CN101089754A - Optimizing method of pressure system in hot-pressing process of resin-based composites equal-thick laminates - Google Patents
Optimizing method of pressure system in hot-pressing process of resin-based composites equal-thick laminates Download PDFInfo
- Publication number
- CN101089754A CN101089754A CNA200710117730XA CN200710117730A CN101089754A CN 101089754 A CN101089754 A CN 101089754A CN A200710117730X A CNA200710117730X A CN A200710117730XA CN 200710117730 A CN200710117730 A CN 200710117730A CN 101089754 A CN101089754 A CN 101089754A
- Authority
- CN
- China
- Prior art keywords
- parameter
- fiber
- unit
- volume fraction
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
技术领域:Technical field:
本发明涉及一种热压工艺的优化方法,具体地说,是指一种适用于树脂基复合材料等厚层板热压工艺过程压力制度的优化方法,是通过计算机、树脂基复合材料热压成型模拟单元、工艺参数优化目标与方法单元实现的,采用本发明方法能够在脱离实际生产线条件下快速确定满足目标要求的优化压力制度,并且优化的工艺制度可以与热压成型数控系统相结合,指导树脂基复合材料等厚层板热压成型工业化作业。The present invention relates to an optimization method of hot pressing process, specifically, it refers to an optimization method suitable for the pressure system of thick laminated board hot pressing process such as resin-based composite materials, which is achieved by computer, resin-based composite material hot pressing The forming simulation unit, process parameter optimization target and method unit are realized. The method of the present invention can quickly determine the optimized pressure system that meets the target requirements under the condition of being separated from the actual production line, and the optimized process system can be combined with the hot-press forming numerical control system. Guide the industrial operation of hot-press forming of thick laminates such as resin-based composite materials.
背景技术:Background technique:
热压成型一直是航空航天领域生产主承力结构先进树脂基复合材料制件最重要的工艺方法,然而高昂的制造成本严重制约了它的发展和应用。目前造成先进树脂基复合材料构件制造成本过高的主要原因如下:(1)研制模式落后,研制周期长、效率低。当前研制复合材料结构都是采用试验摸索,先是试样的试验,再做缩比件试验,经过反复数次确定制造工艺,研制周期长;复合材料结构工艺参数的优化都是凭经验和试验,费用高,科学性差。(2)制造规范不通用。针对某一复合材料构件从大量试验摸索形成的一种较合理的制造工艺规范,只适用这一特定情况,复合材料构件结构形式一旦改变,又需要新做大量试验,耗资耗时。(3)制件质量可控性差,造成复合材料性能分散,材料许用值低,构件合格率低。解决先进树脂基复合材料制造成本过高的主要方法:开展制造过程数值模拟和优化,发展新型高效低成本制造技术。其核心是在弄清制造过程热化学、热物理变化的基础上,实现研制模式的转变和制造过程的模拟与优化。Thermocompression molding has always been the most important process for the production of advanced resin matrix composite parts with main load-bearing structures in the aerospace field. However, the high manufacturing cost seriously restricts its development and application. At present, the main reasons for the high manufacturing cost of advanced resin matrix composite components are as follows: (1) The development mode is backward, the development cycle is long, and the efficiency is low. At present, the development of composite material structures is based on experimentation. First, the test of the sample, and then the scale test. After repeated several times to determine the manufacturing process, the development cycle is long; the optimization of the process parameters of the composite material structure is based on experience and experiments. High cost and poor science. (2) Manufacturing specifications are not universal. A relatively reasonable manufacturing process specification for a certain composite material component formed from a large number of experiments is only applicable to this specific situation. Once the structural form of the composite material component is changed, a large number of new tests are required, which is costly and time-consuming. (3) The controllability of the quality of the parts is poor, resulting in scattered performance of the composite material, low allowable value of the material, and low qualification rate of the component. The main method to solve the high manufacturing cost of advanced resin-based composite materials: carry out numerical simulation and optimization of the manufacturing process, and develop new high-efficiency and low-cost manufacturing technologies. Its core is to realize the transformation of the development mode and the simulation and optimization of the manufacturing process on the basis of clarifying the thermochemical and thermophysical changes in the manufacturing process.
在热压成型中,树脂基复合材料在热和压力作用下发生一系列物理、化学变化和化学-物理的耦合变化,包括热传导、固化放热、树脂流动、纤维密实等,它们一方面决定着最终制件性能,反映工艺参数的合理性;另一方面又受到原材料特性和制件形状的影响。树脂基复合材料热压成型典型工艺制度(参见图1C所示)包括有温度与时间的关系(又称温度制度)、压力与时间的关系(又称压力制度,即压力大小和加压时机)。成型压力决定着树脂流动过程驱动力的大小,同时压力大小和加压时机是影响最终层板纤维含量、分布均匀性以及层板厚度的主要因素,建立成型过程数学模型和工艺参数优化方法,采用计算机及数值技术,在脱离生产线的情况下,预测制件成型质量、评价成型工艺、优化工艺参数,快速制定满足目标要求的最佳工艺制度,是目前实现树脂基复合材料低成本、高品质制造的科学途径之一。In thermocompression molding, resin-based composites undergo a series of physical, chemical and chemical-physical coupling changes under the action of heat and pressure, including heat conduction, curing exotherm, resin flow, fiber compaction, etc. On the one hand, they determine The performance of the final part reflects the rationality of the process parameters; on the other hand, it is affected by the characteristics of the raw material and the shape of the part. The typical process system of thermocompression molding of resin-based composite materials (see Figure 1C) includes the relationship between temperature and time (also known as the temperature system), the relationship between pressure and time (also known as the pressure system, that is, the size of the pressure and the timing of pressurization) . The molding pressure determines the driving force of the resin flow process. At the same time, the pressure and the timing of pressurization are the main factors affecting the fiber content, distribution uniformity and thickness of the final laminate. The mathematical model of the molding process and the optimization method of the process parameters are established. Computer and numerical technology can predict the molding quality of parts, evaluate the molding process, optimize process parameters, and quickly formulate the best process system to meet the target requirements when they are out of the production line. one of the scientific approaches.
