CN101050966A - Double freedom double decouple micro mechanical vibration gyrosope senser - Google Patents
Double freedom double decouple micro mechanical vibration gyrosope senser Download PDFInfo
- Publication number
- CN101050966A CN101050966A CNA2007100722309A CN200710072230A CN101050966A CN 101050966 A CN101050966 A CN 101050966A CN A2007100722309 A CNA2007100722309 A CN A2007100722309A CN 200710072230 A CN200710072230 A CN 200710072230A CN 101050966 A CN101050966 A CN 101050966A
- Authority
- CN
- China
- Prior art keywords
- mass
- detection
- freedom
- driving
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 78
- 238000002955 isolation Methods 0.000 claims abstract description 14
- 239000011521 glass Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 12
- 230000008878 coupling Effects 0.000 abstract description 8
- 238000010168 coupling process Methods 0.000 abstract description 8
- 238000005859 coupling reaction Methods 0.000 abstract description 8
- 230000007613 environmental effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 7
- 238000013016 damping Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000005489 elastic deformation Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
本发明提供的是一种双自由度双解耦微机械振动陀螺传感器。驱动方向键合块通过弹性梁与驱动质量块相连,检测方向键合块通过弹性梁与第一自由度检测质量块相连,驱动固定电极键合块上连接驱动固定电极,驱动活动电极连接于驱动质量块上,检测方向键合块上连接检测固定电极,检测活动电极与第二自由度检测质量块相连,第二自由度检测质量块通过弹性梁与第一自由度检测质量块相连,在驱动质量块与第一自由度检测质量块之间设置有隔离质量块,隔离质量块的两侧分别通过弹性梁与驱动质量块和第一自由度检测质量块相连。本发明的优点在于传感器耦合误差小、带宽大、灵敏度受环境影响小、易于加工等。
The invention provides a double-degree-of-freedom double-decoupling micromechanical vibrating gyro sensor. The driving direction bonding block is connected to the driving mass block through the elastic beam, the detection direction bonding block is connected to the first degree of freedom detection mass block through the elastic beam, the driving fixed electrode bonding block is connected to the driving fixed electrode, and the driving movable electrode is connected to the driving mass block. On the quality block, the detection direction bonding block is connected with the detection fixed electrode, the detection movable electrode is connected with the second degree of freedom detection mass block, and the second degree of freedom detection mass block is connected with the first degree of freedom detection mass block through the elastic beam. An isolation mass is arranged between the mass block and the first degree of freedom detection mass, and both sides of the isolation mass are respectively connected to the driving mass and the first degree of freedom detection mass through elastic beams. The invention has the advantages of small sensor coupling error, large bandwidth, little environmental influence on sensitivity, easy processing and the like.
Description
(一)技术领域(1) Technical field
本发明涉及的是一种传感器结构,具体地说是一种微机械振动陀螺传感器。The invention relates to a sensor structure, in particular to a micromechanical vibrating gyro sensor.
(二)背景技术(2) Background technology
基于微电子机械系统(MEMS)的微机械惯性仪表具有体积小、成本低、可与集成电路兼容等优点,因此有着广阔的应用前景。Micromechanical inertial instruments based on microelectromechanical systems (MEMS) have the advantages of small size, low cost, and compatibility with integrated circuits, so they have broad application prospects.
微机械陀螺是近年来MEMS领域研究的一个热点。振动式微机械陀螺是其中的主要一种。它是基于科氏力的原理工作的一种微结构。这一类陀螺的工作状态受工艺加工的质量和精度、工作时的温度、气压、阻尼等因素的影响。这种陀螺的灵敏度与检测模态固有频率和驱动模态固有频率之间存在着很大的折中问题。并且,振动式陀螺驱动模态和检测模态之间会存在一定的耦合误差。这些问题都限制了这种陀螺的应用。Micromechanical gyroscope is a research hotspot in the field of MEMS in recent years. The vibrating micromachined gyroscope is one of the main ones. It is a microstructure that works on the principle of Coriolis force. The working state of this type of gyro is affected by factors such as the quality and precision of the process, the temperature, air pressure, and damping during operation. There is a big trade-off between the sensitivity of this gyroscope and the natural frequency of the detection mode and the natural frequency of the driving mode. Moreover, there will be a certain coupling error between the vibratory gyroscope driving mode and the detection mode. These problems limit the application of this gyroscope.
