CN109981952B - A kind of image compensation method, device and computer storage medium - Google Patents
A kind of image compensation method, device and computer storage medium Download PDFInfo
- Publication number
- CN109981952B CN109981952B CN201910259523.0A CN201910259523A CN109981952B CN 109981952 B CN109981952 B CN 109981952B CN 201910259523 A CN201910259523 A CN 201910259523A CN 109981952 B CN109981952 B CN 109981952B
- Authority
- CN
- China
- Prior art keywords
- ccd line
- line segment
- angle
- current
- imaged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000003384 imaging method Methods 0.000 claims description 91
- 238000001444 catalytic combustion detection Methods 0.000 description 158
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 14
- 238000006073 displacement reaction Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 10
- 238000012634 optical imaging Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000010408 sweeping Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
- Image Processing (AREA)
Abstract
本发明实施例公开了一种图像补偿的方法、装置及计算机存储介质;该方法可以包括:将线性电荷耦合元件CCD阵列划分为多个CCD线段;根据每个CCD线段在待成像区域中对应的目标区域与每个所述CCD线段之间的当前相对角度确定每个所述CCD线段的当前待旋转角度;针对每个所述CCD线段,按照每个所述CCD线段的当前待旋转角度进行旋转;通过旋转后的CCD线段对所述待成像区域进行拍摄。
The embodiment of the present invention discloses an image compensation method, a device and a computer storage medium; the method may include: dividing a linear charge-coupled element CCD array into a plurality of CCD line segments; The current relative angle between the target area and each of the CCD line segments determines the current angle to be rotated of each of the CCD line segments; for each of the CCD line segments, the rotation is performed according to the current angle to be rotated of each of the CCD line segments ; Photograph the to-be-imaged area through the rotated CCD line segment.
Description
技术领域technical field
本发明涉及航天观测技术领域,尤其涉及一种图像补偿的方法、装置及计 算机存储介质。The present invention relates to the technical field of aerospace observation, and in particular, to a method, device and computer storage medium for image compensation.
背景技术Background technique
摆扫成像指的是一种在卫星姿态机动过程中同时进行成像的动态成像方式, 卫星相机在滚动方向快速达到某一角速度,然后按一定角速度运动对地成像。 而线性的电荷耦合元件(CCD,Charge-Coupled Device)阵列常被应用于摆扫 成像中,具体来说,如图1所示,将一定数量的CCD感光元件排列在一条直线 上,这样的布局形式的CCD阵列即称为线性CCD阵列,又称为扫描型CCD。 通过应用线性CCD阵列进行扫描,将每一时刻获取的遥感图像进行拼接,便可 获取得到大幅面高分辨率可见光图像。Sweep imaging refers to a dynamic imaging method that simultaneously performs imaging during the satellite attitude maneuver. The satellite camera rapidly reaches a certain angular velocity in the rolling direction, and then moves at a certain angular velocity to image the ground. Linear charge-coupled device (CCD, Charge-Coupled Device) arrays are often used in swing imaging. Specifically, as shown in Figure 1, a certain number of CCD photosensitive elements are arranged in a straight line. Such a layout The form of CCD array is called linear CCD array, also known as scanning CCD. By scanning with a linear CCD array and splicing the remote sensing images obtained at each moment, a large-format high-resolution visible light image can be obtained.
扫摆成像过程最终所获得的图像由线性CCD阵列摆扫所成获得的多条图 像条带拼接而成,如图2所示,从中可以看出:当光轴与地面垂直时,具有较 好的成像效果,实际成像的区域形状为规则的矩形条带,即扫描所获得的整幅 图像,靠近星下点的中心位置处,成像效果较好。而当光轴与轨道面成一定的 角度时,由于地球曲率影响,线性CCD阵列实际成像的区域变为一弧段,即图 像中越靠近两侧的图像条带产生的几何畸变越明显。The final image obtained in the sweeping imaging process is composed of multiple image strips obtained by sweeping the linear CCD array, as shown in Figure 2. It can be seen from this that when the optical axis is perpendicular to the ground, it has better performance. The shape of the actual imaging area is a regular rectangular strip, that is, the whole image obtained by scanning, close to the center of the sub-satellite point, the imaging effect is better. However, when the optical axis forms a certain angle with the orbital surface, due to the influence of the curvature of the earth, the area actually imaged by the linear CCD array becomes an arc, that is, the more obvious the geometric distortion of the image strips on both sides in the image.
而对于上述几何畸变来说,如图3所示,从待成像区域的中心O向两端, 由于地球曲率的存在,所产生的像位移误差逐渐增大。而针对摆扫成像过程来 说,当轨道高度和成像幅宽确定,所获得的可见光图像的像位移偏差将随着光 轴与轨道面夹角的增大而增大。For the above geometric distortion, as shown in FIG. 3 , from the center O of the area to be imaged to the two ends, due to the existence of the curvature of the earth, the generated image displacement error gradually increases. For the swing imaging process, when the track height and imaging width are determined, the image displacement deviation of the obtained visible light image will increase with the increase of the angle between the optical axis and the track plane.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例期望提供一种图像补偿的方法、装置及计算机存 储介质;能够降低像位移偏差,减少成像的几何畸变。In view of this, the embodiments of the present invention are expected to provide an image compensation method, device, and computer storage medium, which can reduce the image displacement deviation and reduce the geometric distortion of imaging.
本发明的技术方案是这样实现的:The technical scheme of the present invention is realized as follows:
第一方面,本发明实施例提供了一种图像补偿的方法,所述方法包括:In a first aspect, an embodiment of the present invention provides an image compensation method, and the method includes:
将线性电荷耦合元件CCD阵列划分为多个CCD线段;Divide the linear charge-coupled element CCD array into multiple CCD line segments;
根据每个CCD线段在待成像区域中对应的目标区域与每个所述CCD线段 之间的当前相对角度确定每个所述CCD线段的当前待旋转角度;Determine the current angle to be rotated of each described CCD line segment according to the current relative angle between the target area corresponding to each CCD line segment in the area to be imaged and each described CCD line segment;
针对每个所述CCD线段,按照每个所述CCD线段的当前待旋转角度进行 旋转;For each described CCD line segment, rotate according to the current angle to be rotated of each described CCD line segment;
通过旋转后的CCD线段对所述待成像区域进行拍摄。The to-be-imaged area is photographed by the rotated CCD line segment.
