CN100441718C - In Situ Synthesis of Quasicrystals and Their Approximate Phases Reinforced Heat-resistant Magnesium Alloys - Google Patents
In Situ Synthesis of Quasicrystals and Their Approximate Phases Reinforced Heat-resistant Magnesium Alloys Download PDFInfo
- Publication number
- CN100441718C CN100441718C CNB2005100232813A CN200510023281A CN100441718C CN 100441718 C CN100441718 C CN 100441718C CN B2005100232813 A CNB2005100232813 A CN B2005100232813A CN 200510023281 A CN200510023281 A CN 200510023281A CN 100441718 C CN100441718 C CN 100441718C
- Authority
- CN
- China
- Prior art keywords
- alloy
- performance
- creep
- heat
- magnesium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 32
- 239000013079 quasicrystal Substances 0.000 title claims abstract description 19
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 7
- 230000015572 biosynthetic process Effects 0.000 title 1
- 238000003786 synthesis reaction Methods 0.000 title 1
- 239000011777 magnesium Substances 0.000 claims abstract description 23
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 17
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910045601 alloy Inorganic materials 0.000 abstract description 48
- 239000000956 alloy Substances 0.000 abstract description 48
- 239000011159 matrix material Substances 0.000 abstract description 8
- 238000005728 strengthening Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 5
- 230000032683 aging Effects 0.000 abstract description 3
- 229910017706 MgZn Inorganic materials 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000011701 zinc Substances 0.000 description 14
- 239000010949 copper Substances 0.000 description 13
- 238000005266 casting Methods 0.000 description 12
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000006698 induction Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 2
- 241001062472 Stokellia anisodon Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007528 sand casting Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- DFIYZNMDLLCTMX-UHFFFAOYSA-N gadolinium magnesium Chemical compound [Mg].[Gd] DFIYZNMDLLCTMX-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Forging (AREA)
Abstract
一种原位合成准晶及其近似相增强耐热镁合金,组分及其重量百分比为:5-10%Zn,1-5%Cu,2-6%Gd,杂质元素Fe<0.005%,Ni<0.002%,其余为Mg。本发明合金具有一种特殊强化相——准晶及其近似相,它们以一种骨架结构围绕着基体起强化作用;同时通过时效处理工艺,使基体析出MgZn相,从而进一步增强该合金的力学性能。本发明合金具有优异的耐热性能,其蠕变性能(200℃,50MPa拉伸蠕变条件下)要比AE42耐热镁合金提高1-2个数量级。本发明高性能耐热镁合金将大大提高镁合金的应用温度范围。An in-situ synthesized quasicrystal and its approximate phase-reinforced heat-resistant magnesium alloy, the components and their weight percentages are: 5-10% Zn, 1-5% Cu, 2-6% Gd, impurity element Fe<0.005%, Ni<0.002%, the rest is Mg. The alloy of the present invention has a special strengthening phase—quasicrystal and its approximate phases, which surround the matrix with a skeleton structure to strengthen; at the same time, through the aging treatment process, the matrix precipitates MgZn phase, thereby further enhancing the mechanical properties of the alloy performance. The alloy of the invention has excellent heat-resistant performance, and its creep performance (under the condition of 200 DEG C and 50MPa tensile creep) is 1-2 order of magnitude higher than that of the AE42 heat-resistant magnesium alloy. The high-performance heat-resistant magnesium alloy of the invention will greatly increase the application temperature range of the magnesium alloy.
Description
技术领域 technical field
本发明涉及的是一种高性能耐热镁合金,具体是一种原位合成准晶及其近似相增强耐热镁合金。属于金属材料领域。The invention relates to a high-performance heat-resistant magnesium alloy, in particular to an in-situ synthesized quasi-crystal and its approximate phase-enhanced heat-resistant magnesium alloy. It belongs to the field of metal materials.