传统的微机械振动陀螺通常采用单自由度检测方式,即检测方向具有单一的质量块,这种陀螺的检测带宽为驱动固有频率和检测固有频率之差,而陀螺的检测灵敏度随着带宽的增大急剧减小,造成了带宽和灵敏度之间的折中矛盾问题。在检测电极设计时,通常采用平行极板的压膜阻尼检测的方式,这使得检测方向的品质因数很小,而传统陀螺检测模态的相应受品质因数影响很大,这进一步减小了陀螺的检测灵敏度。同时,传统陀螺一般采用单级解耦的结构,在陀螺驱动时,检测质量块随驱动质量块运动,这会给检测模态带来一定的耦合误差。这些问题都不利于提高陀螺检测灵敏度和增大工作带宽Traditional micromechanical vibrating gyroscopes usually use a single-degree-of-freedom detection method, that is, the detection direction has a single mass block. The detection bandwidth of this gyroscope is the difference between the driving natural frequency and the detection natural frequency, and the detection sensitivity of the gyroscope increases with the bandwidth. The large sharp decrease has caused a trade-off problem between bandwidth and sensitivity. In the design of the detection electrode, the pressure film damping detection method of parallel plates is usually used, which makes the quality factor of the detection direction very small, while the response of the traditional gyro detection mode is greatly affected by the quality factor, which further reduces the quality factor of the gyro. detection sensitivity. At the same time, the traditional gyroscope generally adopts a single-stage decoupling structure. When the gyroscope is driven, the detection mass moves with the driving mass, which will bring a certain coupling error to the detection mode. These problems are not conducive to improving the sensitivity of gyro detection and increasing the working bandwidth
(三)发明内容(3) Contents of the invention
本发明的目的是提供一种可以使在相同工艺难度条件下、相同静态电容值的前提下增大陀螺的检测带宽,增大检测模态的品质因数,减小阻尼对灵敏度的影响,并在一定程度上消除耦合误差的双自由度双解耦微机械振动陀螺传感器。The purpose of the present invention is to provide a method that can increase the detection bandwidth of the gyro under the premise of the same process difficulty and the same static capacitance value, increase the quality factor of the detection mode, reduce the impact of damping on sensitivity, and A dual-degree-of-freedom dual-decoupling micromechanical vibration gyro sensor that eliminates coupling errors to a certain extent.
本发明的目的是这样实现的:它包括键合在玻璃基片上的驱动方向键合块、驱动固定电极键合块、检测方向键合块和检测固定电极键合块,驱动方向键合块通过驱动方向弹性梁与驱动质量块相连,检测方向键合块通过第一自由度检测质量块的弹性梁与第一自由度检测质量块相连,驱动固定电极键合块上连接驱动固定电极,驱动活动电极连接于驱动质量块上,检测方向键合块上连接检测固定电极,检测活动电极与第二自由度检测质量块相连,第二自由度检测质量块通过第二自由度检测质量块的弹性梁与第一自由度检测质量块相连,在驱动质量块与第一自由度检测质量块之间设置有隔离质量块,隔离质量块的两侧分别通过隔离质量块与驱动质量块连接的弹性梁和隔离质量块与检测质量块连接的弹性梁与驱动质量块和第一自由度检测质量块相连。整体结构左右对称分布,上下对称式分布。The object of the present invention is achieved in that it comprises a driving direction bonding block, a driving fixed electrode bonding block, a detection direction bonding block and a detection fixed electrode bonding block bonded on a glass substrate, and the driving direction bonding block passes through The driving direction elastic beam is connected to the driving mass block, the detection direction bonding block is connected to the first degree of freedom detection mass block through the elastic beam of the first degree of freedom detection mass block, the driving fixed electrode bonding block is connected to the driving fixed electrode, and the driving movement The electrodes are connected to the drive mass block, the detection direction bonding block is connected to the detection fixed electrode, the detection movable electrode is connected to the second degree of freedom detection mass block, and the second degree of freedom detection mass block passes through the elastic beam of the second degree of freedom detection mass block It is connected with the first degree of freedom detection mass, an isolation mass is arranged between the driving mass and the first degree of freedom detection mass, and the two sides of the isolation mass are respectively connected by the elastic beam and the driving mass through the isolation mass and the driving mass. The elastic beam connecting the isolation mass to the proof mass is connected to the drive mass and the first degree of freedom proof mass. The overall structure is symmetrically distributed left and right, and symmetrically distributed up and down.