第二方面,本发明实施例提供了一种图像补偿的装置,所述装置包括:划 分部分、确定部分、旋转部分和拍摄控制部分;其中,In a second aspect, an embodiment of the present invention provides an image compensation device, the device includes: a dividing part, a determining part, a rotating part, and a shooting control part; wherein,
所述划分部分,配置为将线性电荷耦合元件CCD阵列划分为多个CCD线 段;The dividing part is configured to divide the linear charge-coupled element CCD array into a plurality of CCD line segments;
所述确定部分,配置为根据每个CCD线段在待成像区域中对应的目标区域 与每个所述CCD线段之间的当前相对角度确定每个所述CCD线段的当前待旋 转角度;The determining part is configured to determine the current angle to be rotated of each described CCD line segment according to the current relative angle between the target area corresponding to each CCD line segment in the area to be imaged and each described CCD line segment;
所述旋转部分,配置为针对每个所述CCD线段,按照每个所述CCD线段 的当前待旋转角度进行旋转;The rotating part is configured to rotate according to the current angle to be rotated of each described CCD line segment for each described CCD line segment;
所述拍摄控制部分,配置为通过旋转后的CCD线段对所述待成像区域进行 拍摄。The photographing control part is configured to photograph the to-be-imaged area through the rotated CCD line segment.
第三方面,本发明实施例提供了一种计算机存储介质,其特征在于,所述 计算机存储介质所述计算机存储介质存储有图像补偿程序,所述图像补偿程序 被至少一个处理器执行时实现第一方面所述的图像补偿方法的步骤。In a third aspect, an embodiment of the present invention provides a computer storage medium, wherein the computer storage medium stores an image compensation program, and when the image compensation program is executed by at least one processor, the first The steps of the image compensation method described in one aspect.
本发明实施例提供了一种图像补偿的方法、装置及计算机存储介质;将线 性CCD阵列划分为多个CCD线段之后,根据待成像区域针对每个CCD线段 进行旋转后再对待成像区域进行成像,从而降低了像位移偏差,减少对地摆扫 成像的过程中所造成的几何畸变。The embodiment of the present invention provides an image compensation method, device and computer storage medium; after dividing a linear CCD array into multiple CCD line segments, rotate each CCD line segment according to the area to be imaged, and then image the area to be imaged, Thereby, the deviation of image displacement is reduced, and the geometric distortion caused in the process of imaging the ground swing is reduced.
附图说明Description of drawings
图1为常规方案提供的对地摆扫成像的过程示意图;FIG. 1 is a schematic diagram of the process of ground swing imaging provided by a conventional solution;
图2为常规方案提供的一种图像的拼接示意图;Fig. 2 is the stitching schematic diagram of a kind of image that conventional scheme provides;
图3为常规方案提供的通过线性CCD阵列对地面条带区域成像的示意图;FIG. 3 is a schematic diagram of imaging the ground strip area through a linear CCD array provided by a conventional solution;
图4为常规方案提供的一种成像偏差效果示意图;4 is a schematic diagram of an imaging bias effect provided by a conventional solution;
图5为常规方案提供的一种成像效果示意图;5 is a schematic diagram of an imaging effect provided by a conventional scheme;
图6为本发明实施例提供的一种图像补偿的方法流程示意图;FIG. 6 is a schematic flowchart of an image compensation method according to an embodiment of the present invention;
图7为本发明实施例提供的对每个CCD线段进行旋转控制的流程示意图;7 is a schematic flowchart of performing rotation control on each CCD line segment provided by an embodiment of the present invention;
图8为本发明实施例提供的一种成像流程示意图;FIG. 8 is a schematic diagram of an imaging process according to an embodiment of the present invention;
图9为本发明实施例提供的一种CCD线段划分效果示意图;9 is a schematic diagram of a CCD line segment division effect provided by an embodiment of the present invention;
图10为本发明实施例提供的一种旋转效果示意图;10 is a schematic diagram of a rotation effect provided by an embodiment of the present invention;
图11本发明实施例提供的一种成像示意图;11 is a schematic diagram of imaging provided by an embodiment of the present invention;
图12本发明实施例提供的一种效果分析示意图;12 is a schematic diagram of an effect analysis provided by an embodiment of the present invention;
图13本发明实施例提供的一种效果分析的模型示意图;13 is a schematic diagram of a model for effect analysis provided by an embodiment of the present invention;
图14本发明实施例提供的一种图像补偿的装置组成示意图;14 is a schematic diagram of the composition of an apparatus for image compensation provided by an embodiment of the present invention;
图15本发明实施例提供的一种确定部分的组成示意图。FIG. 15 is a schematic diagram of the composition of a determination part provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.
以轨道高度H处的光学成像卫星为例,参见图1,其示出了常规对地摆扫 成像的过程,在图1中,光学成像卫星的载荷为由线性CCD阵列构成的光学相 机,其中,相机的光轴垂直于卫星的飞行方向,并且相机沿卫星滚转轴方向进 行旋转摆扫,并在扫摆过程中通过线性CCD阵列对地面区域进行扫描成像;这 种扫描成像过程具体可以是可见光扫描成像,最终将不同时刻扫描获得的图像 条带进行拼接处理便可获得目标区域的完整图像。Taking the optical imaging satellite at the orbital height H as an example, please refer to Fig. 1, which shows the process of conventional sweep imaging. In Fig. 1, the payload of the optical imaging satellite is an optical camera composed of a linear CCD array, where , the optical axis of the camera is perpendicular to the flight direction of the satellite, and the camera rotates and sweeps along the direction of the satellite's roll axis, and scans and images the ground area through a linear CCD array during the sweeping process; this scanning and imaging process can be specifically visible light. Scanning and imaging, and finally stitching the image strips obtained by scanning at different times to obtain a complete image of the target area.