背景技术 Background technique
镁合金结构件目前在汽车上的应用只限于仪表盘、方向盘、阀门盖等附属件,在较高温度(120℃-200℃)下工作的部件应用上还十分有限,镁合金高温力学性能差是阻碍其在汽车工业应用范围的关键因素。现有商业化的镁合金如AM和AZ系列,它们在室温下拥有一定的屈服强度,但在120℃-200℃温度范围下的蠕变强度非常低,只有不到20Mpa,不能满足汽车高温部件应用性能要求。导致Mg-Al基合金蠕变性能低的根本原因就是基体内的强化相为Mg17Al12相,该相在晶界以非连续性形式析出,由于该相的熔点只有437℃,高温下原子扩散的加剧导致其易于软化和粗化,从而失去对基体的强化作用。准晶是一种不同于晶体的新的物质形态,它具有五次、十次等特殊的旋转对称性。由于准晶独特的原子结构,从而使准晶具有特殊的物理和机械性能。研究表明,准晶具有很高的压缩强度、高的显微硬度和弹性模量、低的热膨胀系数和表面张力等性能,同时凝固过程中形成的稳定准晶还具有较高的耐热、耐蚀和耐磨等性能。鉴于准晶的上述特性,最近人们努力尝试引入准晶颗粒作为第二相来强化Mg合金,提高镁合金的力学性能。The current application of magnesium alloy structural parts in automobiles is limited to accessories such as instrument panels, steering wheels, valve covers, etc., and the application of parts working at higher temperatures (120°C-200°C) is still very limited, and the high-temperature mechanical properties of magnesium alloys are poor. It is a key factor hindering its application in the automotive industry. Existing commercial magnesium alloys such as AM and AZ series have a certain yield strength at room temperature, but the creep strength in the temperature range of 120°C-200°C is very low, less than 20Mpa, which cannot meet the requirements of high-temperature automotive parts. Application performance requirements. The fundamental reason for the low creep performance of Mg-Al-based alloys is that the strengthening phase in the matrix is Mg 17 Al 12 phase, which precipitates in a discontinuous form at the grain boundary. Since the melting point of this phase is only 437°C, the atomic The intensification of diffusion leads to its easy softening and coarsening, thus losing its strengthening effect on the matrix. Quasicrystals are a new form of matter different from crystals, which have special rotational symmetries such as five times and ten times. Due to the unique atomic structure of quasicrystals, quasicrystals have special physical and mechanical properties. Studies have shown that quasicrystals have high compressive strength, high microhardness and elastic modulus, low thermal expansion coefficient and surface tension, etc. At the same time, the stable quasicrystals formed during solidification also have high heat resistance and resistance corrosion and wear resistance properties. In view of the above-mentioned characteristics of quasicrystals, recent efforts have been made to introduce quasicrystal particles as a second phase to strengthen Mg alloys and improve the mechanical properties of magnesium alloys.
经对现有技术的文献检索发现,美国专利申请号:20030029526,专利名称为:Quasicrystalline phase-reinforced Mg-based metallic alloy with high warmand hot formability and method of making the same(具有高热变形能力的准晶增强镁基合金及其制备方法),该专利是一种具有较好热变形能力的准晶增强的Mg-Zn-Y三元合金,其合金组成为1-10at%Zn,0.1-3at%Y,余量为Mg。该合金给出了室温力学性能,没有提供高温力学性能,而且主要是作为变形镁合金使用,合金铸造后,还需进一步的热变形加工,不能直接用于铸造汽车发动机等工作温度要求较高(120℃-200℃)的零部件。After searching the literature of the prior art, it was found that the U.S. Patent Application No.: 20030029526, the patent name is: Quasicrystalline phase-reinforced Mg-based metallic alloy with high warmth and hot formability and method of making the same (quasicrystalline phase-reinforced Mg-based metallic alloy with high warmth and hot formability and method of making the same Magnesium-based alloy and its preparation method), the patent is a quasi-crystalline reinforced Mg-Zn-Y ternary alloy with good thermal deformation ability, and its alloy composition is 1-10at%Zn, 0.1-3at%Y, The balance is Mg. The alloy provides mechanical properties at room temperature, but does not provide high-temperature mechanical properties, and is mainly used as a deformed magnesium alloy. After the alloy is cast, further thermal deformation processing is required, and it cannot be directly used for casting automobile engines and other working temperature requirements ( 120°C-200°C) parts.