发明内容:Invention content:
本发明的目的是提出一种等厚层板热压过程压力制度的优化方法,是一种适用于提高树脂基复合材料制件热压成型质量的工艺优化方法。该方法通过遗传算法,结合树脂基复合材料热压成型模拟单元树脂流动与纤维密实关系式G1和纤维承载压力与纤维体积分数关系式G2,在温度制度的基础上,可以对压力大小和加压时机进行优化,获得满足目标纤维体积分数及其分布均匀,效率最高且工程可行的压力制度。采用本发明获取的优化工艺参数与热压成型中的数控系统相结合,可以指导树脂基复合材料等厚层板热压成型的工业化作业,缩短研制周期、降低制造成本,提高产品质量。The purpose of the present invention is to propose a method for optimizing the pressure system of the hot-pressing process of equal-thickness laminates, which is a process optimization method suitable for improving the quality of hot-pressing forming of resin-based composite material parts. This method combines the relationship between resin flow and fiber compaction G 1 and the relationship between fiber bearing pressure and fiber volume fraction G 2 in the thermal compression molding simulation unit of resin matrix composites through genetic algorithm. Based on the temperature system, the pressure and The timing of pressurization is optimized to obtain a pressure system that meets the target fiber volume fraction and its uniform distribution, the highest efficiency and engineering feasibility. Combining the optimized process parameters obtained by the present invention with the numerical control system in hot press forming can guide the industrial operation of hot press forming of thick laminates such as resin-based composite materials, shorten the development cycle, reduce manufacturing costs, and improve product quality.
本发明是一种利用计算机模拟对树脂基复合材料等厚层板热压工艺的压力制度进行优化的数字化方法,该PCO(Pressure Cycle Optimization)方法包括制件构形与网格剖分单元1、成型工艺参数设置单元2、材料特性数据库单元3、树脂基复合材料热压成型模拟单元4、制件质量预测单元5、工艺参数优化目标与方法单元6、优化工艺参数单元7。所述层板质量预测单元5,在已知所述制件构形和初始设置参量F1的条件下,通过拾取所述成型工艺参数设置单元2中的工艺参量F2和所述材料特性数据库单元3中的材料参量F2,并将初始设置参量F1、工艺参量F2和材料参量F3在所述树脂基复合材料热压成型模拟单元4中处理,获得决定层板质量的参量,存储在制件质量预测单元5中。所述优化工艺参数单元7,在拾取所述制件构形与网格剖分单元1中制件初始设置参量F1,拾取所述成型工艺参数设置单元2中的工艺参量F2和所述材料特性数据库单元3中的材料参量F3,在所述树脂基复合材料热压成型模拟单元4中处理,获得决定层板质量的参量,并与所述工艺参数优化目标与方法单元6中的优化目标参量F4进行比较,结合相应的工艺参数优化方法,调整成型工艺参数,得到满足优化目标参量F4的工艺制度参数,输出并存储在优化工艺参数单元7中。运用本发明PCO方法,在温度制度的基础上,可以对压力大小和加压时机进行优化,获得满足目标纤维体积分数及其分布均匀,效率最高且工程可行的压力制度。The present invention is a digital method for optimizing the pressure regime of the hot-pressing process of resin-based composite materials and other thick laminates by using computer simulation. The PCO (Pressure Cycle Optimization) method includes a workpiece configuration and
本发明树脂基复合材料等厚层板热压工艺过程压力制度优化(PCO)方法具有如下优点:The pressure system optimization (PCO) method of the hot-pressing process of thick laminates such as resin-based composite materials of the present invention has the following advantages:
一、制件构形与网格剖分单元1、成型工艺参数设置单元2通过可视化的界面进行参数设置,将其引入树脂基复合材料热压成型的模拟单元4中,其操作简单,模拟效率高,实时性强;1. Part configuration and
二、采用较为成熟的材料特性数据库3,使模拟所需的与树脂和纤维特性相关参量的准确度得到了保证,因此模拟精度高;2. Using a relatively mature
三、树脂基复合材料热压成型模拟单元4基于数学模型与计算机技术相结合,能够对树脂基复合材料等厚层板热压成型中树脂流动与纤维密实过程进行模拟,能预测层板厚度和纤维体积分数,避免工业化生产中出现层板内纤维分布不均匀等成型问题;3. Resin matrix composite material thermoforming simulation unit 4 is based on the combination of mathematical models and computer technology. It can simulate the process of resin flow and fiber compaction in the thermocompression molding of resin matrix composite materials with equal thickness laminates, and can predict the thickness and density of laminates. Fiber volume fraction, to avoid molding problems such as uneven distribution of fibers in the laminate in industrial production;
四、工艺参数优化目标与方法单元6、树脂基复合材料热压成型模拟单元4相结合与制件质量预测单元5,采用遗传算法能够在脱离实际生产线状态下优化压力制度,优化工艺参数7与热压成型数控系统相结合,可以指导树脂基复合材料等厚层板热压成型的工业化作业,缩短研制周期、降低制造成本,提高产品质量。4. Process parameter optimization target and
附图说明:Description of drawings:
图1为树脂基复合材料热压成型模拟系统的结构示意框图。Figure 1 is a schematic block diagram of the simulation system for thermocompression molding of resin-based composite materials.
图1A为本发明等厚层板初始条件设置单元的设置界面示意图。Fig. 1A is a schematic diagram of the setting interface of the unit for setting the initial conditions of the equal-thickness laminate of the present invention.
图1B为本发明成型工艺参数设置单元的设置界面示意图。FIG. 1B is a schematic diagram of the setting interface of the molding process parameter setting unit of the present invention.
图1C为本发明树脂基复合材料热压成型典型工艺制度示意图。Fig. 1C is a schematic diagram of a typical process system for thermocompression molding of the resin-based composite material of the present invention.
图1D为本发明优化目标设置的界面示意图。FIG. 1D is a schematic diagram of an interface for setting optimization goals in the present invention.
图2为本发明层板模型结构示意图。Fig. 2 is a structural schematic diagram of the laminate model of the present invention.