通过对上述成像过程的阐述,最终扫描得到的图像分别由线性CCD阵列摆 扫所得到的图像条带1、图像条带2、一直至图像条带n拼接而成,图像的拼接 示意图参见图2。当光轴与地面垂直时,能具有较好的成像效果,实际成像的 区域形状为规则的矩形条带,即扫描所获得的整幅图像,靠近星下点的中心位 置处,成像效果较好。问题是当光轴与轨道面成一定的角度时,由于地球曲率 影响,线性CCD阵列实际成像的区域变为一弧段,即图像中越靠近两侧的图像 条带产生的几何畸变越明显。Through the elaboration of the above imaging process, the final image obtained by scanning is composed of
图3示出了上述几何畸变产生的原因,图3为某时刻通过线性CCD阵列对 地面A′B′条带区域成像的示意图,可以看出,从待成像区域的中心O向两端, 由于地球曲率的存在,所产生的像位移误差逐渐增大。而对于摆扫全过程而言, 当轨道高度和成像幅宽确定的情况下,获得的可见光图像的像位移偏差将随着 光轴与轨道面夹角的增大而增大。Figure 3 shows the reasons for the above-mentioned geometric distortion. Figure 3 is a schematic diagram of imaging the A'B' strip area on the ground through a linear CCD array at a certain time. It can be seen that from the center O of the area to be imaged to both ends, due to The existence of the curvature of the earth, the resulting image displacement error gradually increases. For the whole process of swing and sweep, when the track height and imaging width are determined, the image displacement deviation of the obtained visible light image will increase with the increase of the angle between the optical axis and the track plane.
对于卫星的宽幅成像任务来说,图3所示的像位移偏差更加明显。由图4 所示的成像时从图形中心到图形右侧的成像偏差示意图可发现:从中心位置向 外部位置的像元位置偏移越来越大,图像产生几何畸变越来越明显。The image displacement bias shown in Figure 3 is more pronounced for the satellite's wide-format imaging mission. From the schematic diagram of the imaging deviation from the center of the graph to the right side of the graph shown in Fig. 4, it can be found that the pixel position deviation from the central position to the outer position is larger and larger, and the geometric distortion of the image is more and more obvious.
对于上述几何畸变来说,以某一时刻针对每条成像带进行成像误差分析, 在该时刻相机的光轴与地面有一定角度,在该角度下成像效果如图5所示,并 将此过程简化为图5中右侧的模型,可发现从中间位置O到两端A、B,图像 产生的位移偏差逐渐增大,考虑到线性CCD阵列中两侧CCD所成像的情况, 此处偏差角度设置为α。For the above geometric distortion, the imaging error analysis is carried out for each imaging band at a certain moment, when the optical axis of the camera is at a certain angle with the ground, and the imaging effect at this angle is shown in Figure 5. Simplified to the model on the right in Figure 5, it can be found that from the middle position O to the two ends A and B, the displacement deviation generated by the image gradually increases. Considering the imaging situation of the two CCDs in the linear CCD array, the deviation angle here is Set to alpha.
基于上述针对常规对地摆扫成像的过程以及几何畸变的分析可以获知,由 于常规的对地拍摄方式采用不可分割的线性CCD阵列,因此,常规的卫星成像 系统对目标的成像角度的调整一般通过卫星平台姿态机动带动卫星成像系统进 行角度调整或通过对整片线性CCD阵列进行整体机动来调节,但这样的方式仍 然相当于采用整条线段对曲线弧段进行拍摄,尤其不适用于宽幅拍摄的场景。Based on the above analysis of the conventional ground swing imaging process and geometric distortion, it can be known that since the conventional ground shooting method adopts an indivisible linear CCD array, the conventional satellite imaging system generally adjusts the imaging angle of the target by The attitude maneuver of the satellite platform drives the satellite imaging system to adjust the angle or adjusts the entire linear CCD array by performing the overall maneuver, but this method is still equivalent to using the entire line segment to shoot the curved arc, especially not suitable for wide-format shooting scene.
基于上述分析,参见图6,其示出了本发明实施例提供的一种图像补偿的 方法,该方法可以应用于具有线性CCD阵列载荷的成像卫星中,该方法可以包 括:Based on the above analysis, referring to Fig. 6, it shows a method for image compensation provided by an embodiment of the present invention. The method can be applied to an imaging satellite with a linear CCD array load, and the method can include:
S601:将线性CCD阵列划分为多个CCD线段;S601: Divide the linear CCD array into multiple CCD line segments;
S602:根据每个CCD线段在待成像区域中对应的目标区域与每个所述CCD 线段之间的当前相对角度确定每个所述CCD线段的当前待旋转角度;S602: Determine the current angle to be rotated of each CCD line segment according to the current relative angle between the target area corresponding to each CCD line segment in the area to be imaged and each of the CCD line segments;
S603:针对每个所述CCD线段,按照每个所述CCD线段的当前待旋转角 度进行旋转;其中,旋转后的CCD线段均与所述待成像区域相切;S603: for each described CCD line segment, rotate according to the current angle to be rotated of each described CCD line segment; wherein, the rotated CCD line segment is all tangent to the described area to be imaged;
S604:通过旋转后的CCD线段对所述待成像区域进行拍摄。S604: Photograph the to-be-imaged area through the rotated CCD line segment.