发明内容 Contents of the invention
本发明的目的在于克服现有耐热镁合金蠕变性能低的缺陷,提供一种原位合成准晶及其近似相增强耐热镁合金,使其在镁基体中引入一种新的强化相-准晶及其近似相,来大幅度地提高镁合金的高温蠕变性能,从而大大提高镁合金在汽车工业中的应用范围。The purpose of the present invention is to overcome the defect of low creep performance of existing heat-resistant magnesium alloys, and provide an in-situ synthesized quasicrystal and its approximate phase-enhanced heat-resistant magnesium alloy, which can introduce a new strengthening phase into the magnesium matrix -Quasicrystals and their approximate phases can greatly improve the high temperature creep performance of magnesium alloys, thereby greatly improving the application range of magnesium alloys in the automotive industry.
本发明是通过以下技术方案实现的,本发明的组分及其重量百分比为:5-10%Zn,1-5%Cu,2-6%Gd,杂质元素Fe<0.005%,Ni<0.002%,其余为Mg。The present invention is achieved through the following technical solutions, the components of the present invention and their weight percentages are: 5-10% Zn, 1-5% Cu, 2-6% Gd, impurity elements Fe<0.005%, Ni<0.002% , and the rest are Mg.
根据合金的性能价格比,本发明的组分及其重量百分比进一步限定为:6-8%Zn,2-4%Cu,3-5%Gd,杂质元素Fe<0.005%,Ni<0.002%,其余为Mg。以Mg-7Zn-3Cu-4Gd合金为例,常温压缩强度及压缩延伸率分别达到486MPa,17%。200℃、50MPa条件下高温拉伸蠕变性能:稳态蠕变速率5.7×10-8%/S,100小时后的蠕变应变为0.17%。而相同条件下商业用耐热镁合金AE42的稳态蠕变速率为4.2×10-6%/S,100小时后的蠕变应变为2.67%。该发明合金的高温蠕变性能比AE42(目前评价镁合金耐热性能的基准合金)提高1-2个数量级。According to the performance-price ratio of the alloy, the components of the present invention and their weight percentages are further limited to: 6-8% Zn, 2-4% Cu, 3-5% Gd, impurity elements Fe<0.005%, Ni<0.002%, The rest is Mg. Taking the Mg-7Zn-3Cu-4Gd alloy as an example, the compressive strength and compressive elongation at room temperature reach 486MPa and 17%, respectively. High-temperature tensile creep performance under the conditions of 200°C and 50MPa: the steady-state creep rate is 5.7×10 -8 %/S, and the creep strain after 100 hours is 0.17%. Under the same conditions, the steady-state creep rate of commercial heat-resistant magnesium alloy AE42 is 4.2×10 -6 %/S, and the creep strain after 100 hours is 2.67%. The high-temperature creep performance of the inventive alloy is 1-2 orders of magnitude higher than that of AE42 (a benchmark alloy for evaluating the heat-resistant performance of magnesium alloys at present).
本发明镁合金通过以下工艺制备得到:The magnesium alloy of the present invention is prepared by the following process:
(1)配料:按照配方质量百分比进行高纯镁、高纯锌、高纯铜、镁-钆中间合金等原材料进行配料,(1) Ingredients: Raw materials such as high-purity magnesium, high-purity zinc, high-purity copper, and magnesium-gadolinium intermediate alloy are mixed according to the mass percentage of the formula.
(2)熔炼:熔炼前将所有配料在200℃左右进行烘干1小时,而后放入常规电阻炉(中频感应炉)内,在熔剂(气体)保护熔炼条件下进行熔炼。(2) Smelting: Before smelting, dry all ingredients at about 200°C for 1 hour, then put them into a conventional resistance furnace (intermediate frequency induction furnace), and smelt under flux (gas) protection melting conditions.
(3)浇铸:将熔化了的金属液浇入铸型中得到铸件,铸造方法可以采用砂型铸造、低压铸造、金属型铸造或压铸。(3) Casting: The molten metal is poured into the mold to obtain the casting. The casting method can be sand casting, low pressure casting, metal casting or die casting.
(4)时效处理:将铸件进行加热到100-400℃区间的某一温度保温或某几个温度分级保温0.2-72小时,然后冷却,得到成品。(4) Aging treatment: heat the casting to a certain temperature in the range of 100-400°C or several temperatures for 0.2-72 hours, and then cool to obtain the finished product.
