | |
Bera et al. | Three-dimensional beamforming combining micro-beamformed RF datasets | |
Jensen et al. | A method for real-time three-dimensional vector velocity imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20080604 Assignee: Shenzhen Mindray Animal Medical Technology Co.,Ltd. Assignor: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS Co.,Ltd. Contract record no.: X2022440020009 Denomination of invention: Method and device for transmitting wide beam in ultrasonic diagnostic system Granted publication date: 20110518 License type: Common License Record date: 20220804 |