通过图6所示的方案,将线性CCD阵列划分为多个CCD线段之后,根据 待成像区域针对每个CCD线段进行旋转后再对待成像区域进行成像,从而降低 了像位移偏差,减少对地摆扫成像的过程中所造成的几何畸变。Through the scheme shown in Figure 6, after dividing the linear CCD array into multiple CCD line segments, each CCD line segment is rotated according to the area to be imaged, and then the area to be imaged is imaged, thereby reducing the image displacement deviation and reducing the impact on the ground. Geometric distortion caused by scanning imaging.
对于图6所示的技术方案,在一种可能的实现方式中,所述根据每个CCD 线段在待成像区域中对应的目标区域与每个所述CCD线段之间的当前相对角 度确定每个所述CCD线段的当前待旋转角度,包括:For the technical solution shown in FIG. 6, in a possible implementation manner, the current relative angle between the target area corresponding to each CCD line segment in the area to be imaged and each of the CCD line segments is determined according to the The current angle to be rotated of the CCD line segment, including:
基于设置在承载有所述线性CCD阵列的成像卫星平台的姿轨传感器获取 当前所述成像卫星的姿态信息以及当前所述成像卫星的位置信息;Obtain the current attitude information of the imaging satellite and the current position information of the imaging satellite based on the attitude and orbit sensor provided on the imaging satellite platform carrying the linear CCD array;
基于设置在所述成像卫星平台中的计算单元,根据所述当前所述成像卫星 的姿态信息以及所述当前所述成像卫星的位置信息解算所述待成像区域的形状 及位置信息;Based on the computing unit arranged in the imaging satellite platform, the shape and position information of the area to be imaged are calculated according to the attitude information of the current imaging satellite and the position information of the current imaging satellite;
根据所述待成像区域的形状及位置信息获取每个所述目标区域所对应的每 个CCD线段的待成像角度;其中,所述每个CCD线段的待成像角度用于表示 每个CCD线段应到达的角度;The to-be-imaged angle of each CCD line segment corresponding to each of the target areas is obtained according to the shape and position information of the to-be-imaged area; wherein, the to-be-imaged angle of each CCD line segment is used to indicate that each CCD line segment should be imaged the angle of arrival;
根据每个所述CCD线段的当前角度以及每个所述CCD线段的待成像角度 确定每个所述CCD线段的当前待旋转角度。The current angle to be rotated of each CCD line segment is determined according to the current angle of each CCD line segment and the to-be-imaged angle of each CCD line segment.
对于上述实现方式,优选地,所述基于设置在承载有所述线性CCD阵列的 成像卫星平台的姿轨传感器获取当前所述成像卫星的姿态信息以及当前所述成 像卫星的位置信息,包括:For the above-mentioned implementation, preferably, the attitude information of the current imaging satellite and the position information of the current imaging satellite are obtained based on the attitude and orbit sensor of the imaging satellite platform carrying the linear CCD array, including:
通过设置于所述成像卫星平台上的太阳敏感器、星敏感器、陀螺、以及全 球导航卫星系统(GNSS,Global Navigation Satellite System)获得所述当前所 述成像卫星的姿态信息以及所述当前所述成像卫星的位置信息。Obtain the attitude information of the current imaging satellite and the current Location information of imaging satellites.
对于上述实现方式,优选地,所述根据每个所述CCD线段的当前角度以及 每个所述CCD线段的待成像角度确定每个所述CCD线段的当前待旋转角度, 包括:For the above implementation manner, preferably, determining the current angle to be rotated of each of the CCD line segments according to the current angle of each of the CCD line segments and the to-be-imaged angle of each of the CCD line segments, including:
将每个所述CCD线段的当前角度和每个所述CCD线段的待成像角度进行 差分,获得每个所述CCD线段的当前待旋转角度。Differentiate the current angle of each CCD line segment and the to-be-imaged angle of each CCD line segment to obtain the current to-be-rotated angle of each CCD line segment.
需要说明的是,在获得每个所述CCD线段的当前待旋转角度之后,就能够 根据每个所述CCD线段的当前待旋转角度分别对每个所述CCD线段进行旋转, 优选地,在具体实施过程中,所述针对每个所述CCD线段,按照每个所述CCD 线段的当前待旋转角度进行旋转,包括:It should be noted that, after obtaining the current to-be-rotated angle of each of the CCD line segments, each of the CCD line segments can be rotated according to the current to-be-rotated angle of each of the CCD line segments. In the implementation process, for each of the CCD line segments, the rotation is performed according to the current to-be-rotated angle of each of the CCD line segments, including:
通过每个所述CCD线段各自对应配置的旋转装置,将每个所述CCD线段 按照每个所述CCD线段的当前待旋转角度进行旋转。Each of the CCD line segments is rotated according to the current to-be-rotated angle of each of the CCD line segments by means of a correspondingly configured rotating device for each of the CCD line segments.