本发明含有一种特殊强化相-准晶及其近似相,所获得的准晶及其近似相组织具有封闭型骨架形貌结构,对镁基体能很好地起到加固增强作用;同时所获得的准晶及其近似相具有很高的热稳定性能,高温强化作用能保持到200℃以上。通过对本发明材料进行时效处理工艺,使基体析出MgZn强化相,可以进一步强化基体,提高镁合金的力学性能。The invention contains a special strengthening phase-quasicrystal and its approximate phase. The obtained quasicrystal and its approximate phase structure have a closed skeleton morphology structure, which can well strengthen the magnesium matrix; at the same time, the obtained The quasicrystal and its approximate phases have high thermal stability, and the high temperature strengthening effect can be maintained above 200 °C. By performing an aging treatment process on the material of the invention, the MgZn strengthening phase is precipitated in the matrix, which can further strengthen the matrix and improve the mechanical properties of the magnesium alloy.
与背景技术相比,本发明具有突出的实质性特点和显著的进步,本发明是一种基于Mg-Zn-Cu-Gd的能原位合成准晶及其近似相的四元合金组分,合金除具有良好的室温力学性能外,尤其具有优异的抗高温蠕变性能。200℃,50Mpa拉伸蠕变条件下的最小稳态蠕变速率为5.2×10-8%/S,100小时后的蠕变应变为0.15%;而相同条件下AE42镁合金的稳态蠕变速率为4.2×10-6%/S,100小时后的蠕变应变为2.67%。即本发明的新合金的抗高温蠕变性能要比AE42耐热镁合金(目前评价镁合金耐热性能的基准合金)提高近2个数量级。而且因为是铸造用镁合金,不需热变形加工,可直接用于铸造汽车发动机等工作温度要求较高(120℃-200℃)的零部件,制备工艺更为简单。Compared with the background technology, the present invention has outstanding substantive features and significant progress. The present invention is a quaternary alloy component based on Mg-Zn-Cu-Gd that can synthesize quasicrystals and their approximate phases in situ. In addition to good mechanical properties at room temperature, the alloy especially has excellent high temperature creep resistance. The minimum steady-state creep rate under 200°C and 50Mpa tensile creep conditions is 5.2× 10-8 %/S, and the creep strain after 100 hours is 0.15%; while the steady-state creep rate of AE42 magnesium alloy under the same conditions The rate is 4.2×10 -6 %/S, and the creep strain after 100 hours is 2.67%. That is, the high-temperature creep resistance of the new alloy of the present invention is nearly 2 orders of magnitude higher than that of the AE42 heat-resistant magnesium alloy (the current benchmark alloy for evaluating the heat-resistant performance of magnesium alloys). Moreover, because it is a magnesium alloy for casting, it does not require thermal deformation processing, and can be directly used for casting automotive engines and other parts with high operating temperature requirements (120°C-200°C), and the preparation process is simpler.
具体实施方式 Detailed ways
结合本发明的内容提供以下实施例:Provide following embodiment in conjunction with content of the present invention:
实施例1:Example 1:
合金成分重量百分比:5.0%Zn、1%Cu、2%Gd,杂质元素Fe≤0.005%、Ni≤0.002%,其余为Mg。Alloy composition weight percent: 5.0% Zn, 1% Cu, 2% Gd, impurity elements Fe≤0.005%, Ni≤0.002%, and the rest is Mg.