图3为T700SC碳纤维/环氧5228树脂层板的结构示意图。Figure 3 is a structural schematic diagram of the T700SC carbon fiber/epoxy 5228 resin laminate.
图3A为T700SC碳纤维/环氧5228树脂层板的网络剖分示意图。Fig. 3A is a schematic diagram of the network division of the T700SC carbon fiber/epoxy 5228 resin laminate.
图3B为T700SC碳纤维/环氧5228树脂层板的计算机界面。Figure 3B is the computer interface of the T700SC carbon fiber/epoxy 5228 resin laminate.
图4为t=3000s层板厚度方向纤维体积分数分布。Figure 4 shows the fiber volume fraction distribution in the thickness direction of the laminate at t=3000s.
图5为t=3000s层板厚度方向纤维承载压力分布。Figure 5 shows the distribution of fiber bearing pressure in the thickness direction of the laminate at t=3000s.
具体实施方式:Detailed ways:
下面将结合附图和实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
本发明是一种利用计算机模拟对树脂基复合材料等厚层板热压工艺的压力制度进行优化的数字化方法,所述压力制度优化方法简称为PCO(Pressure CycleOptimization)方法,PCO方法包括制件构形与网格剖分单元1、成型工艺参数设置单元2、材料特性数据库单元3、树脂基复合材料热压成型模拟单元4、制件质量预测单元5、工艺参数优化目标与方法单元6、优化工艺参数单元7(参见图1所示)。The present invention is a digital method for optimizing the pressure system of the hot-pressing process of resin-based composite materials and other thick laminates by using computer simulation. The pressure system optimization method is referred to as the PCO (Pressure Cycle Optimization) method for short. Shape and
所述层板质量预测单元5,在已知所述制件构形和初始设置参量F1的条件下,通过拾取所述成型工艺参数设置单元2中的工艺参量F2和所述材料特性数据库单元3中的材料参量F2,并将初始设置参量F1、工艺参量F2和材料参量F3在所述树脂基复合材料热压成型模拟单元4中处理,获得决定层板质量的参量,存储在制件质量预测单元5中。The laminate
所述优化工艺参数单元7,在拾取所述制件构形与网格剖分单元1中制件初始设置参量F1,拾取所述成型工艺参数设置单元2中的工艺参量F2和所述材料特性数据库单元3中的材料参量F3,在所述树脂基复合材料热压成型模拟单元4中处理,获得决定层板质量的参量,并与所述工艺参数优化目标与方法单元6中的优化目标参量F4进行比较,结合相应的工艺参数优化方法,调整成型工艺参数,得到满足优化目标参量F4的工艺制度参数,输出并存储在优化工艺参数单元7中。The optimization
参见图1A所示,在本发明中,制件构形与网格单元1中的制件初始设置参量F1包括吸胶方式、预浸料初始纤维体积分数、预浸料铺层层数、层板初始厚度,这些参量可以通过界面方式录入。As shown in Fig. 1A, in the present invention, the initial configuration parameters F1 of the part in the part configuration and
参见图1B所示,在本发明中,成型工艺参数设置单元中的工艺参量F2包括有温度-时间关系、外加正压力、真空度、加压时机,这些参量可以通过界面方式进行参数录入,也可以通过数学模型解析获得后存储于计算机中,等待运用时提取相应的文件即可。Referring to Fig. 1B, in the present invention, the process parameter F2 in the molding process parameter setting unit includes temperature-time relationship, external positive pressure, vacuum degree, and pressurization timing, and these parameters can be entered through the interface. It can also be obtained through mathematical model analysis and stored in the computer, and the corresponding files can be extracted when waiting for use.
参见图1C所示,树脂基复合材料热压成型典型工艺制度示意图,包括有温度与时间的关系(又称温度制度)、压力与时间的关系(又称压力制度)。图中,横坐标tc是指工艺时间(单位:s),0~tc1表示第一段工艺时间,tc1~tc2表示第二段工艺时间,tc2~tc3表示第三段工艺时间,tc3~tc4表示第四段工艺时间;左边纵坐标T是指在有效工艺时间内的热压成型温度,T1表示在第一段工艺时间初始温度,T1取值为18~33℃;T2表示在第二段工艺时间的温度,T2取值为70~160℃;T3表示在第四段工艺时间的温度,T3取值为100~210℃。在第四段工艺时间之后自然冷却至室温。横坐标tcjia表示加压时刻(又称加压时机),以工艺时间的零点为基准;右边纵坐标是指在有效工艺时间内的热压成型压力,P1表示真空度,P1取值为0.0~0.1MPa;P2表示tcjia之前层板所受环境大气压,通常P2取值为0.1MPa;P2表示tcjia之后施加的外力(是指表压),P3取值为0.1~2.0MPa。Referring to FIG. 1C , a schematic diagram of a typical process system for thermocompression molding of resin-based composite materials, including the relationship between temperature and time (also known as temperature system), and the relationship between pressure and time (also known as pressure system). In the figure, the abscissa t c refers to the process time (unit: s), 0 ~ t c1 represents the first stage of process time, t c1 ~ t c2 represents the second stage of process time, t c2 ~ t c3 represents the third stage of process Time, t c3 ~ t c4 represent the fourth process time; the left ordinate T refers to the hot pressing forming temperature within the effective process time, T 1 represents the initial temperature in the first process time, T 1 takes a value of 18 ~ 33°C; T 2 means the temperature in the second stage of process time, and the value of T 2 is 70-160°C; T 3 means the temperature in the fourth stage of process time, and the value of T 3 is 100-210°C. Naturally cool to room temperature after the fourth process time. The abscissa tcjia represents the moment of pressurization (also known as the timing of pressurization), based on the zero point of the process time; the ordinate on the right refers to the hot pressing pressure within the effective process time, P 1 represents the degree of vacuum, and the value of P 1 It is 0.0~0.1MPa; P 2 represents the ambient atmospheric pressure of the laminate before t cjia , usually the value of P 2 is 0.1MPa; P 2 represents the external force (referring to the gauge pressure) applied after t cjia , and the value of P 3 is 0.1 ~2.0 MPa.