通过上述实现方式以及针对上述实现方式的优选示例,详细阐述了对每个 所述CCD线段进行旋转控制的实现方式。以光学成像卫星为例,参见图7,其 示出了对每个所述CCD线段进行旋转控制的流程,具体来说,首先可以通过设 置于所述光学成像卫星平台上的太阳敏感器、星敏感器、陀螺以及全球导航卫 星系统(GNSS)获得所述当前所述光学成像卫星的姿态信息以及所述当前所述 光学成像卫星的位置信息;并将上述当前所述光学成像卫星的姿态信息以及当 前所述光学成像卫星的位置信息作为辅助信息发送至卫星综合电子系统;Through the above implementation manner and preferred examples for the above implementation manner, the implementation manner of performing rotation control on each of the CCD line segments is described in detail. Taking the optical imaging satellite as an example, see FIG. 7 , which shows the flow of rotation control for each of the CCD line segments. Sensors, gyroscopes, and global navigation satellite systems (GNSS) obtain the current attitude information of the optical imaging satellite and the current position information of the optical imaging satellite; and combine the above-mentioned current attitude information of the optical imaging satellite and The current position information of the optical imaging satellite is sent to the satellite integrated electronic system as auxiliary information;
其次,卫星综合电子系统中的计算单元根据上述当前所述光学成像卫星的 姿态信息以及当前所述光学成像卫星的位置信息解算得到所述待成像区域的形 状及位置信息;Secondly, the computing unit in the satellite integrated electronic system calculates and obtains the shape and position information of the area to be imaged according to the attitude information of the above-mentioned current optical imaging satellite and the position information of the current optical imaging satellite;
接着,根据所述待成像区域的形状及位置信息获取每个所述目标区域所对 应的每个CCD线段的待成像角度;其中,所述每个CCD线段的待成像角度用 于表示每个CCD线段应到达的角度;Next, obtain the to-be-imaged angle of each CCD line segment corresponding to each of the target areas according to the shape and position information of the to-be-imaged area; wherein, the to-be-imaged angle of each CCD line segment is used to represent each CCD The angle the line segment should reach;
然后,将每个所述CCD线段的当前角度和每个所述CCD线段的待成像角 度作为控制器的输入,经过差分从而获得每个所述CCD线段的当前待旋转角度, 并将每个所述CCD线段的当前待旋转角度传输至每个所述CCD线段各自对应 配置的旋转装置;Then, take the current angle of each CCD line segment and the to-be-imaged angle of each CCD line segment as the input of the controller, obtain the current to-be-rotated angle of each CCD line segment through difference, and use each The current to-be-rotated angle of the CCD line segment is transmitted to a correspondingly configured rotating device for each of the CCD line segments;
最后,通过每个所述CCD线段各自对应配置的旋转装置,将每个所述CCD 线段按照每个所述CCD线段的当前待旋转角度进行旋转。Finally, each of the CCD line segments is rotated according to the current to-be-rotated angle of each of the CCD line segments through the correspondingly configured rotation devices of each of the CCD line segments.
通过图7所示的控制流程可以看出,为了满足旋转角度的精度需求,加入 闭环控制,从而增加了对每个所述CCD线段的当前角度进行测量,并返回控制 器。通过上述图7所示的控制流程,可准确将每个CCD线段旋转到目标位置。It can be seen from the control flow shown in Fig. 7 that, in order to meet the accuracy requirements of the rotation angle, a closed-loop control is added, thereby increasing the measurement of the current angle of each of the CCD line segments and returning to the controller. Through the control flow shown in FIG. 7, each CCD line segment can be accurately rotated to the target position.
通过以上技术方案完成当前时刻CCD线段的旋转控制之后,在一种可能的 实现方式中,所述方法还包括:After completing the rotation control of the CCD line segment at the current moment by the above technical solutions, in a possible implementation, the method also includes:
在当前时刻的下一时刻,根据每个CCD线段在待成像区域中对应的目标区 域与每个所述CCD线段之间的下一时刻的相对角度确定每个所述CCD线段的 下一时刻的待旋转角度。At the next moment of the current moment, determine the next moment of each CCD line segment according to the relative angle between the target area corresponding to each CCD line segment in the area to be imaged and each of the CCD line segments at the next moment The angle to be rotated.
具体来说,对于上述实现方式,在下一时刻,可以继续通过旋转装置的机 动,来使每个CCD线段旋转到下一时刻的适当角度,再进行成像。从而按照如 此的方式完成对整个区域的扫描。最终基于上述扫描成像方式完成成像效果分 析。Specifically, for the above implementation, at the next moment, each CCD line segment can be rotated to an appropriate angle at the next moment by continuing to operate the rotating device, and then imaging is performed. The scanning of the entire area is thus completed in this manner. Finally, the imaging effect analysis is completed based on the above scanning imaging method.
针对上述图6所示的图像补偿的方法,本发明实施例通过以下具体示例进 行详细说明。本具体示例的成像流程如图8所示。在本具体示例中,设定由N 个CCD成像单元组成的线性CCD阵列对地摆扫成像,在时刻t,相机光轴与 地面呈一定角度。将含有N个CCD成像单元的分解为m份,从而获得m个由 N/m个CCD成像单元的CCD线段,具体来说,线性CCD阵列由50个CCD 单元所组成,按10个CCD单元为一组,将此50个CCD单元划分为5个CCD 线段,每个CCD线段分别配备一个对应的旋转装置,从而能够实现将对应CCD 线段中的CCD成像单元按照规定的角度旋转。具体的CCD线段划分如图9所 示。For the image compensation method shown in FIG. 6, the embodiment of the present invention will be described in detail by using the following specific examples. The imaging flow of this specific example is shown in FIG. 8 . In this specific example, a linear CCD array composed of N CCD imaging units is set to sweep and image the ground, and at time t, the optical axis of the camera is at a certain angle with the ground. Decomposition containing N CCD imaging units into m parts, thereby obtaining m CCD line segments consisting of N/m CCD imaging units, specifically, the linear CCD array is composed of 50 CCD units, and 10 CCD units are One group, the 50 CCD units are divided into 5 CCD line segments, each CCD line segment is equipped with a corresponding rotating device, so that the CCD imaging unit in the corresponding CCD line segment can be rotated according to a specified angle. The specific CCD line segment division is shown in Figure 9.
以时刻t为例,通过前述技术方案获取每个CCD线段的当前待旋转角度。 具体来说,经过计算单元解算获得每个CCD线段的待成像角度为θt1、θt2、θt3、 θt4、θt5,而通过敏感元件测量此时的CCD线段的当前角度分别为 则CCD线段的当前待旋转角度分别为αt1、αt2、αt3、αt4、αt5,其中, Taking time t as an example, the current to-be-rotated angle of each CCD line segment is obtained through the foregoing technical solution. Specifically, the to-be-imaging angles of each CCD line segment obtained through calculation by the computing unit are θ t1 , θ t2 , θ t3 , θ t4 , θ t5 , and the current angles of the CCD line segment measured by the sensitive element at this time are respectively Then the current to-be-rotated angles of the CCD line segment are α t1 , α t2 , α t3 , α t4 , α t5 , where,
接着,通过控制器将上述5个CCD线段分别旋转角度αt1、αt2、αt3、αt4、 αt5,从而使得每个CCD线段旋转至到达预定位置,具体CCD线段的旋转效果 参见图10所示,从而实现与待成像区域中对应的目标区域相切。需要说明的是, 每个CCD线段对应的目标区域优选为每个CCD线段在待成像区域对应的区域 投影部分。Next, the above-mentioned five CCD line segments are rotated by the angles α t1 , α t2 , α t3 , α t4 , α t5 respectively by the controller, so that each CCD line segment is rotated to reach a predetermined position. The specific rotation effect of the CCD line segment is shown in Figure 10 As shown, tangent to the corresponding target area in the to-be-imaged area is achieved. It should be noted that the target area corresponding to each CCD line segment is preferably the projected portion of each CCD line segment corresponding to the area to be imaged.