按照上述成分配置合金,在电阻炉中加入工业纯镁8.6Kg,工业纯铜0.1Kg,工业纯锌0.5Kg,Mg-25Gd中间合金0.8Kg,在气体(或溶剂)保护下熔炼,待合金元素全部溶解后,继续升高温度至720℃-740℃,然后保温静置30分钟,捞去表面浮渣后即可用浇包进行砂型浇铸,浇铸过程中在熔体上方通保护气体进行保护。本发明合金的常温压缩强度及压缩延伸率分别达到408MPa,18%。200℃、50MPa条件下高温拉伸蠕变性能:稳态蠕变速率3.1×10-7%/S,100小时后的蠕变应变为0.30%。而相同条件下商业用耐热镁合金AE42的稳态蠕变速率为4.2×10-6%/S,100小时后的蠕变应变为2.67%。该发明合金的高温蠕变性能比AE42提高1个数量级。Configure the alloy according to the above ingredients, add 8.6Kg of industrial pure magnesium, 0.1Kg of industrial pure copper, 0.5Kg of industrial pure zinc, and 0.8Kg of Mg-25Gd master alloy in the resistance furnace, smelt under the protection of gas (or solvent), and treat the alloy elements After it is completely dissolved, continue to raise the temperature to 720°C-740°C, then keep it warm for 30 minutes, remove the scum on the surface, and then use the ladle for sand casting. During the casting process, pass protective gas above the melt for protection. The normal-temperature compressive strength and compressive elongation of the alloy of the invention reach 408MPa and 18% respectively. High-temperature tensile creep performance under the conditions of 200°C and 50MPa: the steady-state creep rate is 3.1×10 -7 %/S, and the creep strain after 100 hours is 0.30%. Under the same conditions, the steady-state creep rate of commercial heat-resistant magnesium alloy AE42 is 4.2×10 -6 %/S, and the creep strain after 100 hours is 2.67%. The high-temperature creep performance of the inventive alloy is improved by an order of magnitude compared with AE42.
实施例2:Example 2:
合金成分重量百分比:6.0%Zn、2%Cu、3%Gd,杂质元素Fe≤0.005%,Ni≤0.002%,其余为Mg。Alloy composition weight percent: 6.0% Zn, 2% Cu, 3% Gd, impurity element Fe≤0.005%, Ni≤0.002%, and the rest is Mg.
按照上述成分配置合金,在中频感应炉中加入工业纯镁8Kg,工业纯铜0.2Kg,工业纯锌0.6Kg,Mg-25Gd中间合金1.2Kg,在气体保护下熔炼,待合金元素全部溶解后,继续升高温度至720℃-740℃,然后保温静置10分钟,捞去表面浮渣后在进行金属型浇铸。本发明合金的常温压缩强度及压缩延伸率分别达到438MPa,18%。200℃、50MPa条件下高温拉伸蠕变性能:稳态蠕变速率9.1×10-8%/S,100小时后的蠕变应变为0.25%。而相同条件下商业用耐热镁合金AE42的稳态蠕变速率为4.2×10-6%/S,100小时后的蠕变应变为2.67%。该发明合金的高温蠕变性能比AE42提高1个数量级以上。Configure the alloy according to the above ingredients, add 8Kg of industrial pure magnesium, 0.2Kg of industrial pure copper, 0.6Kg of industrial pure zinc, and 1.2Kg of Mg-25Gd master alloy into the intermediate frequency induction furnace, and melt under the protection of gas. After all the alloy elements are dissolved, Continue to raise the temperature to 720°C-740°C, then keep it warm for 10 minutes, remove the scum on the surface, and then cast the metal mold. The normal-temperature compressive strength and compressive elongation of the alloy of the invention reach 438MPa and 18% respectively. High-temperature tensile creep performance under the conditions of 200°C and 50MPa: the steady-state creep rate is 9.1×10 -8 %/S, and the creep strain after 100 hours is 0.25%. Under the same conditions, the steady-state creep rate of commercial heat-resistant magnesium alloy AE42 is 4.2×10 -6 %/S, and the creep strain after 100 hours is 2.67%. The high-temperature creep performance of the inventive alloy is more than one order of magnitude higher than that of AE42.
实施例3:Example 3:
合金成分重量百分比:7.0%Zn、3%Cu、4%Gd,杂质元素Fe≤0.005%,Ni≤0.002%,其余为Mg。Alloy composition weight percent: 7.0% Zn, 3% Cu, 4% Gd, impurity element Fe≤0.005%, Ni≤0.002%, and the rest is Mg.