在本发明中,材料特性数据库单元3中的材料参量F3包括有树脂种类、纤维种类、织物类型、铺层方式;所述树脂种类是环氧树脂、酚醛树脂、氰酸酯树脂、双马树脂等;所述纤维种类是玻璃纤维、碳纤维、芳纶纤维、玄武岩纤维等;所述织物类型是单向预浸料、单向织物、平纹织物、斜纹织物、缎纹织物等;所述铺层方式包括单向铺层、正交铺层、准各向同性铺层等;树脂种类的不同,其粘度模型以及模型中涉及参数的取值不同,可以采用流变仪测试得到;纤维种类、织物类型、铺层方式影响纤维层渗透率、纤维层的压缩特性,采用实验室自行设计的测试装置进行测量;材料特性数据库包含了所述与树脂种类相关联的粘度数据、所述与纤维种类、织物类型、铺层方式相关联的渗透率、压缩特性数据,是北京航空航天大学材料学院经多年对树脂基复合材料体系进行实验研究、测试、测量获得的,具有准确性、可靠性,曾被北京市聚合物基复合材料技术实验室用作工艺分析的数据源之一。In the present invention, the material parameter F 3 in the material
在本发明中,所述压力制度的优化是在热压成型中设定温度制度条件下,分别对工艺压力Pc和加压时机进行优化。所述压力制度包括工艺压力Pc和加压时机,所述温度制度与树脂相关,所述工艺压力Pc是指外加压力Pa与真空度Pb之和,外加正压力Pa是指热压罐气压或热压机机械压,真空度Pb是指预浸料封装体系内的真度,所述工艺压力Pc的优化是在温度制度和加压时机确定的条件下,通过遗传算法得到满足目标所需工艺压力值。所述加压时机的优化是在温度制度和工艺压力值确定的条件下,通过遗传算法得到满足目标所需加压时机。In the present invention, the optimization of the pressure regime is to optimize the process pressure P c and pressurization timing respectively under the condition of setting the temperature regime in the hot press forming. The pressure system includes the process pressure P c and pressurization timing, the temperature system is related to the resin, the process pressure P c refers to the sum of the applied pressure P a and the degree of vacuum P b , and the applied positive pressure P a refers to the heat Pressure tank pressure or hot press mechanical pressure, the vacuum degree Pb refers to the true degree in the prepreg packaging system, and the optimization of the process pressure Pc is carried out by genetic algorithm under the conditions of temperature system and pressurization timing Get the process pressure value required to meet the target. The optimization of the pressurization timing is to obtain the pressurization timing required to meet the target through the genetic algorithm under the condition that the temperature regime and the process pressure value are determined.
在本发明中,工艺参数优化目标与方法单元6,采用遗传算法进行优化;参见图1D所示,所述工艺参数优化目标与方法单元6中的优化目标参量F4是目标平均纤维体积分数。In the present invention, the process parameter optimization target and
在本发明中,公知计算机的最低要求为CPU PIV 1.8G以上,内存256M以上,硬盘20G以上。借用计算机所固有的运算特性,树脂基复合材料热压成型过程的数字化模拟方法操作方便、模拟结果精确。通过计算机模拟能够有效地缩短研制周期、降低研制成本,提高制件质量。In the present invention, the minimum requirement of the known computer is more than 1.8G of CPU PIV, more than 256M of memory, and more than 20G of hard disk. Borrowing the inherent computing characteristics of the computer, the digital simulation method of the hot pressing molding process of resin-based composite materials is easy to operate and the simulation results are accurate. Computer simulation can effectively shorten the development cycle, reduce development costs and improve the quality of parts.
在本发明中,在温度制度和加压时机确定的条件下,工艺压力Pc的优化步骤有:In the present invention, under the condition that the temperature regime and pressurization timing are determined, the optimization steps of the process pressure Pc include:
第一步:在工艺压力Pc(0.1<Pc<2.0MPa)条件下,拾取适应度函数Fi;Step 1: Under the condition of process pressure P c (0.1<P c <2.0MPa), pick the fitness function Fi;
所述适应度函数
第二步:在确定的工艺压力Pc范围内,拾取可行解群体;The second step: within the determined process pressure P c range, pick the feasible solution group;
第三步:在所述树脂基复合材料热压成型模拟单元4中解析可行解群体中每个可行解所对应的层板平均纤维体积分数 Step 3: Analyzing the average fiber volume fraction of laminates corresponding to each feasible solution in the feasible solution group in the resin-based composite material thermocompression molding simulation unit 4
所述在树脂基复合材料热压成型模拟单元4中解析层板平均纤维体积分数 的步骤有:The analysis of the average fiber volume fraction of the laminate in the resin-based composite material thermocompression molding simulation unit 4 The steps are:
第1步:在所述制件构形与网格剖分单元1中提取制件初始设置参量F1(参见图1A所示);在本发明中,根据制件初始设置参量F1中层板初始厚度,采用计算机技术对等厚层板进行三维模型(参见图2所示),并对建立获得三维层板图形进行网格剖分处理,获得带有节点的层板模型(参见图3A所示),并将所述节点层板模型保存为一个文本格式文件(*.TXT);所述文本格式文件可以方便以后模拟所需参数的提取。图2中,x轴表示层板模型的长度方向,z轴表示层板模型的厚度方向。Step 1: Extract the initial setting parameter F1 of the part in the part configuration and meshing unit 1 (see Fig. 1A); in the present invention, according to the initial setting parameter F1 of the part, the middle plate For the initial thickness, computer technology is used to carry out a three-dimensional model of equal-thickness laminates (see Figure 2), and the established three-dimensional laminate graphics are meshed to obtain a laminate model with nodes (see Figure 3A). shown), and save the node laminate model as a text format file (*.TXT); the text format file can facilitate the extraction of parameters required for future simulations. In Fig. 2, the x-axis represents the length direction of the laminate model, and the z-axis represents the thickness direction of the laminate model.