然后,通过旋转后的CCD线段对所述待成像区域进行拍摄成像;Then, photograph and image the to-be-imaged area through the rotated CCD line segment;
详细来说,应用本具体示例中的5个CCD线段对待成像区域进行成像,其 示意图如图11所示,图11中右侧为当前待成像区域,左侧为旋转后的CCD线 段。In detail, the five CCD line segments in this specific example are used to image the area to be imaged. The schematic diagram is shown in Figure 11. In Figure 11, the right side is the current area to be imaged, and the left side is the rotated CCD line segment.
随后,在下一时刻,继续通过旋转机构的机动,以使得本具体示例的5个 CCD线段旋转到适当角度,再进行成像;从而按照如此的方式完成对整个区域 的扫描。Then, at the next moment, continue to move through the rotation mechanism, so that the 5 CCD line segments of this specific example are rotated to an appropriate angle, and then imaging is performed; thus, the scanning of the entire area is completed in this way.
最后,基于该成像的最终成像图片进行成像效果分析。Finally, the imaging effect analysis is performed based on the final imaging picture of the imaging.
需要说明的是,在本发明实施例中,选取某一时刻t进行效果分析,其示 意图如12所示,图12中的(a)表示常规的线性CCD阵列布局,图12中的(b) 表示基于CCD线段的布局,图12中的(c)表示待成像目标区域。It should be noted that, in the embodiment of the present invention, a certain time t is selected for effect analysis, the schematic diagram is shown in 12, (a) in FIG. 12 represents a conventional linear CCD array layout, and (b) in FIG. 12 Indicates the layout based on CCD line segments, and (c) in FIG. 12 represents the target area to be imaged.
基于图12进行简化,可得到如图13所示的模型,针对该模型可以获知: 在采用本发明实施例所述的技术方案进行扫描成像时,由于针对各CCD线段分 别进行了角度旋转,使得每个CCD线段都能够与待成像区域中的对应的目标区 域相切。参见图13,从中间位置O到两端A、B,图像产生的位移偏差均控制 在一定范围之内,如图13右侧所示,在CCD线段的一侧B处,此处偏差角度 为β,对比图13左侧所示的常规的线性CCD阵列成像方式在同一点B处的角 度偏差α,可发现α>β。因此采用本发明实施例所述的技术方案能够有效地进 行像位移补偿。Based on the simplification of FIG. 12, the model shown in FIG. 13 can be obtained. According to this model, it can be known that: when the technical solution described in the embodiment of the present invention is used for scanning and imaging, the angle rotation is performed for each CCD line segment, so that the Each CCD line segment can be tangent to the corresponding target area in the area to be imaged. Referring to Figure 13, from the middle position O to the two ends A and B, the displacement deviation generated by the image is controlled within a certain range. As shown on the right side of Figure 13, at one side B of the CCD line segment, the deviation angle here is β, comparing the angle deviation α at the same point B of the conventional linear CCD array imaging method shown in the left side of FIG. 13 , it can be found that α>β. Therefore, image displacement compensation can be effectively performed by using the technical solutions described in the embodiments of the present invention.
基于本发明实施例所述的技术方案,能够得知:由于对CCD阵列进行分段, 并针对各CCD线段分别进行角度旋转,能够使得整体扫描成像幅宽变窄;同时, 对于有可能存在的相邻CCD线段所成的图像出现部分重叠的现象,可以通过合 理优化转动装置以及图像后期处理进行有效解决。进一步来说,CCD线段的数 目m与转动装置的结构复杂程度和控制复杂程度相关,因此,考虑极限情况即 将N片CCD单片均进行机动,会明显增加转动装置的结构复杂程度和控制复 杂程度,因此,相对于每片CCD单片均进行旋转机动的方式,本发明实施例所 述的技术方案又能够明显减少了转动装置的数量,降低了机构复杂性,提高了 系统的可靠性。Based on the technical solutions described in the embodiments of the present invention, it can be known that: due to the segmentation of the CCD array and the angular rotation of each CCD line segment, the overall scanning imaging width can be narrowed; The phenomenon of partial overlapping of images formed by adjacent CCD line segments can be effectively solved by rationally optimizing the rotating device and post-processing of the images. Further, the number m of CCD line segments is related to the structural complexity and control complexity of the rotating device. Therefore, considering the limit situation, that is, to maneuver all N CCDs, it will significantly increase the structural complexity and control complexity of the rotating device. Therefore, compared with the way in which each CCD is rotated and maneuvered, the technical solutions described in the embodiments of the present invention can significantly reduce the number of rotating devices, reduce the complexity of the mechanism, and improve the reliability of the system.