按照上述成分配置合金,在中频感应炉中加入工业纯镁7.4Kg,工业纯铜0.3Kg,工业纯锌0.7Kg,Mg-25Gd中间合金1.6Kg,在气体保护下熔炼,待合金元素全部溶解后,继续升高温度至720℃-740℃,然后保温静置10分钟,捞去表面浮渣后在低压铸造炉内采用氮气给压进行低压铸造。本发明合金的常温压缩强度及压缩延伸率分别达到486MPa,17%。200℃、50MPa条件下高温拉伸蠕变性能:稳态蠕变速率5.7×10-8%/S,100小时后的蠕变应变为0.17%。而相同条件下商业用耐热镁合金AE42的稳态蠕变速率为4.2×10-6%/S,100小时后的蠕变应变为2.67%。该发明合金的高温蠕变性能比AE42提高1-2个数量级。Configure the alloy according to the above ingredients, add 7.4Kg of industrial pure magnesium, 0.3Kg of industrial pure copper, 0.7Kg of industrial pure zinc, and 1.6Kg of Mg-25Gd master alloy into the intermediate frequency induction furnace, melt under the protection of gas, and wait until all the alloy elements are dissolved , continue to raise the temperature to 720°C-740°C, then keep the heat and let it stand for 10 minutes, remove the surface scum and carry out low-pressure casting in a low-pressure casting furnace using nitrogen gas pressure. The normal temperature compressive strength and compressive elongation of the alloy of the invention reach 486MPa and 17% respectively. High-temperature tensile creep performance under the conditions of 200°C and 50MPa: the steady-state creep rate is 5.7×10 -8 %/S, and the creep strain after 100 hours is 0.17%. Under the same conditions, the steady-state creep rate of commercial heat-resistant magnesium alloy AE42 is 4.2×10 -6 %/S, and the creep strain after 100 hours is 2.67%. The high-temperature creep performance of the inventive alloy is 1-2 orders of magnitude higher than that of AE42.
实施例4:Example 4:
合金成分重量百分比:8.0%Zn、4%Cu、5%Gd,杂质元素Fe≤0.005%,Ni≤0.002%,其余为Mg。Alloy composition weight percent: 8.0% Zn, 4% Cu, 5% Gd, impurity element Fe≤0.005%, Ni≤0.002%, and the rest is Mg.
按照上述成分配置合金,在中频感应炉中加入工业纯镁6.8Kg,工业纯铜0.4Kg,工业纯锌0.8Kg,Mg-25Gd中间合金2.0Kg,在气体保护下熔炼,待合金元素全部溶解后,继续升高温度至720℃-740℃,然后保温静置10分钟,捞去表面浮渣后进行金属型浇铸。本发明合金的常温压缩强度及压缩延伸率分别达到480MPa,16%。200℃、50MPa条件下高温拉伸蠕变性能:稳态蠕变速率5.4×10-8%/S,100小时后的蠕变应变为0.16%。而相同条件下商业用耐热镁合金AE42的稳态蠕变速率为4.2×10-6%/S,100小时后的蠕变应变为2.67%。该发明合金的高温蠕变性能比AE42提高1-2个数量级。Configure the alloy according to the above ingredients, add 6.8Kg of industrial pure magnesium, 0.4Kg of industrial pure copper, 0.8Kg of industrial pure zinc, and 2.0Kg of Mg-25Gd master alloy into the intermediate frequency induction furnace, melt under the protection of gas, and wait until all the alloy elements are dissolved , continue to raise the temperature to 720°C-740°C, then keep it warm for 10 minutes, remove the scum on the surface, and then carry out metal mold casting. The normal temperature compressive strength and compressive elongation of the alloy of the invention reach 480MPa and 16% respectively. High-temperature tensile creep performance under the conditions of 200°C and 50MPa: the steady-state creep rate is 5.4×10 -8 %/S, and the creep strain after 100 hours is 0.16%. Under the same conditions, the steady-state creep rate of commercial heat-resistant magnesium alloy AE42 is 4.2×10 -6 %/S, and the creep strain after 100 hours is 2.67%. The high-temperature creep performance of the inventive alloy is 1-2 orders of magnitude higher than that of AE42.
实施例5:Example 5:
合金成分重量百分比:10.0%Zn、5%Cu、6%Gd,杂质元素Fe≤0.005%,Ni≤0.002%,其余为Mg。Alloy composition weight percent: 10.0% Zn, 5% Cu, 6% Gd, impurity element Fe≤0.005%, Ni≤0.002%, and the rest is Mg.