第2步:在所述成型工艺参数设置单元2中提取工艺参量F2,其中工艺压力Pc取值从第二步可行解群体中获得;Step 2: Extract the process parameter F 2 in the molding process
第3步:在所述材料特性数据库单元3中提取材料参量F3;Step 3: Extract material parameter F 3 in the material
第4步:在所述树脂基复合材料热压成型模拟单元4获取树脂流动与纤维密实关系式G1和纤维承载压力与纤维体积分数关系式G2,采用有限差分和牛顿迭代方法,可以解析得到层板内纤维承载压力Pf以及纤维体积分数Vf,根据层板内不同位置的纤维体积分数,解析得到层板的平均纤维体积分数 Step 4: Obtain the relational expression G 1 between resin flow and fiber compaction and the relational expression G 2 between fiber bearing pressure and fiber volume fraction in the resin-based composite material thermocompression molding simulation unit 4, and use finite difference and Newton iterative methods to analyze Obtain the fiber bearing pressure P f and fiber volume fraction V f in the laminate, and analyze the average fiber volume fraction of the laminate according to the fiber volume fraction at different positions in the laminate
所述树脂流动与纤维密实关系式The relationship between resin flow and fiber compaction
所述纤维承载压力与纤维体积分数关系式The fiber bearing pressure and fiber volume fraction relational expression
第四步:在所述工艺优化目标与方法单元6中提取工艺优化的目标平均纤维体积分数
将目标平均纤维体积分数
和第三步解析得到的平均纤维体积分数
代入适应度函数Fi,解析适应度值,按照适应度值的大小来评价可行解的好坏;以优胜劣汰的机制,将适应度差的染色体淘汰掉,对幸存的染色体根据其适应度值的好坏,按概率随机选择,进行繁殖,形成新的群体;通过杂交和变异的操作,产生子代,杂交是随机选择两条染色体(双亲),将某一点或多点的基因互换而产生两个新个体;变异是基因中的某一点或多点发生突变;Step 4: Extract the target average fiber volume fraction of process optimization in the process optimization target and
第五步:对子代群体重复第三步、第四步的操作,进行新一轮遗传进化过程,直到适应度值满足停止规则,迭代停止,即找到了最优解。Step 5: Repeat the operations of
在本发明中,在温度制度和工艺压力大小确定的条件,加压时机的优化步骤有:In the present invention, under the condition that the temperature regime and process pressure are determined, the optimization steps of pressurization timing include:
第一步:在加压时机tcjia(0<tcjia<120min)条件下,拾取适应度函数Ei;Step 1: Under the condition of pressurization timing t cjia (0<t cjia <120min), pick the fitness function Ei;
所述适应度函数
第二步:在确定的范围加压时机内,拾取可行解群体;Step 2: Pick the group of feasible solutions within the determined scope and pressurization time;
第三步、第四步、第五步解析方法与工艺压力大小的优化方法相同。在本发明中制件初始设置参量F1中的层板初始厚度
在本发明中,树脂基复合材料热压成型模拟单元4中的解析如下:In the present invention, the analysis in the simulation unit 4 of resin-based composite material thermocompression molding is as follows:
(一)树脂流动与纤维密实关系式G1:(1) The relationship between resin flow and fiber compaction G 1 :
式中,Pf表示纤维承载压力,Pc表示工艺压力,t表示模拟时间,Vf表示纤维体积分数,V0表示预浸料初始纤维体积分数,z表示层板厚度方向,Szz表示层板厚度方向渗透率,μ表示树脂粘度;In the formula, P f represents the fiber bearing pressure, P c represents the process pressure, t represents the simulation time, V f represents the fiber volume fraction, V 0 represents the initial fiber volume fraction of the prepreg, z represents the thickness direction of the laminate, and S zz represents the ply Permeability in the thickness direction of the plate, μ represents the viscosity of the resin;
在式(1)中,纤维承载压力的初始条件为:在层板内任意位置Pf=0。In formula (1), the initial condition of the fiber bearing pressure is: P f =0 at any position in the laminate.
在式(1)中设定的边界条件为:The boundary conditions set in formula (1) are:
在铺放吸胶材料的边界:On the border where the suction material is placed:
Pf=Pc (2)P f =P c (2)
式中,Pc表示工艺压力,且满足Pc=Pa+Pb,即工艺压力是外加正压力Pa与真空度Pb之和;In the formula, P c represents the process pressure, and it satisfies P c = Pa + P b , that is, the process pressure is the sum of the applied positive pressure P a and the degree of vacuum P b ;
在没有铺放吸胶材料的边界或上下表面对称吸胶铺层结构的中心面的边界:On the boundary where no adhesive material is laid or the boundary of the center plane of the upper and lower surface symmetrical adhesive layer structure:
式中,Pf表示纤维承载压力,Vf表示纤维体积分数,z表示层板厚度方向。根据式(1)和初始及边界条件,采用有限差分方法解析纤维承载压力Pf。In the formula, P f represents the fiber bearing pressure, V f represents the fiber volume fraction, and z represents the thickness direction of the laminate. According to formula (1) and the initial and boundary conditions, the finite difference method is used to analyze the fiber bearing pressure P f .
(二)纤维承载压力与纤维体积分数满足关系式G2:(2) Fiber bearing pressure and fiber volume fraction satisfy the relation G 2 :
式中,Pf表示纤维承载压力,Vf表示纤维体积分数,E表示纤维的弯曲模量,β表示在热压成型过程中纤维层在有压力条件下的变形能力的特性系数,简称纤维层压缩特性系数,V0表示预浸料初始纤维体积分数,Va表示根据纤维六方密实堆积条件下的纤维体积分数,为一常数,简称密实堆积纤维体积分数。In the formula, P f represents the fiber bearing pressure, V f represents the fiber volume fraction, E represents the flexural modulus of the fiber, and β represents the characteristic coefficient of the deformation ability of the fiber layer under pressure during the thermocompression forming process, referred to as the fiber layer Compression characteristic coefficient, V 0 represents the initial fiber volume fraction of the prepreg, and V a represents the fiber volume fraction under the condition of fiber hexagonal dense packing, which is a constant, referred to as densely packed fiber volume fraction.