基于前述技术方案相同的发明构思,参见图14,其示出了本发明实施例提 供的一种图像补偿的装置140,能够应用于具有线性CCD阵列载荷的成像卫星, 该装置140可以包括:划分部分1401、确定部分1402、旋转部分1403和拍摄 控制部分1404;其中,Based on the same inventive concept as the foregoing technical solutions, see FIG. 14 , which shows an
所述划分部分1401,配置为将线性电荷耦合元件CCD阵列划分为多个 CCD线段;The dividing part 1401 is configured to divide the linear charge-coupled element CCD array into a plurality of CCD line segments;
所述确定部分1402,配置为根据每个CCD线段在待成像区域中对应的目 标区域与每个所述CCD线段之间的当前相对角度确定每个所述CCD线段的当 前待旋转角度;The determining
所述旋转部分1403,配置为针对每个所述CCD线段,按照每个所述CCD 线段的当前待旋转角度进行旋转;The rotating part 1403 is configured to rotate for each of the CCD line segments according to the current angle to be rotated of each of the CCD line segments;
所述拍摄控制部分1404,配置为通过旋转后的CCD线段对所述待成像区 域进行拍摄。The photographing control part 1404 is configured to photograph the to-be-imaged area through the rotated CCD line segment.
对于上述方案,在具体实现过程中,参见图15,所述确定部分1402,包括: 设置在承载有所述线性CCD阵列的成像卫星平台的姿轨传感器14021、设置在 所述成像卫星平台中的计算单元14022、CCD角度测量单元14023以及控制器 14024;其中,For the above solution, in the specific implementation process, referring to FIG. 15 , the determining
所述姿轨传感器14021,配置为获取当前所述成像卫星的姿态信息以及当 前所述成像卫星的位置信息;以及,The attitude and orbit sensor 14021 is configured to obtain the current attitude information of the imaging satellite and the current position information of the imaging satellite; and,
所述计算单元14022,配置为根据所述当前所述成像卫星的姿态信息以及 所述当前所述成像卫星的位置信息解算所述待成像区域的形状及位置信息;以 及,根据所述待成像区域的形状及位置信息获取每个所述目标区域所对应的每 个CCD线段的待成像角度;其中,所述每个CCD线段的待成像角度用于表示 每个CCD线段应到达的角度;The calculation unit 14022 is configured to calculate the shape and position information of the area to be imaged according to the attitude information of the current imaging satellite and the position information of the current imaging satellite; and, according to the to-be-imaged area The shape and position information of the area obtains the to-be-imaged angle of each CCD line segment corresponding to each of the target areas; wherein, the to-be-imaged angle of each CCD line segment is used to represent the angle that each CCD line segment should reach;
所述CCD角度测量单元14023,配置为获取每个所述CCD线段的当前角 度;The CCD
所述控制器14024,配置为根据每个所述CCD线段的当前角度以及每个所 述CCD线段的待成像角度确定每个所述CCD线段的当前待旋转角度。The controller 14024 is configured to determine the current angle to be rotated of each of the CCD line segments according to the current angle of each of the CCD line segments and the to-be-imaged angle of each of the CCD line segments.
详细来说,所述姿轨传感器14021,可以包括设置于所述成像卫星平台上 的太阳敏感器、星敏感器、陀螺、以及全球导航卫星系统(GNSS,Global Navigation SatelliteSystem)。In detail, the attitude and orbit sensor 14021 may include a sun sensor, a star sensor, a gyroscope, and a Global Navigation Satellite System (GNSS, Global Navigation Satellite System) provided on the imaging satellite platform.
所述计算单元14022,具体可以是成像卫星中的计算处理组件,可以是卫 星平台或者卫星载荷中实现具体功能的分系统中的处理器。所述处理器为具有 逻辑控制功能的器件的统称,可包括CPU(中央处理器),DSP(数字信号处理 器),FPGA(现场可编程逻辑门阵列),以及其他能够通过编程实现控制、运算、 处理等功能的器件、模块或系统。The computing unit 14022 may specifically be a computing processing component in an imaging satellite, and may be a processor in a satellite platform or a subsystem in a satellite payload that implements specific functions. The processor is a general term for devices with logic control functions, which may include CPU (Central Processing Unit), DSP (Digital Signal Processor), FPGA (Field Programmable Logic Gate Array), and other devices that can realize control and operation through programming. , processing and other functions of the device, module or system.
对于上述方案,在具体实现过程中,所述旋转部分1403,包括针对每个所 述CCD线段各自对应配置的旋转装置;其中,For the above scheme, in the specific implementation process, the rotating part 1403 includes a rotating device correspondingly configured for each of the CCD line segments; wherein,
所述旋转装置,配置为将每个所述CCD线段按照所述控制器14024确定的 每个所述CCD线段的当前待旋转角度进行旋转。The rotating device is configured to rotate each of the CCD line segments according to the current to-be-rotated angle of each of the CCD line segments determined by the controller 14024.
此外,在本发明实施例中,“部分”可以是部分电路、部分处理器、部分程 序或软件等等,当然也可以是单元,还可以是模块也可以是非模块化的。In addition, in this embodiment of the present invention, a "part" may be a part of a circuit, a part of a processor, a part of a program or software, etc., of course, a unit, a module or a non-modular part.
另外,在本实施例中的各组成部分可以集成在一个处理单元中,也可以是 各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述 集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。In addition, each component in this embodiment may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software function modules.
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行 销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解, 本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案 的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个 存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)或处理器(processor)执行本实施例所述方法的全部 或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟 或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software function module and is not sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of this embodiment is essentially or The part that contributes to the prior art or the whole or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, and includes several instructions for making a computer device (which can be A personal computer, a server, or a network device, etc.) or a processor (processor) executes all or part of the steps of the method described in this embodiment. And the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or CD and other media that can store program codes.
因此,本实施例提供了一种计算机存储介质,具体可以为计算机可读存储 介质,所述计算机存储介质存储有图像补偿程序,所述图像补偿程序被至少一 个处理器执行时实现前述方案中任一项中任一项所述的图像补偿方法的步骤。Therefore, this embodiment provides a computer storage medium, which may be a computer-readable storage medium. The computer storage medium stores an image compensation program, and when the image compensation program is executed by at least one processor, any one of the foregoing solutions is implemented. The steps of any one of the image compensation methods.