按照上述成分配置合金,在中频感应炉中加入工业纯镁6.1Kg,工业纯铜0.5Kg,工业纯锌1.0Kg,Mg-25Gd中间合金2.4Kg,在气体保护下熔炼,待合金元素全部溶解后,继续升高温度至720℃-740℃,然后保温静置20分钟,捞去表面浮渣后即可进行金属型浇铸。本发明合金的常温压缩强度及压缩延伸率分别达到450MPa,11%。200℃、50MPa条件下高温拉伸蠕变性能:最小稳态蠕变速率为5.2×10-8%/S,100小时后的蠕变应变为0.15%。而相同条件下AE42镁合金的稳态蠕变速率为4.2×10-6%/S,100小时后的蠕变应变为2.67%。该发明合金的高温蠕变性能比AE42提高近2个数量级。Configure the alloy according to the above ingredients, add 6.1Kg of industrial pure magnesium, 0.5Kg of industrial pure copper, 1.0Kg of industrial pure zinc, and 2.4Kg of Mg-25Gd master alloy into the intermediate frequency induction furnace, melt under the protection of gas, and wait until all the alloying elements are dissolved , continue to raise the temperature to 720°C-740°C, then keep it warm for 20 minutes, remove the scum on the surface, and then cast the metal mold. The normal temperature compressive strength and compressive elongation of the alloy of the invention reach 450MPa and 11% respectively. High-temperature tensile creep performance at 200°C and 50MPa: the minimum steady-state creep rate is 5.2×10 -8 %/S, and the creep strain after 100 hours is 0.15%. However, under the same conditions, the steady-state creep rate of AE42 magnesium alloy is 4.2×10 -6 %/S, and the creep strain after 100 hours is 2.67%. The high-temperature creep performance of the inventive alloy is nearly 2 orders of magnitude higher than that of AE42.
在上述5个实施例中,实施例2,3,4中合金具有较好的综合性能价格比。而实施例3中合金除了具有最好的压缩强度外,同时兼有优异的高温蠕变性能。此外,与实施例4、5相比,实施例3含有较低含量的Gd,合金成本相对较低,因而具有最好的综合性能价格比。Among the above five examples, the alloys in examples 2, 3, and 4 have better overall performance-price ratios. The alloy in Example 3 not only has the best compressive strength, but also has excellent high-temperature creep properties. In addition, compared with Examples 4 and 5, Example 3 contains a lower content of Gd, and the cost of the alloy is relatively low, so it has the best overall performance-price ratio.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100232813A CN100441718C (en) | 2005-01-13 | 2005-01-13 | In Situ Synthesis of Quasicrystals and Their Approximate Phases Reinforced Heat-resistant Magnesium Alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100232813A CN100441718C (en) | 2005-01-13 | 2005-01-13 | In Situ Synthesis of Quasicrystals and Their Approximate Phases Reinforced Heat-resistant Magnesium Alloys |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1644739A CN1644739A (en) | 2005-07-27 |
CN100441718C true CN100441718C (en) | 2008-12-10 |
Family
ID=34875825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100232813A Expired - Fee Related CN100441718C (en) | 2005-01-13 | 2005-01-13 | In Situ Synthesis of Quasicrystals and Their Approximate Phases Reinforced Heat-resistant Magnesium Alloys |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100441718C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100434555C (en) * | 2006-05-25 | 2008-11-19 | 上海交通大学 | Self-grown quasicrystal-reinforced high plastic deformation magnesium alloys |
CN111134544A (en) * | 2018-11-02 | 2020-05-12 | 佛山市顺德区美的电热电器制造有限公司 | Container and cooking utensil with same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5221376A (en) * | 1990-06-13 | 1993-06-22 | Tsuyoshi Masumoto | High strength magnesium-based alloys |
JPH08134581A (en) * | 1994-11-14 | 1996-05-28 | Mitsui Mining & Smelting Co Ltd | Production of magnesium alloy |
JP2003129161A (en) * | 2001-08-13 | 2003-05-08 | Honda Motor Co Ltd | Heat resistant magnesium alloy |
CN1464913A (en) * | 2001-08-13 | 2003-12-31 | 本田技研工业株式会社 | Magnesium alloy |
-
2005
- 2005-01-13 CN CNB2005100232813A patent/CN100441718C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5221376A (en) * | 1990-06-13 | 1993-06-22 | Tsuyoshi Masumoto | High strength magnesium-based alloys |