(三)为了从纤维承载压力Pf高效快速地求出纤维体积分数Vf,首先从迭代次数为0开始, 即
式中,m表示迭代次数,Vf m表示迭代m次的纤维体积分数,Pf表示纤维承载压力,P表示当前时刻纤维承载压力;In the formula, m represents the number of iterations, V f m represents the fiber volume fraction of iteration m times, P f represents the fiber bearing pressure, and P represents the fiber bearing pressure at the current moment;
(四)本发明中树脂承载压力Pf与纤维承载压力Pf关系为:(4) in the present invention, the relationship between resin load-bearing pressure Pf and fiber load-bearing pressure Pf is:
Pr=Pc-Pf (6)P r =P c -P f (6)
式中,Pr表示树脂承载压力,Pf表示纤维承载压力,Pc表示工艺压力;通过式(6)解析得到树脂承载压力Pr。In the formula, P r represents the bearing pressure of the resin, P f represents the bearing pressure of the fiber, and P c represents the process pressure; the resin bearing pressure P r is obtained by analyzing the formula (6).
(五)本发明中层板厚度h与纤维体积分数Vf关系为:(5) the relationship between the middle laminate thickness h of the present invention and the fiber volume fraction V f is:
式中,h表示层板厚度,V0表示预浸料初始纤维体积分数,Dz预浸料片层初始厚度,N表示预浸料铺层层数,i表示第i纤维层,Vf i表示第i纤维层纤维体积分数;通过式(7)解析得到层板厚度h。In the formula, h represents the thickness of the laminate, V 0 represents the initial fiber volume fraction of the prepreg, D z represents the initial thickness of the prepreg sheet, N represents the number of prepreg layup layers, i represents the i-th fiber layer, V f i Indicates the fiber volume fraction of the i-th fiber layer; through the analysis of formula (7), the thickness h of the laminate can be obtained.
(六)本发明中,层板平均纤维体积分数 与纤维体积分数Vf关系为:(6) in the present invention, laminate average fiber volume fraction The relationship with fiber volume fraction V f is:
式中,N表示预浸料铺层层数,i表示第i纤维层,Vf i表示第i纤维层纤维体积分数, 表示平均纤维体积分数;通过式(8)得到层板平均纤维体积分数 In the formula, N represents the number of prepreg plies, i represents the i-th fiber layer, V f i represents the fiber volume fraction of the i-th fiber layer, Indicates the average fiber volume fraction; the average fiber volume fraction of the laminate is obtained by formula (8)
实施例1:单向铺30层的T700SC碳纤维/环氧5228树脂等厚层板,其工艺压力大小的优化。 Example 1: The optimization of the process pressure of 30-layer T700SC carbon fiber/epoxy 5228 resin and other thick laminates in one direction.
实施例1的结构参见图3所示,在模具1内从下至上顺序排放有下吸胶纸31、A层纤维101、A层树脂201、B层纤维102、B层树脂202、C层纤维103、C层树脂203、D层纤维104、D层树脂204、F层纤维130、F层树脂230、上吸胶纸32。这是一种常见的“预浸料铺层层数”(参见图1A所示)的铺层体系,但T700SC碳纤维/环氧5228树脂材料本身是纤维和树脂的组合体,为了方便介绍故画出该结构示意图。The structure of Example 1 is shown in Figure 3. In the
第一步:在工艺压力Pc(0.1<Pc<2.0MPa)条件下,拾取适应度函数
第二步:在确定的工艺压力Pc范围内,选取10个工艺压力值形成一个可行解群体;The second step: within the determined process pressure P c range, select 10 process pressure values to form a feasible solution group;
第三步:在所述树脂基复合材料热压成型模拟单元4中解析可行解群体中每个可行解所对应的层板平均纤维体积分数 Step 3: Analyzing the average fiber volume fraction of laminates corresponding to each feasible solution in the feasible solution group in the resin-based composite material thermocompression molding simulation unit 4
所述在树脂基复合材料热压成型模拟单元4中解析层板平均纤维体积分数 的步骤有:The analysis of the average fiber volume fraction of the laminate in the resin-based composite material thermocompression molding simulation unit 4 The steps are:
第1步:在所述制件构形(参见图3所示)与网格剖分单元1中拾取制件初始设置参量F1,吸胶方式为预浸料上下表面对称吸胶,预浸料初始纤维体积分数V0为55%,预浸料铺层层数30层,层板初始厚度h0为4.26mm。在Patran软件中创建出三维层板图形,然后对所述三维层板图形进行30×10网格剖分处理(参见图3A所示),获得带有节点的层板模型(显示屏上会有彩色三维图片显示),并将所述节点层板模型保存为一个文本格式文件,即MLCB.TXT;Step 1: Pick up the initial setting parameter F 1 of the part in the part configuration (see Figure 3) and
第2步:在所述成型工艺参数设置单元2中提取工艺参量F2,温度-时间关系为以2℃/min的升温速率从室温30℃升到130℃,在130℃下恒温25min后以2℃/min的升温速率从130℃升到180℃,最后在180℃下恒温60min。根据温度-时间关系在计算机上通过解析生成时间和温度数据,将其保存在data.txt文件中;真空度为0.0MPa,加压时机为75min,工艺压力从第三步确定的可行解群体中获得。在计算机可视化界面(参见图3B所示)设置模拟总时间为3000s、时间步长Δt=10s。Step 2: Extract the process parameter F2 in the molding process parameter setting unit 2. The temperature-time relationship is to rise from room temperature 30°C to 130°C at a heating rate of 2°C/min, and keep the temperature at 130°C for 25 minutes. The heating rate was 2°C/min from 130°C to 180°C, and finally kept at 180°C for 60 minutes. According to the temperature-time relationship, the time and temperature data are generated by analysis on the computer and saved in the data.txt file; the vacuum degree is 0.0MPa, the pressurization time is 75min, and the process pressure is determined from the feasible solution group determined in the third step get. On the computer visualization interface (see FIG. 3B ), set the total simulation time to 3000s, and the time step Δt=10s.