需要说明的是:本发明实施例所记载的技术方案之间,在不冲突的情况下, 可以任意组合。It should be noted that the technical solutions described in the embodiments of the present invention may be combined arbitrarily unless there is a conflict.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到 变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应 以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910259523.0A CN109981952B (en) | 2019-04-02 | 2019-04-02 | A kind of image compensation method, device and computer storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910259523.0A CN109981952B (en) | 2019-04-02 | 2019-04-02 | A kind of image compensation method, device and computer storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109981952A CN109981952A (en) | 2019-07-05 |
CN109981952B true CN109981952B (en) | 2021-07-20 |
Family
ID=67082345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910259523.0A Active CN109981952B (en) | 2019-04-02 | 2019-04-02 | A kind of image compensation method, device and computer storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109981952B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101799293A (en) * | 2010-03-05 | 2010-08-11 | 武汉大学 | Satellite-borne three-non-colinear TDI CCD (Time Delayed and Integration Charge Coupled Device) image splicing method based on segmented affine transformation |
CN104298887A (en) * | 2014-10-20 | 2015-01-21 | 中国空间技术研究院 | Relative radiation calibration method of multichip linear CCD (charge coupled device) camera |
US9733338B1 (en) * | 2012-10-08 | 2017-08-15 | The Boeing Company | Single satellite geolocation systems and methods |
CN108596852A (en) * | 2018-04-28 | 2018-09-28 | 中国科学院长春光学精密机械与物理研究所 | The image that area array cameras great-attitude angle is imaged mirror image geometric distortion maps restoring method |
CN109191532A (en) * | 2018-08-09 | 2019-01-11 | 王涛 | A kind of airborne TLS CCD camera calibration method |
CN109489640A (en) * | 2018-09-30 | 2019-03-19 | 上海航天控制技术研究所 | A kind of detector array for the first resolution ratio remote sensing of the earth in permanent ground |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108151711B (en) * | 2017-03-01 | 2018-10-16 | 哈尔滨工业大学 | A kind of optical satellite ring sweeps ultra-wide imaging method |
-
2019
- 2019-04-02 CN CN201910259523.0A patent/CN109981952B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101799293A (en) * | 2010-03-05 | 2010-08-11 | 武汉大学 | Satellite-borne three-non-colinear TDI CCD (Time Delayed and Integration Charge Coupled Device) image splicing method based on segmented affine transformation |
US9733338B1 (en) * | 2012-10-08 | 2017-08-15 | The Boeing Company | Single satellite geolocation systems and methods |
CN104298887A (en) * | 2014-10-20 | 2015-01-21 | 中国空间技术研究院 | Relative radiation calibration method of multichip linear CCD (charge coupled device) camera |
CN108596852A (en) * | 2018-04-28 | 2018-09-28 | 中国科学院长春光学精密机械与物理研究所 | The image that area array cameras great-attitude angle is imaged mirror image geometric distortion maps restoring method |
CN109191532A (en) * | 2018-08-09 | 2019-01-11 | 王涛 | A kind of airborne TLS CCD camera calibration method |
CN109489640A (en) * | 2018-09-30 | 2019-03-19 | 上海航天控制技术研究所 | A kind of detector array for the first resolution ratio remote sensing of the earth in permanent ground |
Non-Patent Citations (2)
Title |
---|
HJ-1卫星CCD数据的大气校正及其效果分析;郑盛等;《遥感学报》;20110725(第04期);全文 * |
三线阵测绘卫星的偏流角改正问题;胡莘等;《测绘科学技术学报》;20061030(第05期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109981952A (en) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6321077B2 (en) | System and method for capturing large area images in detail including cascaded cameras and / or calibration features | |
CN109461190B (en) | Measurement data processing device and measurement data processing method | |
CN110500995B (en) | Method for establishing high-resolution satellite image equivalent geometric imaging model by using RPC parameters | |
KR100762891B1 (en) | Geometric Correction Method and Device of Image Using LOS Vector Adjustment Model | |
US9485499B2 (en) | System and method for processing multicamera array images | |
JP5027747B2 (en) | POSITION MEASUREMENT METHOD, POSITION MEASUREMENT DEVICE, AND PROGRAM | |
WO2017197651A1 (en) | Systems and methods for rolling shutter correction | |
Zhou et al. | A two-step approach for the correction of rolling shutter distortion in UAV photogrammetry | |
CN110030978B (en) | Method and system for constructing geometric imaging model of full-link optical satellite | |
JP2807622B2 (en) | Aircraft integrated photography system | |
Pan et al. | Precise georeferencing using the rigorous sensor model and rational function model for ZiYuan-3 strip scenes with minimum control | |
JP2013186816A (en) | Moving image processor, moving image processing method and program for moving image processing | |
CN107560603B (en) | Unmanned aerial vehicle oblique photography measurement system and measurement method | |
CN102519436B (en) | Chang'e-1 (CE-1) stereo camera and laser altimeter data combined adjustment method | |
CN104298887A (en) | Relative radiation calibration method of multichip linear CCD (charge coupled device) camera | |
CN111896009B (en) | Method and system for correction of imaging line of sight offset caused by satellite flight motion | |
EP3529629B1 (en) | An aerial camera boresight calibration system | |
AU2022231762B2 (en) | A bundle adjustment system | |
US20240007752A1 (en) | Variable focal length multi-camera aerial imaging system and method | |
WO2020198963A1 (en) | Data processing method and apparatus related to photographing device, and image processing device | |
CN109981952B (en) | A kind of image compensation method, device and computer storage medium | |
CN108444446A (en) | A method and device for image motion compensation | |
KR102578056B1 (en) | Apparatus and method for photographing for aerial photogrammetry using an air vehicle | |
JP5885974B2 (en) | Corresponding point setting method, corresponding point setting device, and corresponding point setting program for aerial photo image data | |
Zhang et al. | Precise calibration of dynamic geometric parameters cameras for aerial mapping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |