CN109974584A - A calibration system and calibration method for an auxiliary laser osteotomy robot - Google Patents
A calibration system and calibration method for an auxiliary laser osteotomy robot Download PDFInfo
- Publication number
- CN109974584A CN109974584A CN201910293683.7A CN201910293683A CN109974584A CN 109974584 A CN109974584 A CN 109974584A CN 201910293683 A CN201910293683 A CN 201910293683A CN 109974584 A CN109974584 A CN 109974584A
- Authority
- CN
- China
- Prior art keywords
- coordinate system
- robot
- tool
- relative
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 239000011159 matrix material Substances 0.000 claims abstract description 141
- 238000012546 transfer Methods 0.000 claims abstract description 97
- 238000013519 translation Methods 0.000 claims abstract description 54
- 230000007704 transition Effects 0.000 claims description 25
- 238000000354 decomposition reaction Methods 0.000 claims description 12
- 238000000608 laser ablation Methods 0.000 claims description 12
- 239000003550 marker Substances 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/14—Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Robotics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种辅助激光截骨手术机器人的标定系统及标定方法,获取机械臂末端坐标系相对于机器人基坐标系的转移矩阵以及跟踪装置坐标系相对于相机坐标系的转移矩阵;求解工具坐标系相对于机械臂末端坐标系的平移向量,建立工具坐标系相对于机械臂末端坐标系的转移矩阵,得到工具坐标系相对于机器人基坐标系的转移矩阵,实现机器人的工具标定;求解工具坐标系相对于跟踪装置坐标系的平移向量,获取工具坐标系原点的两组三维点集,求解机器人基坐标系相对于相机坐标系的转移矩阵,实现机器人的手眼标定。
The invention discloses a calibration system and a calibration method for an auxiliary laser osteotomy robot. The translation vector of the coordinate system relative to the coordinate system at the end of the manipulator, establishes the transfer matrix of the tool coordinate system relative to the coordinate system at the end of the manipulator, and obtains the transfer matrix of the tool coordinate system relative to the base coordinate system of the robot, so as to realize the tool calibration of the robot; solve the tool The coordinate system is relative to the translation vector of the tracking device coordinate system, and two sets of three-dimensional point sets at the origin of the tool coordinate system are obtained, and the transfer matrix of the robot base coordinate system relative to the camera coordinate system is solved to realize the hand-eye calibration of the robot.
Description
技术领域technical field
本公开涉及机器人标定领域,具体涉及一种辅助激光截骨手术机器人的标定系统及标定方法。The present disclosure relates to the field of robot calibration, in particular to a calibration system and a calibration method for an auxiliary laser osteotomy robot.
背景技术Background technique
近年来,手术机器人技术在临床上得到越来越广泛的应用。辅助激光截骨手术机器人是一种能够在手术中帮助医生按照术前规划自动完成截骨的任务自主型手术机器人。它相较于传统的截骨手术器械,具有精确可控、对周围组织损伤小等优点。工具标定和手眼标定是辅助截骨手术机器人安装和作业前的重要步骤,直接决定着机器人的定位精度及手术效果。In recent years, surgical robotics technology has been more and more widely used in clinical practice. The assisted laser osteotomy robot is an autonomous surgical robot that can help doctors to automatically complete the osteotomy according to the preoperative planning during the operation. Compared with traditional osteotomy surgical instruments, it has the advantages of precise controllability and less damage to surrounding tissues. Tool calibration and hand-eye calibration are important steps before the installation and operation of the auxiliary osteotomy robot, which directly determine the positioning accuracy and surgical effect of the robot.
发明人在研发过程中发现,传统的标定方法多依赖先进的测量设备,标定过程复杂,测量设备成本昂贵,且测量精度很大程度上依赖测量设备的精度,使其难以在实际操作中有效应用。而现有的依靠自身的标定方法如“四点法”、“六点法”等操作过程复杂,稳定性差,无法满足临床手术要求。另一方面,辅助激光截骨手术机器人系统中,对于激光工具的标定,是对激光有效消融点这一空间中悬空点的标定,属于非接触式工具标定,提高了系统标定的难度。During the research and development process, the inventor found that the traditional calibration method mostly relies on advanced measurement equipment, the calibration process is complicated, the cost of the measurement equipment is expensive, and the measurement accuracy largely depends on the accuracy of the measurement equipment, making it difficult to effectively apply in practical operations. . However, the existing calibration methods that rely on themselves, such as the "four-point method" and "six-point method", have complicated operation processes and poor stability, which cannot meet the requirements of clinical operations. On the other hand, in the assisted laser osteotomy robot system, the calibration of the laser tool is the calibration of the dangling point in the space of the effective laser ablation point, which belongs to the non-contact tool calibration, which increases the difficulty of system calibration.
发明内容Contents of the invention
为了克服上述现有技术的不足,本公开提供了一种辅助激光截骨手术机器人的标定系统及标定方法,能够自动有效地实现辅助激光截骨手术机器人的工具及手眼标定,提高标定精度。In order to overcome the above-mentioned deficiencies of the prior art, the present disclosure provides a calibration system and a calibration method for an auxiliary laser osteotomy robot, which can automatically and effectively realize the tool and hand-eye calibration of the auxiliary laser osteotomy robot, and improve the calibration accuracy.
本公开所采用的技术方案是:The technical solution adopted in the present disclosure is:
一种辅助激光截骨手术机器人的标定方法,该方法包括以下步骤:A calibration method for an auxiliary laser osteotomy robot, the method comprising the following steps:
建立机器人、机械臂末端、相机、跟踪装置以及位于机械臂末端的工具的坐标系;Establish the coordinate system of the robot, the end of the arm, the camera, the tracking device, and the tool at the end of the arm;
获取工具发射激光垂直照射到标定体每个平面且经过标定体的中心时,机械臂末端坐标系相对于机器人基坐标系的转移矩阵以及跟踪装置坐标系相对于相机坐标系的转移矩阵;Obtain the transfer matrix of the coordinate system of the end of the robot arm relative to the base coordinate system of the robot and the transfer matrix of the coordinate system of the tracking device relative to the camera coordinate system when the laser emitted by the tool is vertically irradiated to each plane of the calibration body and passes through the center of the calibration body;
求解工具坐标系相对于机械臂末端坐标系的平移向量,建立工具坐标系相对于机械臂末端坐标系的转移矩阵;Solve the translation vector of the tool coordinate system relative to the end coordinate system of the manipulator, and establish the transfer matrix of the tool coordinate system relative to the end coordinate system of the manipulator;
将机械臂末端坐标系相对于机器人基坐标系的转移矩阵与工具坐标系相对于机械臂末端坐标系的转移矩阵相乘,得到工具坐标系相对于机器人基坐标系的转移矩阵,实现机器人的工具标定;Multiply the transfer matrix of the coordinate system of the robot arm end relative to the robot base coordinate system and the transfer matrix of the tool coordinate system relative to the robot arm end coordinate system to obtain the transfer matrix of the tool coordinate system relative to the robot base coordinate system, and realize the tool of the robot. calibration;
求解工具坐标系相对于跟踪装置坐标系的平移向量,获取工具坐标系原点的两组三维点集,求解机器人基坐标系相对于相机坐标系的转移矩阵,实现机器人的手眼标定。Solve the translation vector of the tool coordinate system relative to the tracking device coordinate system, obtain two sets of three-dimensional point sets at the origin of the tool coordinate system, and solve the transfer matrix of the robot base coordinate system relative to the camera coordinate system to realize the hand-eye calibration of the robot.