JPH08134581A (en) * | 1994-11-14 | 1996-05-28 | Mitsui Mining & Smelting Co Ltd | Production of magnesium alloy |
JP2003129161A (en) * | 2001-08-13 | 2003-05-08 | Honda Motor Co Ltd | Heat resistant magnesium alloy |
CN1464913A (en) * | 2001-08-13 | 2003-12-31 | 本田技研工业株式会社 | Magnesium alloy |
Non-Patent Citations (2)
Title |
---|
MB25镁合金中的准晶体与晶体相的研究. 张少卿,罗治平.分析测试学报,第13卷第6期. 1994 * |
变形镁合金材料的研究进展. 周海涛等.材料导报,第17卷第11期. 2003 * |
Also Published As
Publication number | Publication date |
---|---|
CN1644739A (en) | 2005-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106498245B (en) | The high-strength cast aluminum-silicon alloy and its preparation process that a kind of subzero treatment is strengthened | |
CN100434555C (en) | Self-grown quasicrystal-reinforced high plastic deformation magnesium alloys | |
CN101440449B (en) | Multicomponent heat resisting magnesium alloy and preparation thereof | |
CN101353747B (en) | Die-cast heat-resistant magnesium alloy and preparation method thereof | |
CN102618758A (en) | Cast magnesium alloy of low linear shrinkage | |
CN102618760B (en) | MgAlZn series heat resistant magnesium alloy containing niobium | |
CN102994835B (en) | Heatproof magnesium alloy | |
CN102618762B (en) | Heat-resisting magnesium alloy | |
CN102154580B (en) | High-intensity heat-resistant magnesium alloy material and preparation process thereof | |
CN109972003A (en) | High-elongation heat-resistant aluminum alloy suitable for gravity casting and preparation method thereof | |
CN102618757A (en) | Heat-resistant magnesium alloy | |
CN1962914A (en) | Cast magnesium alloy containing rare-earth and preparation method thereof | |
CN109957687A (en) | A kind of die-casting aluminum-silicon alloy and preparation method thereof | |
CN102994847A (en) | Heatproof magnesium alloy | |
CN104894445B (en) | Production method of ultrahigh-ductility Mg-Zn-Y alloy | |
CN115011846B (en) | A kind of high strength, high stability Al-Mg-Si-Cu-Sc aluminum alloy and preparation method thereof | |
CN100532604C (en) | A kind of Nd, Sr composite strengthening heat-resistant magnesium alloy and preparation method thereof | |
CN101235454A (en) | A kind of quasicrystal reinforced Mg-Zn-Er heat-resistant magnesium alloy and its preparation method | |
CN102618763A (en) | Heat resistant magnesium alloy | |
CN100441718C (en) | In Situ Synthesis of Quasicrystals and Their Approximate Phases Reinforced Heat-resistant Magnesium Alloys | |
CN104561709B (en) | High-creep-performance casting magnesium alloy and preparation method thereof | |
CN109161767B (en) | Creep-resistant magnesium alloy containing W phase and preparation method thereof | |
CN112063885A (en) | Ruthenium-containing multi-component TiAl alloy suitable for 800 DEG C | |
CN107099710A (en) | A kind of aluminium copper and its casting method | |
CN109943738A (en) | A kind of aluminum-containing high modulus rare earth magnesium alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: ORDOS CITY TIANXU LIGHT ALLOY CO., LTD Free format text: FORMER OWNER: SHANGHAI JIAOTONG UNIV. Effective date: 20091002 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20091002 Address after: Ordos the Inner Mongolia Autonomous Region City Economic Development Zone in Wushen Tianxu Light Alloy Co. Patentee after: Erdos Tian Xu Light Alloy Co., Ltd. Address before: No. 800, Dongchuan Road, Shanghai, Minhang District Patentee before: Shanghai Jiao Tong University |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081210 Termination date: 20150113 |
|
EXPY | Termination of patent right or utility model |