本发明的检测质量块的设计,采用双自由度质量块,即两个质量块通过一根一维的弹性梁连接在一起共同构成检测质量块,以此来增大带宽并减小品质因数对灵敏度的影响;将检测电极制作在其中一个质量块上,并采用活动电极相对固定电极平行运动的电容检测方式以增大检测品质因数;采用双级解耦的结构设计,即在驱动质量和检测质量之间加入一个隔离质量块,以使驱动质量和检测质量相对独立运动,从而消除耦合误差。The design of the detection mass block of the present invention adopts a double-degree-of-freedom mass block, that is, two mass blocks are connected together by a one-dimensional elastic beam to form a detection mass block, thereby increasing the bandwidth and reducing the quality factor. The influence of sensitivity; the detection electrode is made on one of the mass blocks, and the capacitive detection method in which the movable electrode moves in parallel with the fixed electrode is adopted to increase the detection quality factor; An isolation mass is added between the masses, so that the driving mass and the detection mass move relatively independently, thereby eliminating coupling errors.
隔离质量块通过两个方向的弹性梁与驱动质量块和检测质量块相连,用相互嵌套的方式将驱动质量块和检测质量块隔离开;检测质量块为两个,两检测质量快通过弹性梁相连,构成双自由度检测;检测活动电极制作在内部检测质量块上,检测时,检测电极相互平行运动,产生滑膜阻尼。The isolation mass is connected to the driving mass and the detection mass through elastic beams in two directions, and the driving mass and the detection mass are separated by mutual nesting; there are two detection masses, and the two detection masses pass through the elastic The beams are connected to form a two-degree-of-freedom detection; the detection movable electrodes are made on the internal detection mass block, and during detection, the detection electrodes move parallel to each other to generate synovial damping.
本发明在很大程度上缓解了带宽和检测灵敏度之间的矛盾,增大模态的品质因数并减小了阻尼对灵敏度的影响,同时在一定程度上消除了耦合误差的影响。The invention alleviates the contradiction between bandwidth and detection sensitivity to a large extent, increases the quality factor of the mode, reduces the influence of damping on sensitivity, and eliminates the influence of coupling error to a certain extent.
本发明的优点在于:1、带宽大,灵敏度高;2、受工艺和品质因数影响小;3、检测方向品质因数高;4、耦合误差影响小。The invention has the advantages of: 1. wide bandwidth and high sensitivity; 2. little influence from process and quality factor; 3. high quality factor of detection direction; 4. little influence from coupling error.
(四)附图说明(4) Description of drawings
附图是本发明的结构示意图。Accompanying drawing is the structural representation of the present invention.
(五)具体实施方式(5) Specific implementation methods
该发明的制作过程大致有如下三个步骤:The manufacturing process of this invention roughly has following three steps:
1、在硅的背面用ICP干法刻蚀,刻出键合所需的台面(8个固定块);1. Use ICP dry etching on the back of the silicon to carve out the mesa (8 fixed blocks) required for bonding;
2、用静电键合将步骤1刻蚀出的键合台面键合在玻璃基片上形成8个固定块;2. Bond the bonding mesa etched in
3、在硅的正面用ICP刻蚀出传感器的梁、质量块、固定和活动电极图形,释放梁、质量块和电极结构。3. Use ICP to etch the beam, mass, fixed and movable electrode patterns of the sensor on the front side of the silicon, and release the beam, mass and electrode structure.
下面结合附图对本发明作更详细的描述:The present invention will be described in more detail below in conjunction with accompanying drawing:
双自由度双解耦微机械振动陀螺传感器的组成包括键合在玻璃基片上的驱动方向键合块12、驱动固定电极键合块17、检测方向键合块9和检测固定电极键合块6,驱动方向键合块通过驱动方向弹性梁11与驱动质量块10相连,检测方向键合块通过第一自由度检测质量块的弹性梁14与第一自由度检测质量块5相连,驱动固定电极键合块上连接驱动固定电极16,驱动活动电极15连接于驱动质量块上,检测方向键合块上连接检测固定电极4,检测活动电极3与第二自由度检测质量块2相连,第二自由度检测质量块通过第二自由度检测质量块的弹性梁1与第一自由度检测质量块相连,在驱动质量块与第一自由度检测质量块之间设置有隔离质量块7,隔离质量块的两侧分别通过隔离质量块与驱动质量块连接的弹性梁8和隔离质量块与检测质量块连接的弹性梁13与驱动质量块和第一自由度检测质量块相连。整体结构左右对称分布,上下对称式分布。The composition of the dual-degree-of-freedom double-decoupling micromechanical vibrating gyro sensor includes a driving
工作过程一:当向驱动电极15、16施加驱动电压时,驱动质量块在驱动力作用下运动,驱动方向弹性梁11发生弹性形变,由于弹性梁8在驱动方向刚性很大,此时的形变很小,通过弹性梁8带动隔离质量块7随着驱动质量块沿驱动方向运动,弹性梁13发生弹性形变,同弹性梁8相同,弹性梁14发生形变很小,此时,检测质量块2、5几乎不发生位移。Working process 1: When the driving voltage is applied to the