第3步:在所述材料特性数据库单元中提取材料参量F3,树脂种类:环氧5228,纤维种类:T700SC碳纤维,织物类型:单向预浸料,铺层方式:单向铺层。根据所述材料参量,可以从材料特性数据库中提取出计算所需的与纤维和树脂相关参量包括粘度模型、纤维渗透率模型、纤维压缩模型中的参数。Step 3: Extract material parameter F 3 from the material property database unit, resin type: epoxy 5228, fiber type: T700SC carbon fiber, fabric type: unidirectional prepreg, layup method: unidirectional layup. According to the material parameters, the parameters related to the fiber and resin required for calculation can be extracted from the material property database, including parameters in the viscosity model, fiber permeability model, and fiber compression model.
第4步:在所述树脂基复合材料热压成型模拟单元4,获取树脂流动与纤维密实关系式G1和纤维承载压力与纤维体积分数关系式G2,采用有限差分和牛顿迭代方法,可以解析得到层板内不同位置处的纤维承载压力Pf以及纤维体积分数Vf,根据层板内不同位置的纤维体积分数Vf,解析得到层板的平均纤维体积分数 Step 4: In the resin-based composite material thermocompression molding simulation unit 4, the relationship between resin flow and fiber compaction G 1 and the relationship between fiber bearing pressure and fiber volume fraction G 2 are obtained, and the finite difference and Newton iterative methods can be used. The fiber bearing pressure P f and fiber volume fraction V f at different positions in the laminate are obtained by analysis, and the average fiber volume fraction of the laminate is obtained by analysis according to the fiber volume fraction V f at different positions in the laminate
根据可行解群体中的工艺压力取值,通过APCPS单元,解析得到层板的平均纤维体积分数 分别为:According to the value of the process pressure in the feasible solution group, the average fiber volume fraction of the laminate is obtained analytically through the APCPS unit They are:
第四步:在工艺优化目标与方法单元6中提取工艺优化的目标平均纤维体积分数
根据可行解群体中的工艺压力值,解析得到适应度值分别为:According to the process pressure value in the feasible solution group, the fitness values obtained by analysis are:
以优胜劣汰的机制,将适应度差的染色体淘汰掉,对幸存的染色体根据其适应度值的大小,按概率随机选择,进行繁殖,形成新的群体;通过杂交和变异的操作,产生子代,杂交是随机选择两条染色体(双亲),将某一点或多点的基因互换而产生两个新个体;变异是基因中的某一点或多点发生突变;With the mechanism of survival of the fittest, the chromosomes with poor fitness are eliminated, and the surviving chromosomes are randomly selected according to their fitness value according to the probability, and reproduced to form a new group; through hybridization and mutation operations, offspring are produced. Hybridization is the random selection of two chromosomes (parents), and the exchange of genes at one or more points to produce two new individuals; mutation is the mutation of one or more points in the gene;
第五步:对子代群体重复第三步、第四步的操作,进行新一轮遗传进化过程,直到适应度值最小,迭代停止,输出最优解。Step 5: Repeat the operations of
通过所述工艺压力的优化方法,可以解析得到满足目标纤维体积分数
通过上述模拟计算,解析得到优化压力制度条件下,模拟时间t=3000s时刻,层板厚度纤维体积分数分布如图4所示,图中,厚度方向纤维分布不均匀,越靠近上吸胶纸32和下吸胶纸31位置,纤维体积分数越大,越靠近层板中心位置纤维体积分数越小;模拟时间t=3000s时刻,层板厚度纤维承载压力分布如图5所示,靠近吸胶纸位置纤维承载压力最大,越靠近层板中心位置纤维承载压力越小;t=3000s时刻,层板厚度h为3.85mm,平均纤维体积分数
为62.0%,优化得到的压力制度可以满足目标要求。Through the above simulation calculations, it is analyzed that under the condition of the optimized pressure system, the simulation time t=3000s, the fiber volume fraction distribution of the laminate thickness is shown in Figure 4. In the figure, the fiber distribution in the thickness direction is uneven, and the closer to the
本发明是一种利用计算机模拟对树脂基复合材料等厚层板热压工艺的压力制度进行优化的数字化方法,该模拟方法为了解决树脂基复合材料在热压成型中的制造工艺不通用、制件质量可控性差、制件合格率较低等问题,采用遗传算法和确定压力Pc条件下的适应度函数Fi,利用树脂流动与纤维密实关系式G1和纤维承载压力与纤维体积分数关系式G2,获得了满足目标要求的压力制度参数,实现了在脱离实际生产线的条件下对等厚层板热压工艺的压力制度优化。该优化工艺制度可以与树脂基复合材料热压成型数控系统结合,指导热压成型工业化生产,保证复合材料制件成型质量,提高生产效率。The present invention is a digital method for optimizing the pressure system of the hot-pressing process of resin-based composite materials and other thick laminates by using computer simulation. To deal with problems such as poor controllability of parts quality and low pass rate of parts, the genetic algorithm and the fitness function Fi under the condition of pressure P c are determined, and the relationship between resin flow and fiber density G 1 and the relationship between fiber bearing pressure and fiber volume fraction are used. Formula G 2 obtains the parameters of the pressure system that meet the target requirements, and realizes the optimization of the pressure system for the hot-pressing process of equal-thickness laminates under the condition of breaking away from the actual production line. The optimized process system can be combined with the resin-based composite material thermoforming numerical control system to guide the industrial production of thermocompression forming, ensure the molding quality of composite material parts, and improve production efficiency.
本发明中引用符号所表示的物理意义见下表:In the present invention, the physical significance represented by reference symbols is shown in the following table:
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200710117730XA CN100456176C (en) | 2007-06-22 | 2007-06-22 | Optimizing method of pressure system in hot-pressing process of resin-based composites equal-thick laminates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200710117730XA CN100456176C (en) | 2007-06-22 | 2007-06-22 | Optimizing method of pressure system in hot-pressing process of resin-based composites equal-thick laminates |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101089754A true CN101089754A (en) | 2007-12-19 |
CN100456176C CN100456176C (en) | 2009-01-28 |
Family
ID=38943134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200710117730XA Expired - Fee Related CN100456176C (en) | 2007-06-22 | 2007-06-22 | Optimizing method of pressure system in hot-pressing process of resin-based composites equal-thick laminates |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100456176C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101920558A (en) * | 2010-05-28 | 2010-12-22 | 北京航空航天大学 | Process window optimization method for resin-based composite curvature laminates in autoclave molding |
CN102693454A (en) * | 2011-03-23 | 2012-09-26 | 东北林业大学 | System for managing hot-pressing parameters of medium-density fiberboards |
CN106796617A (en) * | 2015-08-11 | 2017-05-31 | 沙特基础工业全球技术公司 | Many flaggy laminar composites with low aerial weight |
CN107403023A (en) * | 2016-04-14 | 2017-11-28 | 株式会社新纪元综合顾问 | The distributional analysis method of the fibrous material of clava and fibre reinforced concrete |
CN116661317A (en) * | 2023-06-01 | 2023-08-29 | 六和电子(江西)有限公司 | Stepped temperature, time and pressure hot-pressing method for thin film capacitor |
CN119317273A (en) * | 2024-12-11 | 2025-01-14 | 深圳市中顺半导体照明有限公司 | Method for setting molding parameters of micro-light-emitting semiconductor chip and method for preparing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4773021A (en) * | 1987-07-31 | 1988-09-20 | General Electric Company | Adaptive model-based pressure control and method of resin cure |
JP3616939B2 (en) * | 1996-05-17 | 2005-02-02 | 株式会社名機製作所 | Method of outputting measured value data of hot press |
-
2007
- 2007-06-22 CN CNB200710117730XA patent/CN100456176C/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101920558A (en) * | 2010-05-28 | 2010-12-22 | 北京航空航天大学 | Process window optimization method for resin-based composite curvature laminates in autoclave molding |
CN101920558B (en) * | 2010-05-28 | 2013-03-27 | 北京航空航天大学 | Process window optimization method of resin-base composite curvature laminate in autoclave molding |
CN102693454A (en) * | 2011-03-23 | 2012-09-26 | 东北林业大学 | System for managing hot-pressing parameters of medium-density fiberboards |
CN106796617A (en) * | 2015-08-11 | 2017-05-31 | 沙特基础工业全球技术公司 | Many flaggy laminar composites with low aerial weight |
CN106796617B (en) * | 2015-08-11 | 2018-09-25 | 沙特基础工业全球技术公司 | More plate layer laminar composites with low aerial weight |
CN107403023A (en) * | 2016-04-14 | 2017-11-28 | 株式会社新纪元综合顾问 | The distributional analysis method of the fibrous material of clava and fibre reinforced concrete |
CN107403023B (en) * | 2016-04-14 | 2021-07-30 | 株式会社新纪元综合顾问 | Distribution analysis method of fibrous material of rod-shaped body and fiber-reinforced concrete |
CN116661317A (en) * | 2023-06-01 | 2023-08-29 | 六和电子(江西)有限公司 | Stepped temperature, time and pressure hot-pressing method for thin film capacitor |
CN116661317B (en) * | 2023-06-01 | 2024-04-12 | 六和电子(江西)有限公司 | Stepped temperature, time and pressure hot-pressing method for thin film capacitor |
CN119317273A (en) * | 2024-12-11 | 2025-01-14 | 深圳市中顺半导体照明有限公司 | Method for setting molding parameters of micro-light-emitting semiconductor chip and method for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
CN100456176C (en) | 2009-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100456176C (en) | Optimizing method of pressure system in hot-pressing process of resin-based composites equal-thick laminates | |
Kappel et al. | A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP parts | |
Zobeiry et al. | The origins of residual stress and its evaluation in composite materials | |
Ji et al. | Mechanical behavior prediction of CF/PEEK-titanium hybrid laminates considering temperature effect by artificial neural network | |
CN107025366A (en) | Composite autoclave molding temperature field interactive mode approach of coupled numerical simulation | |
Zhu et al. | Experimental study and modeling analysis of planar compression of composite corrugated, lattice and honeycomb sandwich plates | |
Johnston et al. | Process modeling of composite structures employing a virtual autoclave concept | |
Wang et al. | A multi-hierarchical successive optimization method for reduction of spring-back in autoclave forming | |
CN113033051B (en) | Compression molding process optimization method for carbon fiber reinforced composite material sheet | |
Yoon et al. | Computational modeling for cure process of carbon epoxy composite block | |
CN101089861A (en) | Simulation Method of Resin Flow and Laminate Deformation During Molding of L-shaped Laminates of Resin Matrix Composite Materials | |
Reiner et al. | Data-driven parameter identification to simulate progressive damage in fiber reinforced laminates under low velocity impact | |
Ganapathi et al. | Simulation of bleeder flow and curing of thick composites with pressure and temperature dependent properties | |
Hou et al. | Numerical simulation and multi-objective optimization for curing process of thermosetting prepreg | |
Garofalo et al. | Rapid consolidation and curing of vacuum-infused thermoset composite parts | |
CN101920558B (en) | Process window optimization method of resin-base composite curvature laminate in autoclave molding | |
CN110633479B (en) | Prediction Model of Expansion and Shrinkage of Printed Circuit Board | |
Han et al. | Multiscale Collaborative Optimization of Processing Parameters for Carbon Fiber/Epoxy Laminates Fabricated by High‐Speed Automated Fiber Placement | |
Li et al. | Numerical simulation of flow and compaction during the cure of laminated composites | |
CN101089862A (en) | Simulation Method of Resin Flow and Fiber Densification in Forming Equal-thick Laminates of Resin Matrix Composites | |
Ma et al. | Evolution of process-induced strain/stress field in plain woven composite antenna reflector by fusing multiscale numerical model and experimental data | |
Siddig et al. | Simulation and monitoring of the infusion of thick composites with thermoplastic acrylic resin | |
CN106383962B (en) | A kind of residual thermal stress evaluation method of hot-forming plain woven composite | |
He et al. | Finite element simulation of the autoclave curing process of aerospace resin-based composite material | |
Attaf | Ecomoulding of composite wind turbine blades using green manufacturing RTM process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090128 Termination date: 20100622 |