工作过程二:当出现垂直于陀螺的角速度信号时,在科氏力的作用下,检测质量块2、5会沿检测方向振动,此时,弹性梁1、14都发生弹性形变,弹性梁13在检测方向上刚性很大,此时的形变很小,隔离质量块7随着检测质量块2、5沿检测方向运动,弹性梁8发生弹性形变,和弹性梁13相同,弹性梁11此时的形变很小,驱动质量块10在检测方向几乎不发生位移。Working process two: when an angular velocity signal perpendicular to the gyro appears, under the action of Coriolis force, the
工作过程三:在出现垂直于陀螺的角速度信号时,检测质量块2、5会沿检测方向运动,弹性梁1、14都发生弹性形变,此时,由于弹性梁1的存在,在检测质量块2、5振动时,二者之间产生一定的振动耦合,从而使陀螺在一个较宽的频率范围内,都具有较大的灵敏度,即增大了陀螺的带宽。Working process 3: When the angular velocity signal perpendicular to the gyroscope appears, the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100722309A CN100543419C (en) | 2007-05-21 | 2007-05-21 | Dual-degree-of-freedom dual-decoupling micromachined vibrating gyro sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100722309A CN100543419C (en) | 2007-05-21 | 2007-05-21 | Dual-degree-of-freedom dual-decoupling micromachined vibrating gyro sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101050966A true CN101050966A (en) | 2007-10-10 |
CN100543419C CN100543419C (en) | 2009-09-23 |
Family
ID=38782491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100722309A Expired - Fee Related CN100543419C (en) | 2007-05-21 | 2007-05-21 | Dual-degree-of-freedom dual-decoupling micromachined vibrating gyro sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100543419C (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101261126B (en) * | 2008-04-10 | 2010-06-02 | 上海交通大学 | Micro Solid Mode Gyroscope |
CN101907637A (en) * | 2010-06-29 | 2010-12-08 | 瑞声声学科技(深圳)有限公司 | Three-axis differential accelerometer and manufacturing method thereof |
CN101368826B (en) * | 2008-09-25 | 2011-04-27 | 中国人民解放军国防科学技术大学 | Silicon Microgyroscope Decoupled by Vibration Isolation Frame |
CN102278982A (en) * | 2011-07-13 | 2011-12-14 | 中国人民解放军国防科学技术大学 | Restraining method for coupling error of micro silicon gyroscope with four mass blocks |
CN102507975A (en) * | 2011-11-09 | 2012-06-20 | 重庆科技学院 | Bi-axial angular velocity sensor |
CN104406579A (en) * | 2014-11-27 | 2015-03-11 | 歌尔声学股份有限公司 | Micro-electromechanical deformable structure and triaxial multi-degree of freedom micro-electromechanical gyroscope |
CN104482930A (en) * | 2014-12-04 | 2015-04-01 | 中国科学院半导体研究所 | Weak-coupling elastic beam structure applied to MEMS device |
CN107192384A (en) * | 2017-07-24 | 2017-09-22 | 深迪半导体(上海)有限公司 | A kind of MEMS three-axis gyroscopes |
CN108731659A (en) * | 2018-05-25 | 2018-11-02 | 中国电子科技集团公司第二十九研究所 | A kind of more detection vibration unit micro-inertial navigation gyroscopes |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101871951B (en) * | 2010-06-07 | 2011-11-30 | 瑞声声学科技(深圳)有限公司 | Micro-acceleration sensor |
CN101865934B (en) * | 2010-06-11 | 2012-01-18 | 瑞声声学科技(深圳)有限公司 | Acceleration transducer |
-
2007
- 2007-05-21 CN CNB2007100722309A patent/CN100543419C/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101261126B (en) * | 2008-04-10 | 2010-06-02 | 上海交通大学 | Micro Solid Mode Gyroscope |
CN101368826B (en) * | 2008-09-25 | 2011-04-27 | 中国人民解放军国防科学技术大学 | Silicon Microgyroscope Decoupled by Vibration Isolation Frame |
CN101907637A (en) * | 2010-06-29 | 2010-12-08 | 瑞声声学科技(深圳)有限公司 | Three-axis differential accelerometer and manufacturing method thereof |
CN102278982A (en) * | 2011-07-13 | 2011-12-14 | 中国人民解放军国防科学技术大学 | Restraining method for coupling error of micro silicon gyroscope with four mass blocks |
CN102507975A (en) * | 2011-11-09 | 2012-06-20 | 重庆科技学院 | Bi-axial angular velocity sensor |
CN104406579B (en) * | 2014-11-27 | 2017-05-10 | 歌尔股份有限公司 | Micro-electromechanical deformable structure and triaxial multi-degree of freedom micro-electromechanical gyroscope |
CN104406579A (en) * | 2014-11-27 | 2015-03-11 | 歌尔声学股份有限公司 | Micro-electromechanical deformable structure and triaxial multi-degree of freedom micro-electromechanical gyroscope |
CN104482930A (en) * | 2014-12-04 | 2015-04-01 | 中国科学院半导体研究所 | Weak-coupling elastic beam structure applied to MEMS device |
CN104482930B (en) * | 2014-12-04 | 2017-09-29 | 中国科学院半导体研究所 | Apply the weak coupling elastic beam structure in MEMS |
CN107192384A (en) * | 2017-07-24 | 2017-09-22 | 深迪半导体(上海)有限公司 | A kind of MEMS three-axis gyroscopes |
WO2019019942A1 (en) * | 2017-07-24 | 2019-01-31 | 深迪半导体(上海)有限公司 | Three-axis mems gyroscope |
TWI699514B (en) * | 2017-07-24 | 2020-07-21 | 大陸商深迪半導體(上海)有限公司 | A MEMS three-axis gyroscope |
US11085767B2 (en) | 2017-07-24 | 2021-08-10 | Senodia Technologies (Shaoxing) Co., Ltd | Three-axis MEMS gyroscope |
CN107192384B (en) * | 2017-07-24 | 2022-04-05 | 深迪半导体(绍兴)有限公司 | MEMS triaxial gyroscope |
CN108731659A (en) * | 2018-05-25 | 2018-11-02 | 中国电子科技集团公司第二十九研究所 | A kind of more detection vibration unit micro-inertial navigation gyroscopes |
Also Published As
Publication number | Publication date |
---|---|
CN100543419C (en) | 2009-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101050966A (en) | Double freedom double decouple micro mechanical vibration gyrosope senser | |
CN101368826B (en) | Silicon Microgyroscope Decoupled by Vibration Isolation Frame | |
CN103900545B (en) | Monolithic integration holohedral symmetry three-axis silicon micro-tuning fork gyroscope | |
CN2424450Y (en) | Micromechanical comb capacity type acceleration transducer | |
CN102435185B (en) | Internal and external truss type three-frame micro-mechanical gyro structure | |
CN106500682B (en) | A MEMS gyroscope | |
CN108020220B (en) | A tangentially driven double differential butterfly wing silicon microgyro and its application method | |
CN101481084B (en) | Micro-inertial sensor with variable pitch capacitor | |
CN1278922C (en) | A tuning fork micromechanical gyro and its manufacturing method | |
CN100425993C (en) | Differential capacitance type acceleration transducer with frame structure | |
CN112747731B (en) | A five-mass biaxial detection silicon microresonant gyroscope based on out-of-plane vibration | |
CN109737943B (en) | High-precision MEMS gyroscope | |
CN102495236A (en) | High-sensitivity dual-axis silicon-micro resonance accelerometer | |
CN101261126B (en) | Micro Solid Mode Gyroscope | |
CN101034094A (en) | Composite beam piezoresistive accelerometer | |
CN102221361B (en) | Capacitive micro machinery gyroscope | |
CN100473948C (en) | Symmetric-structure double-grade decoupling single-crystal-silicon micro mechanical gyroscope | |
CN100449265C (en) | A horizontal axis micromachined gyro and its preparation method | |
CN105352488A (en) | Variable area capacitive-type bimodal optimized tuning-fork-type micromechanical gyroscope | |
CN102288172A (en) | Capacitor type micro-machined gyroscope for amplifying movement speed of mass block | |
CN103292798A (en) | Tuning fork type micromechanical gyroscope capable of resisting high-strength impact | |
CN101531334B (en) | Magnetic drive micro-inertial sensor for increasing detection capacitance and preparation method | |
CN101298987B (en) | Robustness tuning fork vibrating type micromechanical gyroscope | |
CN101363731A (en) | Quartz micromechanical gyroscope based on shear stress detection and its manufacturing method | |
CN108007448B (en) | A kind of axial symmetry silicon micromechanical gyroscope sensitive structure and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090923 Termination date: 20120521 |