作为本公开的进一步技术方案,所述机械臂末端坐标系相对于机器人基坐标系的转移矩阵的获取方法为:As a further technical solution of the present disclosure, the method for obtaining the transfer matrix of the coordinate system of the end of the robot arm relative to the base coordinate system of the robot is:
测量位于机械臂末端的工具发射激光垂直照射到标定体第一平面且经过标定体的中心时,工具到标定体外接球球心的距离;Measure the distance from the tool to the center of the calibration body when the laser emitted by the tool at the end of the robotic arm strikes the first plane of the calibration body vertically and passes through the center of the calibration body;
当测量到的距离等于激光消融有效距离与标定体外接球半径的和时,获取此时机械臂末端工具中心点相对于机器人基坐标系的位置和姿态信息,形成机械臂末端坐标系{E}相对于机器人基坐标系{B}的第一转移矩阵 When the measured distance is equal to the sum of the effective distance of laser ablation and the calibrated external ball radius, obtain the position and attitude information of the tool center point at the end of the manipulator relative to the robot base coordinate system at this time, and form the end coordinate system {E} of the manipulator The first transfer matrix relative to the robot base coordinate system {B}
重复上述步骤,直到得到机械臂末端坐标系{E}相对于机器人基坐标系{B}的第二转移矩阵第三转移矩阵和第四转移矩阵 Repeat the above steps until the second transition matrix of the robot arm end coordinate system {E} relative to the robot base coordinate system {B} is obtained third transition matrix and the fourth transition matrix
作为本公开的进一步技术方案,所述跟踪装置坐标系相对于相机坐标系的转移矩阵的获取方法为:As a further technical solution of the present disclosure, the method for obtaining the transition matrix of the tracking device coordinate system relative to the camera coordinate system is:
测量位于机械臂末端的工具发射激光垂直照射到标定体第一平面且经过标定体的中心时,工具到标定体外接球球心的距离;Measure the distance from the tool to the center of the calibration body when the laser emitted by the tool at the end of the robotic arm strikes the first plane of the calibration body vertically and passes through the center of the calibration body;
当测量到的距离等于激光消融有效距离与标定体外接球半径的和时,获取跟踪装置坐标系相对于相机坐标系的位置和姿态信息,形成跟踪装置坐标系{D}相对于相机坐标系{C}的第一转移矩阵 When the measured distance is equal to the sum of the effective distance of laser ablation and the radius of the circumscribed sphere of the calibration body, the position and attitude information of the tracking device coordinate system relative to the camera coordinate system is obtained, and the tracking device coordinate system {D} relative to the camera coordinate system{D} is formed. The first transition matrix of C}
重复上述步骤,直到得到跟踪装置坐标系{D}相对于相机坐标系{C}的第二转移矩阵第三转移矩阵和第四转移矩阵 Repeat the above steps until the second transition matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C} is obtained third transition matrix and the fourth transition matrix
作为本公开的进一步技术方案,所述工具坐标系相对于机械臂末端坐标系的平移向量的求解方法为:As a further technical solution of the present disclosure, the solution method of the translation vector of the tool coordinate system relative to the end coordinate system of the mechanical arm is:
建立工具坐标系{T}、机械臂末端坐标系{E}、机器人基坐标系{B}的转换关系式;Establish the conversion relation of the tool coordinate system {T}, the robot end coordinate system {E}, and the robot base coordinate system {B};
将机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵代入上述得到的转换关系式中,得到不相容方程组;The transfer matrix of the robot arm end coordinate system {E} relative to the robot base coordinate system {B} Substitute into the conversion relation obtained above to obtain the incompatible equation system;
采用奇异值分解法求解不相容方程组的最佳最小二乘解,得到工具坐标系{T}相对于机械臂末端坐标系{E}的平移向量 Using the singular value decomposition method to solve the optimal least squares solution of the incompatible equation system, the translation vector of the tool coordinate system {T} relative to the robot end coordinate system {E} is obtained
结合工具坐标系{T}与机械臂末端坐标系{E}平移关系的旋转矩阵不变原则,获得工具坐标系{T}相对于机械臂末端坐标系{E}的转移矩阵 Combined with the principle of invariance of the rotation matrix of the translation relationship between the tool coordinate system {T} and the end coordinate system of the manipulator {E}, the transfer matrix of the tool coordinate system {T} relative to the coordinate system of the end of the manipulator {E} is obtained
将工具坐标系{T}相对于机械臂末端坐标系{E}的转移矩阵与机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵相乘,得到工具坐标系{T}相对于机器人基坐标系{B}的转移矩阵 The transition matrix of the tool coordinate system {T} relative to the robot end coordinate system {E} The transfer matrix of the robot arm end coordinate system {E} relative to the robot base coordinate system {B} Multiply to get the transfer matrix of the tool coordinate system {T} relative to the robot base coordinate system {B}
根据工具坐标系{T}相对于机器人基坐标系{B}的转移矩阵调整机械臂末端工具中心点相对于机器人基坐标系的位置和姿态信息,实现机器人系统工具标定。According to the transfer matrix of the tool coordinate system {T} relative to the robot base coordinate system {B} Adjust the position and attitude information of the tool center point at the end of the robot arm relative to the robot base coordinate system to realize the tool calibration of the robot system.
作为本公开的进一步技术方案,所述工具坐标系相对于跟踪装置坐标系的平移向量的求解方法为:As a further technical solution of the present disclosure, the method for solving the translation vector of the tool coordinate system relative to the tracking device coordinate system is:
建立工具坐标系{T}、跟踪装置坐标系{D}、相机坐标系{C}的转换关系式;Establish the conversion relation of the tool coordinate system {T}, the tracking device coordinate system {D}, and the camera coordinate system {C};
将跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵代入上述得到的转换关系式中,得到不相容方程组;The transfer matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C} Substituting into the conversion relation obtained above, the incompatible equations are obtained;
采用奇异值分解法求解不相容方程组的最佳最小二乘解,得到工具坐标系{T}相对于跟踪装置坐标系{D}的平移向量 Using the singular value decomposition method to solve the optimal least squares solution of the incompatible equation system, the translation vector of the tool coordinate system {T} relative to the tracking device coordinate system {D} is obtained
作为本公开的进一步技术方案,所述获取工具坐标系原点的两组三维点集的步骤包括:As a further technical solution of the present disclosure, the step of acquiring two sets of three-dimensional point sets at the origin of the tool coordinate system includes:
根据工具坐标系{T}相对于跟踪装置坐标系{D}的平移向量将跟踪坐标系原点平移到工具坐标系原点;according to the translation vector of the tool coordinate system {T} relative to the tracking device coordinate system {D} Translate the origin of the tracking coordinate system to the origin of the tool coordinate system;
获取位于空间任意位置的工具坐标系原点在机器人基坐标系和相机坐标系下的两组三维点集。Obtain two sets of three-dimensional point sets with the origin of the tool coordinate system located at any position in space under the robot base coordinate system and the camera coordinate system.
作为本公开的进一步技术方案,所述求解机器人基坐标系相对于相机坐标系的转移矩阵的步骤包括:As a further technical solution of the present disclosure, the step of solving the transition matrix of the robot base coordinate system relative to the camera coordinate system includes:
定义机器人基坐标系和相机坐标系的旋转矩阵与工具坐标系原点在机器人基坐标系和相机坐标系下的两组三维点集之间的函数F;Define the function F between the rotation matrix of the robot base coordinate system and the camera coordinate system and the origin of the tool coordinate system between two sets of three-dimensional point sets under the robot base coordinate system and the camera coordinate system;
采用基于奇异值分解的最小二乘法求解函数F的最大值,得到机器人坐标系相对于相机坐标系的旋转矩阵;Use the least squares method based on singular value decomposition to solve the maximum value of the function F, and obtain the rotation matrix of the robot coordinate system relative to the camera coordinate system;
根据工具坐标系原点从机器人基坐标系变换到相机坐标系的变换映射关系,计算机器人基坐标系相对于相机坐标系的平移分量;According to the transformation mapping relationship of the origin of the tool coordinate system from the robot base coordinate system to the camera coordinate system, calculate the translation component of the robot base coordinate system relative to the camera coordinate system;
基于机器人基坐标系相对于相机坐标系的旋转矩阵和机器人基坐标系相对于相机坐标系的平移分量,得到机器人基坐标系和相机坐标系的转移矩阵;Based on the rotation matrix of the robot base coordinate system relative to the camera coordinate system and the translation component of the robot base coordinate system relative to the camera coordinate system, the transfer matrix of the robot base coordinate system and the camera coordinate system is obtained;
根据机器人基坐标系和相机坐标系的转移矩阵,控制安装在机械臂末端的工具按照设定的轨迹移动,同时获取工具相对于相机坐标系的位姿信息,实现系统的手眼标定。According to the transfer matrix of the robot base coordinate system and the camera coordinate system, the tool installed at the end of the manipulator is controlled to move according to the set trajectory, and the pose information of the tool relative to the camera coordinate system is obtained at the same time to realize the hand-eye calibration of the system.
一种辅助激光截骨手术机器人的标定系统,该系统包括机器人系统、视觉系统、标定装置和处理器;A calibration system for an auxiliary laser osteotomy robot, the system includes a robot system, a vision system, a calibration device and a processor;
所述机器人系统,用于操纵机械臂使工具发射激光垂直照射到标定装置每个平面且经过标定体的中心,获取机械臂末端坐标系相对于机器人基坐标系的转移矩阵,并上传至处理器;The robotic system is used for manipulating the robotic arm so that the tool emits laser light vertically to each plane of the calibration device and passes through the center of the calibration body to obtain the transfer matrix of the coordinate system at the end of the robotic arm relative to the base coordinate system of the robot, and upload it to the processor ;
所述视觉系统,用于获取工具发射激光垂直照射到标定体每个平面且经过标定装置的中心时,跟踪装置坐标系相对于相机坐标系的转移矩阵,并上传至处理器;The vision system is used to obtain the transfer matrix of the coordinate system of the tracking device relative to the coordinate system of the camera when the laser emitted by the tool is vertically irradiated on each plane of the calibration body and passes through the center of the calibration device, and uploaded to the processor;
所述处理器包括转移矩阵建立模块、机器人工具标定模块和机器人手眼标定模块;其中:The processor includes a transfer matrix establishment module, a robot tool calibration module and a robot hand-eye calibration module; wherein:
所述转移矩阵建立模块,用于判断工具到标定装置外接球球心的距离是否满足激光消融有效距离与标定装置外接球半径的和,若满足,则获取机械臂末端坐标系相对于机器人基坐标系的转移矩阵以及跟踪装置坐标系相对于相机坐标系的转移矩阵;The transfer matrix establishment module is used to judge whether the distance from the tool to the center of the outer ball of the calibration device satisfies the sum of the effective distance of laser ablation and the radius of the outer ball of the calibration device, and if so, obtain the coordinate system of the end of the robot arm relative to the base coordinate of the robot The transfer matrix of the system and the transfer matrix of the tracking device coordinate system relative to the camera coordinate system;
所述机器人工具标定模块,用于求解工具坐标系相对于机械臂末端坐标系的平移向量,建立工具坐标系相对于机械臂末端坐标系的转移矩阵;将机械臂末端坐标系相对于机器人基坐标系的转移矩阵与工具坐标系相对于机械臂末端坐标系的转移矩阵相乘,得到工具坐标系相对于机器人基坐标系的转移矩阵,实现机器人的工具标定;The robot tool calibration module is used to solve the translation vector of the tool coordinate system relative to the coordinate system of the end of the robot arm, and establish a transfer matrix of the tool coordinate system relative to the coordinate system of the end of the robot arm; the coordinate system of the end of the robot arm is relative to the base coordinate of the robot. The transfer matrix of the system is multiplied by the transfer matrix of the tool coordinate system relative to the coordinate system of the end of the robot arm, and the transfer matrix of the tool coordinate system relative to the robot base coordinate system is obtained to realize the tool calibration of the robot;
所述机器人手眼标定模块,用于求解工具坐标系相对于跟踪装置坐标系的平移向量,根据工具坐标系相对于跟踪装置坐标系的平移向量,获取工具坐标系原点的两组三维点集,求解机器人基坐标系相对于相机坐标系的转移矩阵,实现机器人的手眼标定。The robot hand-eye calibration module is used to solve the translation vector of the tool coordinate system relative to the tracking device coordinate system, obtain two sets of three-dimensional point sets of the origin of the tool coordinate system according to the translation vector of the tool coordinate system relative to the tracking device coordinate system, and solve The transfer matrix of the robot base coordinate system relative to the camera coordinate system realizes the hand-eye calibration of the robot.
作为本公开的进一步技术方案,所述标定装置为正四面标记体,正四面标记体的四个顶角处设置有跟踪装置,所述正四面标记体的四个平面的中心设有通光的小孔。As a further technical solution of the present disclosure, the calibration device is a regular tetrahedral marker body, a tracking device is provided at the four vertex corners of the regular tetrahedral marker body, and the center of the four planes of the regular tetrahedral marker body is provided with light-transmitting small holes.
通过上述技术方案,本公开的有益效果是:Through the above technical solutions, the beneficial effects of the present disclosure are:
(1)本公开结合激光截骨手术机器人的系统特点,设计了一种专门针对激光有效消融点的标定装置,同时实现了非接触式工具在机器人坐标系和相机坐标系下的标定,能够大大提高了机器人的标定精度;且标定装置简单易行,大大降低了成本;(1) In the present disclosure, combined with the system characteristics of the laser osteotomy robot, a calibration device is designed specifically for the effective laser ablation point, and at the same time, the calibration of the non-contact tool in the robot coordinate system and the camera coordinate system is realized, which can greatly The calibration accuracy of the robot is improved; and the calibration device is simple and easy to operate, which greatly reduces the cost;
(2)本公开提出的标定方法克服了传统方法操作过程复杂及稳定性差的问题,提高了标定过程自动化程度,减少了人为操作等不必要的误差;(2) The calibration method proposed by the present disclosure overcomes the problems of complex operation process and poor stability of the traditional method, improves the automation degree of the calibration process, and reduces unnecessary errors such as manual operation;
(3)本公开适用于辅助激光截骨手术机器人系统,能够有效精确地实现工具标定和手眼标定,提高了机器人的自动化程度。(3) The present disclosure is applicable to a robot system for assisting laser osteotomy surgery, which can effectively and accurately realize tool calibration and hand-eye calibration, and improve the degree of automation of the robot.
附图说明Description of drawings
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本申请,并不构成对本公开的不当限定。The accompanying drawings, which constitute a part of the present disclosure, are used to provide further understanding of the present disclosure, and the exemplary embodiments of the present disclosure and their descriptions are used to explain the present application and do not constitute an improper limitation of the present disclosure.
图1是实施例一正四面标记体结构图;Fig. 1 is a structural diagram of a positive tetrahedral marker in Embodiment 1;
图2是实施例二辅助激光截骨手术机器人的标定方法流程图;Fig. 2 is the flow chart of the calibration method of the assisted laser osteotomy robot in the second embodiment;
图3是实施例三坐标系结构示意图。Fig. 3 is a schematic diagram of the structure of the three-coordinate system of the embodiment.
具体实施方式Detailed ways
下面结合附图与实施例对本公开作进一步说明。The present disclosure will be further described below in conjunction with the accompanying drawings and embodiments.
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本公开使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present disclosure. Unless defined otherwise, all technical and scientific terms used in this disclosure have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
名词解释:Glossary:
(1)TCP,Tool Center Point,工具中心点。(1) TCP, Tool Center Point, tool center point.
实施例一Embodiment one
本实施例提供一种辅助激光截骨手术机器人的标定系统,所述标定装置包括机器人系统、视觉系统、标定装置和处理器,所述机器人系统采用现有的辅助激光截骨手术机器人系统技术结构,其主要包括六自由度机械臂以及安装在机械臂末端的激光工具等。所述视觉系统包括红外立体相机,所述标定装置为一个正四面标记体。This embodiment provides a calibration system for an assisted laser osteotomy robot, the calibration device includes a robot system, a vision system, a calibration device and a processor, and the robot system adopts the existing technical structure of an assisted laser osteotomy robot system , which mainly includes a six-degree-of-freedom robot arm and a laser tool installed at the end of the robot arm. The vision system includes an infrared stereo camera, and the calibration device is a positive four-sided marker.
请参阅附图1,所述标定装置为正四面标记体,所述正四面标记体的四个顶点处分别安装有红外反光球的跟踪装置,所述正四面标记体的四个平面分别采用透明材料制成,所述标记工具的四个平面的中心标定点分别设有通光的小孔,可以实现激光穿过一平面上的通光小孔并垂直于该平面照射到对顶角上,通过控制激光发射位置到与标记工具一平面相对的顶角的距离,从而保证了多组标定点的激光有效消融点重合于正四面标记体中心。Please refer to FIG. 1 , the calibration device is a regular tetrahedral marker body, the four vertices of the regular tetrahedral marker body are respectively installed with tracking devices for infrared reflective balls, and the four planes of the regular tetrahedral marker body are respectively transparent It is made of material, and the center calibration points of the four planes of the marking tool are respectively provided with light-passing holes, so that the laser can pass through the light-passing holes on a plane and irradiate the opposite corners perpendicular to the plane. By controlling the distance from the laser emission position to the vertex angle opposite to a plane of the marking tool, it is ensured that the effective laser ablation points of multiple sets of calibration points coincide with the center of the regular tetrahedron marking body.
本实施例的正四面标记体呈正四面体的特殊对称结构,能够实现标定点采集均匀分布的同时最大限度的调整机器人姿态,提高了自标定的精度。The regular tetrahedral marking body of this embodiment has a special symmetrical structure of a regular tetrahedron, which can realize uniform distribution of calibration points and adjust the attitude of the robot to the greatest extent, thereby improving the accuracy of self-calibration.
控制机器人操作机械臂使激光源发射的激光从标记工具的第一个平面的中心处的通光小孔照射到与该平面相对的顶角上,实现激光垂直照射该平面并经过标记工具的中心。Control the robot to operate the mechanical arm so that the laser emitted by the laser source is irradiated from the light hole at the center of the first plane of the marking tool to the vertex opposite to the plane, so that the laser illuminates the plane vertically and passes through the center of the marking tool .
所述机器人系统,用于操纵机械臂使工具发射激光垂直照射到标定体每个平面且经过标定体的中心,获取机械臂末端tcp相对于机器人基坐标系的位置和姿态信息,形成机械臂末端坐标系相对于机器人基坐标系的转移矩阵并上传至处理器。The robot system is used to manipulate the mechanical arm so that the tool emits laser light to vertically irradiate each plane of the calibration body and pass through the center of the calibration body, and obtain the position and attitude information of the end tcp of the mechanical arm relative to the robot base coordinate system to form the end of the mechanical arm. The transfer matrix of the coordinate system relative to the robot base coordinate system is uploaded to the processor.
所述视觉系统,用于获取工具发射激光垂直照射到标定体每个平面且经过标定体的中心时,跟踪装置相对于相机坐标系的位置和姿态信息,形成跟踪装置坐标系相对于相机坐标系的转移矩阵,并上传至处理器。The vision system is used to obtain the position and attitude information of the tracking device relative to the camera coordinate system when the laser emitted by the tool is vertically irradiated on each plane of the calibration body and passes through the center of the calibration body, and forms the coordinate system of the tracking device relative to the camera coordinate system. transition matrix and upload it to the processor.
所述处理器,所述处理器包括转移矩阵建立模块、机器人工具标定模块和机器人手眼标定模块;其中:The processor, the processor includes a transfer matrix establishment module, a robot tool calibration module and a robot hand-eye calibration module; wherein:
所述转移矩阵建立模块,用于判断工具到标定体外接球球心的距离是否满足激光消融有效距离与标定体外接球半径的和,若满足,则获取机械臂末端坐标系相对于机器人基坐标系的转移矩阵以及跟踪装置坐标系相对于相机坐标系的转移矩阵;The transfer matrix establishment module is used to judge whether the distance from the tool to the center of the circumscribed sphere of the calibration body satisfies the sum of the effective distance of laser ablation and the radius of the circumscribed sphere of the calibration body. The transfer matrix of the system and the transfer matrix of the tracking device coordinate system relative to the camera coordinate system;
所述机器人工具标定模块,用于求解工具坐标系相对于机械臂末端坐标系的平移向量,建立工具坐标系相对于机械臂末端坐标系的转移矩阵;将机械臂末端坐标系相对于机器人基坐标系的转移矩阵与工具坐标系相对于机械臂末端坐标系的转移矩阵相乘,得到工具坐标系相对于机器人基坐标系的转移矩阵,实现机器人的工具标定;The robot tool calibration module is used to solve the translation vector of the tool coordinate system relative to the coordinate system of the end of the robot arm, and establish a transfer matrix of the tool coordinate system relative to the coordinate system of the end of the robot arm; the coordinate system of the end of the robot arm is relative to the base coordinate of the robot. The transfer matrix of the system is multiplied by the transfer matrix of the tool coordinate system relative to the coordinate system of the end of the robot arm, and the transfer matrix of the tool coordinate system relative to the robot base coordinate system is obtained to realize the tool calibration of the robot;
所述机器人手眼标定模块,用于求解工具坐标系相对于跟踪装置坐标系的平移向量,根据工具坐标系相对于跟踪装置坐标系的平移向量,获取工具坐标系原点的两组三维点集,求解机器人基坐标系相对于相机坐标系的转移矩阵,实现机器人的手眼标定。The robot hand-eye calibration module is used to solve the translation vector of the tool coordinate system relative to the tracking device coordinate system. According to the translation vector of the tool coordinate system relative to the tracking device coordinate system, two sets of three-dimensional point sets of the origin of the tool coordinate system are obtained, and the solution is obtained. The transfer matrix of the robot base coordinate system relative to the camera coordinate system realizes the hand-eye calibration of the robot.
在本实施例中,所述机器人系统具体被配置为:In this embodiment, the robot system is specifically configured as:
针对标定体的第一个平面中心处的第一标定点,通过机器人系统的机械臂使末端工具发射的激光通过正四面标定体的第一平面中心小孔,并且激光测距所测距离d满足关系:d=l+r,获取此时机械臂末端tcp相对于机器人基坐标系的位置和姿态信息,形成机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵 For the first calibration point at the center of the first plane of the calibration body, the laser emitted by the end tool is passed through the small hole in the center of the first plane of the positive four-sided calibration body through the mechanical arm of the robot system, and the distance d measured by the laser ranging satisfies Relationship: d=l+r, obtain the position and attitude information of the tcp at the end of the manipulator relative to the robot base coordinate system at this time, and form the transfer matrix of the end coordinate system {E} of the manipulator relative to the robot base coordinate system {B}
同上,针对其他三个标定点,通过机器人系统获取末端工具相对于机器人基坐标系的位置和姿态信息,得到机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵 As above, for the other three calibration points, the position and attitude information of the end tool relative to the robot base coordinate system is obtained through the robot system, and the transfer matrix of the robot arm end coordinate system {E} relative to the robot base coordinate system {B} is obtained.
具体地,所述视觉系统具体被配置为:Specifically, the vision system is specifically configured to:
针对标定体的第一个平面中心处的第一标定点,通过机器人系统的机械臂使末端工具发射的激光通过正四面标定体的第一平面中心小孔,并且激光测距所测距离d满足关系:d=l+r,获取此时跟踪装置相对于相机坐标系的位置和姿态信息,形成跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵 For the first calibration point at the center of the first plane of the calibration body, the laser emitted by the end tool is made to pass through the small hole in the center of the first plane of the regular four-sided calibration body through the robotic arm of the robot system, and the distance d measured by the laser ranging satisfies Relation: d=l+r, obtain the position and attitude information of the tracking device relative to the camera coordinate system at this time, and form the transition matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C}
同上,针对其他三个标定点,通过视觉系统的红外立体相机获取跟踪装置相对于相机坐标系的位置和姿态信息,得到跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵 As above, for the other three calibration points, the position and attitude information of the tracking device relative to the camera coordinate system is obtained through the infrared stereo camera of the vision system, and the transfer matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C} is obtained
具体地,所述机器人工具标定模块具体被配置为:Specifically, the robot tool calibration module is specifically configured as:
将机器人系统得到的4个标记点的机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵代入机器人工具标定的转换关系式,得到不相容方程组,采用奇异值分解法(SVD)求解该方程组在最小二乘法意义下的最可能接近解,得到工具坐标系{T}相对于机械臂末端坐标系{E}的平移向量 The transfer matrix of the robot arm end coordinate system {E} of the four marked points obtained by the robot system relative to the robot base coordinate system {B} Substitute into the transformation relationship for the calibration of the robot tool to obtain an incompatible equation system, and use the singular value decomposition (SVD) method to solve the most probable approximate solution of the equation system in the sense of the least square method, and obtain the tool coordinate system {T} relative to the mechanical Translation vector of the arm end coordinate system {E}
结合平移关系的旋转矩阵不变原则,基于工具坐标系{T}相对于机械臂末端坐标系{E}的平移向量得到工具坐标系{T}相对于机械臂末端坐标系{E}的转移矩阵 Combined with the invariant principle of the rotation matrix of the translation relationship, based on the translation vector of the tool coordinate system {T} relative to the end coordinate system {E} of the manipulator Get the transfer matrix of the tool coordinate system {T} relative to the end coordinate system {E} of the manipulator
将机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵与工具坐标系{T}相对于机械臂末端坐标系{E}的转移矩阵相乘,得到工具坐标系{T}相对于机器人基坐标系{B}的转移矩阵实现机器人的工具标定。The transfer matrix of the robot arm end coordinate system {E} relative to the robot base coordinate system {B} Transfer matrix from the tool coordinate system {T} to the robot end coordinate system {E} Multiply to get the transfer matrix of the tool coordinate system {T} relative to the robot base coordinate system {B} Realize the tool calibration of the robot.
所述机器人手眼标定模块具体被配置为:The robot hand-eye calibration module is specifically configured as:
将机器人系统得到的4个标记点的跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵代入机器人工具标定的转换关系式,得到不相容方程组,采用奇异值分解法(SVD)求解该方程组在最小二乘法意义下的最可能接近解,得到工具坐标系{T}相对于跟踪装置坐标系{D}的平移向量 The transition matrix of the tracking device coordinate system {D} of the four marker points obtained by the robot system relative to the camera coordinate system {C} Substitute into the transformation relationship for the calibration of the robot tool to obtain an incompatible equation system, and use the singular value decomposition (SVD) method to solve the most probable approximate solution of the equation system in the sense of the least square method, and obtain the tool coordinate system {T} relative to the tracking translation vector of device coordinate system {D}
根据工具坐标系{T}相对于跟踪装置坐标系{D}的平移向量将红外立体相机获取的跟踪装置的原点平移到工具坐标系原点,使得相机可以直接读取工具坐标系原点的位置信息。according to the translation vector of the tool coordinate system {T} relative to the tracking device coordinate system {D} The origin of the tracking device acquired by the infrared stereo camera is translated to the origin of the tool coordinate system, so that the camera can directly read the position information of the origin of the tool coordinate system.
操作机械臂使激光工具在空间中随意取点,获取工具坐标系原点分别在机器人坐标系下的点集Pi(i=1,...n)和相机坐标系下的点集P'i。Operate the robotic arm to make the laser tool randomly pick points in space, and obtain the point set P i (i=1,...n) with the origin of the tool coordinate system in the robot coordinate system and the point set P' i in the camera coordinate system .
通过两组三维点集的最小二乘解拟合实现手眼标定。The hand-eye calibration is realized by the least squares solution fitting of two sets of three-dimensional point sets.
实施例二Embodiment two
本实施例提供一种辅助激光截骨手术机器人的标定方法,该方法是基于如上所述的辅助激光截骨手术机器人的标定装置实现的。This embodiment provides a calibration method for an assisted laser osteotomy robot, which is implemented based on the above-mentioned calibration device for an assisted laser osteotomy robot.
请参阅附图2,所述辅助激光截骨手术机器人的标定方法包括以下步骤:Please refer to accompanying drawing 2, the calibration method of described auxiliary laser osteotomy robot comprises the following steps:
S101,设置辅助激光截骨手术机器人的标定体及跟踪装置,调整激光发射距离。S101, setting a calibration body and a tracking device for an auxiliary laser osteotomy robot, and adjusting a laser emission distance.
设机器人基坐标系为{B},机械臂末端坐标系为{E},相机坐标系为{C},跟踪装置坐标系为{D},激光工具坐标系为{T}(下面简称工具坐标系),{T}是激光消融有效点作为原点建立的坐标系,请参阅附图3。Let the robot base coordinate system be {B}, the robot end coordinate system be {E}, the camera coordinate system be {C}, the tracking device coordinate system be {D}, and the laser tool coordinate system be {T} (hereinafter referred to as tool coordinate system), {T} is the coordinate system established with the effective point of laser ablation as the origin, please refer to Figure 3.
具体地,所述步骤101中,调整激光发射距离的具体实现方式如下:Specifically, in the step 101, the specific implementation of adjusting the laser emission distance is as follows:
测量末端工具发射的激光从标定体的一个平面的中心通光小孔照射到与该平面相对的顶角处距离。设末端激光工具所测距离为d,激光消融有效距离l和标定体外接球半径r,满足关系:d=l+r。判断测量的距离是否等于d,若不等于,控制机械臂调整末端工具发射激光的距离满足d。Measure the distance that the laser emitted by the end tool is irradiated from the central clear hole of a plane of the calibration body to the vertex angle opposite to the plane. Let the distance measured by the end laser tool be d, the effective distance l of laser ablation and the radius r of the circumscribed sphere of the calibration body, satisfy the relationship: d=l+r. Determine whether the measured distance is equal to d, if not, control the manipulator to adjust the distance of the laser emitted by the end tool to satisfy d.
S102,获取标定体上四个标定点的数据信息,包括机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵 S102: Acquire data information of four calibration points on the calibration body, including the transfer matrix of the coordinate system {E} of the end of the robot arm relative to the base coordinate system {B} of the robot The transition matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C}
具体地,针对标定体的第一个平面中心处的第一标定点,通过机器人系统的机械臂使末端工具发射的激光通过正四面标定体的第一平面中心小孔,并且激光测距所测距离d满足关系:d=l+r,获取此时机械臂末端tcp相对于机器人基坐标系的位置和姿态信息,得到机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵通过视觉系统的红外立体相机获取跟踪装置相对于相机坐标系的位置和姿态信息,得到跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵 Specifically, for the first calibration point at the center of the first plane of the calibration body, the laser beam emitted by the end tool is passed through the small hole in the center of the first plane of the positive four-sided calibration body through the mechanical arm of the robot system, and the measured laser distance The distance d satisfies the relationship: d=l+r, obtain the position and attitude information of the end tcp of the manipulator relative to the robot base coordinate system at this time, and obtain the transfer of the end coordinate system {E} of the manipulator relative to the robot base coordinate system {B} matrix Obtain the position and attitude information of the tracking device relative to the camera coordinate system through the infrared stereo camera of the vision system, and obtain the transfer matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C}
同上,针对其他三个标定点,通过机器人系统获取末端工具相对于机器人基坐标系的位置和姿态信息,得到机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵通过视觉系统的红外立体相机获取跟踪装置相对于相机坐标系的位置和姿态信息,得到跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵 As above, for the other three calibration points, obtain the position and attitude information of the end tool relative to the robot base coordinate system through the robot system, and obtain the transfer matrix of the end coordinate system {E} of the manipulator relative to the robot base coordinate system {B} Obtain the position and attitude information of the tracking device relative to the camera coordinate system through the infrared stereo camera of the vision system, and obtain the transfer matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C}
S103,求解工具坐标系{T}相对于机械臂末端坐标系{E}的平移向量以及工具坐标系{T}相对于跟踪装置坐标系{D}的平移向量 S103, solving the translation vector of the tool coordinate system {T} relative to the end coordinate system {E} of the manipulator and the translation vector of the tool coordinate system {T} relative to the tracker coordinate system {D}
具体地,将机器人系统得到的4个标记点的机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵代入机器人工具标定的转换关系式,得到不相容方程组,采用奇异值分解法(SVD)求解该方程组在最小二乘法意义下的最可能接近解,得到工具坐标系{T}相对于机械臂末端坐标系{E}的平移向量 Specifically, the transfer matrix of the end coordinate system {E} of the robot arm relative to the robot base coordinate system {B} of the four marked points obtained by the robot system Substituting the conversion relation of robot tool calibration, the incompatible equations are obtained, and the most probable solution of the equations in the sense of the least square method is solved by singular value decomposition (SVD), and the tool coordinate system {T} relative to the mechanical Translation vector of the arm end coordinate system {E}
具体地,所述步骤103中,求解工具坐标系{T}相对于机械臂末端坐标系{E}的平移向量其具体过程如下:Specifically, in the step 103, the translation vector of the tool coordinate system {T} relative to the robot arm end coordinate system {E} is solved The specific process is as follows:
工具坐标系{T}相对于机器人基坐标系{B}的转移矩阵表示为由于机器人的激光工具和跟踪装置是固联于机器人操作机械臂末端连杆上的,所以工具坐标系{T}相对于末端连杆坐标系{E}的位姿关系是恒定的,即旋转分量和平移向量不变。The transfer matrix of the tool coordinate system {T} relative to the robot base coordinate system {B} is expressed as Since the laser tool and tracking device of the robot are fixedly connected to the end link of the manipulator of the robot, the pose relationship of the tool coordinate system {T} relative to the end link coordinate system {E} is constant, that is, the rotation component and translation vector constant.
跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵表示为由于标定工具与跟踪装置同样是固联关系,所以工具坐标系{T}相对于跟踪装置坐标系{D}的转移矩阵是恒定的,即旋转分量和平移向量不变。The transfer matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C} is expressed as Since the calibration tool and the tracking device are also in a fixed relationship, the transfer matrix of the tool coordinate system {T} relative to the tracking device coordinate system {D} is constant, that is, the rotation component and translation vector constant.
默认工具坐标系{T}是由机械臂末端坐标系{E}平移得到,那么工具坐标系的姿态与机械臂末端坐标系的姿态相同。完成机器人工具坐标系标定,只需要求取工具坐标系与机械臂末端坐标系的转移矩阵的平移向量 The default tool coordinate system {T} is obtained by translation of the coordinate system of the end of the manipulator {E}, then the pose of the tool coordinate system is the same as that of the coordinate system of the end of the manipulator. To complete the calibration of the robot tool coordinate system, it is only required to take the translation vector of the transfer matrix between the tool coordinate system and the coordinate system of the end of the robot arm
工具坐标系{T}、机械臂末端坐标系{E}、机器人基坐标系{B}坐标系满足如下转换关系:The tool coordinate system {T}, the robot end coordinate system {E}, and the robot base coordinate system {B} coordinate systems satisfy the following transformation relations:
将步骤102得到的第i个标定点的机械臂末端坐标系到机器人基坐标系的变换矩阵代入式(1)可得写成分块形式为:The transformation matrix from the coordinate system of the robot arm end of the ith calibration point obtained in step 102 to the robot base coordinate system Substitute into formula (1) to get Written in block form as:
令等式两边计算得到的第4列对应相等,则得:Let the 4th column calculated on both sides of the equation be equal, then we get:
对于各标定点,工具坐标系原点相对于机器人基坐标系{B}的位置向量保持不变。那么,对于全部标定点有:For each calibration point, the position vector of the origin of the tool coordinate system relative to the robot base coordinate system {B} constant. Then, for all calibration points there are:
写成矩阵形式为:Written in matrix form as:
上式为不相容方程组,可以求出平移向量的最佳最小二乘解。The above formula is an incompatible equation system, and the translation vector can be obtained The best least squares solution for .
具体地,运用奇异值分解法(SVD)求解上述的不相容方程组(5)在最小二乘法意义下的最可能接近解,其具体实现过程如下:Specifically, the singular value decomposition method (SVD) is used to solve the most probable solution of the above-mentioned incompatible equations (5) in the sense of the least square method, and the specific implementation process is as follows:
令对A进行SVD分解A=UΛVT,即可以求得A的广义逆矩阵A+=VΛ+UT,其中 make Perform SVD decomposition on A = UΛV T , that is, the generalized inverse matrix A + =VΛ + U T of A can be obtained, where
最后利用A+求取不相容方程组的最小二乘解,即Finally, use A + to find the least squares solution of the incompatible equations, namely
针对视觉系统得到的4个标记点的跟踪装置坐标系{D}相对于相机坐标系{C}的转移矩阵采用与上述相同的方法,求解工具坐标系{T}相对于跟踪装置坐标系{D}的平移向量在本申请中不再赘述。The transition matrix of the tracking device coordinate system {D} relative to the camera coordinate system {C} for the 4 markers obtained by the vision system Using the same method as above, solve the translation vector of the tool coordinate system {T} relative to the tracking device coordinate system {D} It will not be repeated in this application.
S104,结合平移关系的旋转矩阵不变原则,基于工具坐标系{T}相对于机械臂末端坐标系{E}的平移向量得到工具坐标系{T}相对于机械臂末端坐标系{E}的转移矩阵 S104, combined with the principle of invariance of the rotation matrix of the translation relationship, based on the translation vector of the tool coordinate system {T} relative to the coordinate system {E} of the end of the robot arm Obtain the transition matrix of the tool coordinate system {T} relative to the robot arm end coordinate system {E}
在本实施例中,工具坐标系{T}是由机械臂末端坐标系{E}平移得到,那么工具坐标系的姿态与机械臂末端坐标系的姿态相同。结合平移关系的旋转矩阵不变原则,可以获得工具坐标系{T}相对于机械臂末端坐标系{E}的转移矩阵 In this embodiment, the tool coordinate system {T} is obtained by translation of the coordinate system {E} of the end of the manipulator, then the posture of the tool coordinate system is the same as that of the coordinate system of the end of the manipulator. Combined with the invariant principle of the rotation matrix of the translation relationship, the transfer matrix of the tool coordinate system {T} relative to the robot arm end coordinate system {E} can be obtained
S105,将机械臂末端坐标系{E}相对于机器人基坐标系{B}的转移矩阵与工具坐标系{T}相对于机械臂末端坐标系{E}的转移矩阵相乘,得到工具坐标系{T}相对于机器人基坐标系{B}的转移矩阵机器人系统根据工具坐标系{T}相对于机器人基坐标系{B}的转移矩阵调整机械臂末端工具中心点相对于机器人基坐标系的位置和姿态信息,实现机器人系统工具标定。S105, the transfer matrix of the coordinate system {E} of the end of the robot arm relative to the base coordinate system {B} of the robot Transfer matrix from the tool coordinate system {T} to the robot end coordinate system {E} Multiply to get the transfer matrix of the tool coordinate system {T} relative to the robot base coordinate system {B} The robot system is based on the transfer matrix of the tool coordinate system {T} relative to the robot base coordinate system {B} Adjust the position and attitude information of the tool center point at the end of the robot arm relative to the robot base coordinate system to realize the tool calibration of the robot system.
具体地,所述工具坐标系{T}相对于机器人基坐标系{B}的转移矩阵的计算公式为:Specifically, the transition matrix of the tool coordinate system {T} relative to the robot base coordinate system {B} The calculation formula is:
机器人系统根据得到的工具坐标系{T}相对于机器人基坐标系{B}的转移矩阵操作机械臂调整末端工具的位置和姿态,实现机器人的工具标定。The robot system obtains the transfer matrix of the tool coordinate system {T} relative to the robot base coordinate system {B} Operate the robotic arm to adjust the position and attitude of the end tool to realize tool calibration of the robot.
S106,获取工具坐标系原点的两组三维信息。S106. Obtain two sets of three-dimensional information of the origin of the tool coordinate system.
具体地,所述步骤106中,获取工具坐标系原点的两组三维信息的具体实现过程如下:Specifically, in the step 106, the specific implementation process of acquiring two sets of three-dimensional information of the origin of the tool coordinate system is as follows:
根据工具坐标系{T}相对于跟踪装置坐标系{D}的平移向量将红外立体相机获取的跟踪装置的原点平移到工具坐标系原点,使得相机可以直接读取工具坐标系原点的位置信息。according to the translation vector of the tool coordinate system {T} relative to the tracking device coordinate system {D} The origin of the tracking device acquired by the infrared stereo camera is translated to the origin of the tool coordinate system, so that the camera can directly read the position information of the origin of the tool coordinate system.
操作机械臂使激光工具在空间中随意取点,获取工具坐标系原点在机器人坐标系下的三维信息Pi(i=1,...n)和相机坐标系下的点集P'i。Operate the robotic arm to make the laser tool randomly pick points in space, and obtain the three-dimensional information P i (i=1,...n) of the tool coordinate system origin in the robot coordinate system and the point set P' i in the camera coordinate system.
S107,通过两组三维点集的最小二乘解拟合实现手眼标定。S107, realizing hand-eye calibration through least square solution fitting of two sets of three-dimensional point sets.
具体地,所述步骤107中,通过两组三维点集的最小二乘解拟合实现手眼标定的具体过程如下:Specifically, in the step 107, the specific process of realizing hand-eye calibration through the least square solution fitting of two sets of three-dimensional point sets is as follows:
(1)步骤106获取的关于工具坐标系原点的两组三维信息分别在机器人坐标系下的点集Pi和相机坐标系下的点集P'i,两组点集满足如下关系:(1) The two sets of three-dimensional information about the origin of the tool coordinate system obtained in step 106 are respectively the point set P i under the robot coordinate system and the point set P' i under the camera coordinate system, and the two sets of point sets satisfy the following relationship:
P'i=RPi+t+ni(7)P' i =RP i +t+n i (7)
其中,R为机器人坐标系和相机坐标系的旋转矩阵,t为平移向量,ni为噪声向量。Among them, R is the rotation matrix of the robot coordinate system and the camera coordinate system, t is the translation vector, and n i is the noise vector.
获取R和t使满足:Get R and t such that:
(2)假设最小二乘法解的旋转矩阵为平移向量为两组点集的中心分别为(2) Suppose the rotation matrix of the least squares solution is The translation vector is The centers of the two sets of points are
设则{P'i}和{P”i}有相同的中心,即P'=P”。Assume Then {P' i } and {P" i } have the same center, that is, P'=P".
令则有make then there are
(3)要求minδ2等价于求定义函数(3) Requiring minδ 2 is equivalent to seeking define function
其中 in
对H进行SVD分解H=UΛVT,令X=VUT(3×3正交矩阵),则有Perform SVD decomposition on H=UΛV T , let X=VUT ( 3×3 orthogonal matrix), then we have
XH=VUTUΛVT=VΛVT(13)XH=VU T UΛV T =VΛV T (13)
对于任意3×3正交矩阵B都有Trace(XH)≥Trace(BXH)。For any 3×3 orthogonal matrix B, there is Trace(XH)≥Trace(BXH).
其中,如果det(X)=+1,则如果det(X)=-1,那么该算法不适用(这种情况极少发生)。所有3×3正交矩阵中,X使F最大化,即δ2最小。Among them, if det(X)=+1, then If det(X)=-1, then the algorithm is not applicable (this happens very rarely). Among all 3×3 orthogonal matrices, X maximizes F, that is, δ 2 is the smallest.
(4)根据SVD方法和正交矩阵性质,求得然后可以得到平移分量为(4) According to the SVD method and the properties of the orthogonal matrix, the Then the translation component can be obtained as
得到机器人基坐标系和相机坐标系的转移矩阵为:The transfer matrix of the robot base coordinate system and the camera coordinate system is obtained as:
机器人系统根据机器人基坐标系{B}相对于相机坐标系{C}的转移矩阵机器人系统控制安装在机械臂末端的工具按照设定的轨迹移动时,同时视觉系统的相机获取工具的位姿信息实时反馈给机器人系统,实现机器人系统手眼标定。The robot system is based on the transfer matrix of the robot base coordinate system {B} relative to the camera coordinate system {C} When the robot system controls the tool installed at the end of the robotic arm to move according to the set trajectory, at the same time, the camera of the vision system acquires the pose information of the tool and feeds it back to the robot system in real time to realize the hand-eye calibration of the robot system.
本实施例提出的标定方法克服了传统方法操作过程复杂及稳定性差的问题,提高了标定过程自动化程度,减少了人为操作等不必要的误差;同时实现了非接触式工具在机器人坐标系和立体相机坐标系下的标定,能够提高机器人的标定精度;且标定装置简单易行,大大降低了成本;适用于辅助激光截骨手术机器人系统,能够有效精确地实现工具在机器人坐标系和相机坐标系下的标定,提高了机器人的自动化程度。The calibration method proposed in this embodiment overcomes the problems of complex operation process and poor stability of the traditional method, improves the automation degree of the calibration process, and reduces unnecessary errors such as manual operation. The calibration in the camera coordinate system can improve the calibration accuracy of the robot; and the calibration device is simple and easy to operate, which greatly reduces the cost; it is suitable for the auxiliary laser osteotomy robot system, and can effectively and accurately realize the tool in the robot coordinate system and the camera coordinate system. Under the calibration, the degree of automation of the robot is improved.
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。Although the specific implementation of the present disclosure has been described above in conjunction with the accompanying drawings, it does not limit the protection scope of the present disclosure. Those skilled in the art should understand that on the basis of the technical solutions of the present disclosure, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present disclosure.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910293683.7A CN109974584B (en) | 2019-04-12 | 2019-04-12 | Calibration system and calibration method for auxiliary laser osteotomy robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910293683.7A CN109974584B (en) | 2019-04-12 | 2019-04-12 | Calibration system and calibration method for auxiliary laser osteotomy robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109974584A true CN109974584A (en) | 2019-07-05 |
CN109974584B CN109974584B (en) | 2020-03-20 |
Family
ID=67084479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910293683.7A Active CN109974584B (en) | 2019-04-12 | 2019-04-12 | Calibration system and calibration method for auxiliary laser osteotomy robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109974584B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110368090A (en) * | 2019-08-09 | 2019-10-25 | 扬州大学 | A kind of osteotomy navigating robot end caliberating device and scaling method |
CN110640745A (en) * | 2019-11-01 | 2020-01-03 | 苏州大学 | Vision-based robot automatic calibration method, equipment and storage medium |
CN111037561A (en) * | 2019-12-27 | 2020-04-21 | 武汉联影智融医疗科技有限公司 | Space registration method and device |
CN111189394A (en) * | 2020-04-09 | 2020-05-22 | 南京佗道医疗科技有限公司 | Device, system and method for verifying parameters of special-shaped workpiece |
CN111557736A (en) * | 2020-06-02 | 2020-08-21 | 杜思傲 | Calibration method of bone cutting guide plate in medical robot navigation system |
CN111633652A (en) * | 2020-06-02 | 2020-09-08 | 杜思傲 | Method for registering robot coordinate system by using three-dimensional positioning device |
WO2021047522A1 (en) * | 2019-09-10 | 2021-03-18 | 深圳市精锋医疗科技有限公司 | Surgical robot, and control method and control device for distal instrument thereof |
CN112525074A (en) * | 2020-11-24 | 2021-03-19 | 杭州素问九州医疗科技有限公司 | Calibration method, calibration system, robot, computer device and navigation system |
CN112568995A (en) * | 2020-12-08 | 2021-03-30 | 南京凌华微电子科技有限公司 | Bone saw calibration method for robot-assisted surgery |
CN112842521A (en) * | 2021-02-09 | 2021-05-28 | 中国人民解放军陆军军医大学第二附属医院 | Laser cuts supplementary full knee joint replacement surgery robot of bone |
CN112890954A (en) * | 2020-12-30 | 2021-06-04 | 北京和华瑞博医疗科技有限公司 | Mechanical arm motion control method and system and surgical operation system |
CN113021358A (en) * | 2021-05-21 | 2021-06-25 | 季华实验室 | Method and device for calibrating origin of coordinate system of mechanical arm tool and electronic equipment |
CN113040910A (en) * | 2021-03-11 | 2021-06-29 | 南京逸动智能科技有限责任公司 | Calibration method of tracer on tail end of surgical navigation robot |
CN113343412A (en) * | 2021-04-22 | 2021-09-03 | 国网浙江省电力有限公司嘉兴供电公司 | Accurate positioning virtual simulation method for tail end of mechanical arm |
CN113509269A (en) * | 2021-04-01 | 2021-10-19 | 中国人民解放军陆军军医大学第二附属医院 | Laser cuts supplementary full hip joint replacement operation robot of bone |
CN113799130A (en) * | 2021-09-22 | 2021-12-17 | 西北工业大学 | A robot pose calibration method in human-robot collaborative assembly |
CN113843792A (en) * | 2021-09-23 | 2021-12-28 | 四川锋准机器人科技有限公司 | A hand-eye calibration method for surgical robot |
CN113995512A (en) * | 2021-02-07 | 2022-02-01 | 武汉光脉科技有限公司 | Full-automatic tracking minimally invasive laser ablation surgical robot system and treatment method thereof |
CN114536347A (en) * | 2022-04-08 | 2022-05-27 | 上海电气集团股份有限公司 | Mechanical arm calibration position determining method, mechanical arm calibration system and electronic equipment |
CN114670194A (en) * | 2022-03-22 | 2022-06-28 | 荣耀终端有限公司 | Manipulator system positioning method and device |
CN114888791A (en) * | 2022-04-21 | 2022-08-12 | 北京航空航天大学 | Head-eye combined calibration method for osteotomy robot |
CN114888792A (en) * | 2022-04-21 | 2022-08-12 | 北京航空航天大学 | Tool coordinate system calibration method in osteotomy robot system based on TCP method |
CN114939867A (en) * | 2022-04-02 | 2022-08-26 | 杭州汇萃智能科技有限公司 | Calibration method and system for mechanical arm external irregular asymmetric tool based on stereoscopic vision |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2669257A1 (en) * | 1990-11-21 | 1992-05-22 | Renault Automatique | Method for calibrating a robot |
DE19720883A1 (en) * | 1997-05-17 | 1998-11-19 | Eugen Dr Trapet | Collapsible three=dimensional calibration test body for measuring or positioning instrument |
CN101630409A (en) * | 2009-08-17 | 2010-01-20 | 北京航空航天大学 | Hand-eye vision calibration method for robot hole boring system |
CN102087096A (en) * | 2010-11-12 | 2011-06-08 | 浙江大学 | Automatic calibration apparatus for robot tool coordinate system based on laser tracking measurement and method thereof |
CN104833324A (en) * | 2015-01-28 | 2015-08-12 | 江南大学 | Robot calibration method based on measuring head |
CN105716525A (en) * | 2016-03-30 | 2016-06-29 | 西北工业大学 | Robot end effector coordinate system calibration method based on laser tracker |
CN107081755A (en) * | 2017-01-25 | 2017-08-22 | 上海电气集团股份有限公司 | A kind of robot monocular vision guides the automatic calibration device of system |
CN108324373A (en) * | 2018-03-19 | 2018-07-27 | 南开大学 | A kind of puncturing operation robot based on electromagnetic positioning system is accurately positioned implementation method |
-
2019
- 2019-04-12 CN CN201910293683.7A patent/CN109974584B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2669257A1 (en) * | 1990-11-21 | 1992-05-22 | Renault Automatique | Method for calibrating a robot |
DE19720883A1 (en) * | 1997-05-17 | 1998-11-19 | Eugen Dr Trapet | Collapsible three=dimensional calibration test body for measuring or positioning instrument |
CN101630409A (en) * | 2009-08-17 | 2010-01-20 | 北京航空航天大学 | Hand-eye vision calibration method for robot hole boring system |
CN102087096A (en) * | 2010-11-12 | 2011-06-08 | 浙江大学 | Automatic calibration apparatus for robot tool coordinate system based on laser tracking measurement and method thereof |
CN104833324A (en) * | 2015-01-28 | 2015-08-12 | 江南大学 | Robot calibration method based on measuring head |
CN105716525A (en) * | 2016-03-30 | 2016-06-29 | 西北工业大学 | Robot end effector coordinate system calibration method based on laser tracker |
CN107081755A (en) * | 2017-01-25 | 2017-08-22 | 上海电气集团股份有限公司 | A kind of robot monocular vision guides the automatic calibration device of system |
CN108324373A (en) * | 2018-03-19 | 2018-07-27 | 南开大学 | A kind of puncturing operation robot based on electromagnetic positioning system is accurately positioned implementation method |
Non-Patent Citations (1)
Title |
---|
袁康正等: "机器人末端位移传感器的安装位置标定方法", 《浙江大学学报(工学版)》 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110368090A (en) * | 2019-08-09 | 2019-10-25 | 扬州大学 | A kind of osteotomy navigating robot end caliberating device and scaling method |
CN110368090B (en) * | 2019-08-09 | 2024-04-12 | 扬州大学 | End calibration device and calibration method for osteotomy navigation robot |
WO2021047522A1 (en) * | 2019-09-10 | 2021-03-18 | 深圳市精锋医疗科技有限公司 | Surgical robot, and control method and control device for distal instrument thereof |
CN110640745A (en) * | 2019-11-01 | 2020-01-03 | 苏州大学 | Vision-based robot automatic calibration method, equipment and storage medium |
CN110640745B (en) * | 2019-11-01 | 2021-06-22 | 苏州大学 | Vision-based robot automatic calibration method, equipment and storage medium |
CN111037561A (en) * | 2019-12-27 | 2020-04-21 | 武汉联影智融医疗科技有限公司 | Space registration method and device |
CN111189394A (en) * | 2020-04-09 | 2020-05-22 | 南京佗道医疗科技有限公司 | Device, system and method for verifying parameters of special-shaped workpiece |
CN111557736A (en) * | 2020-06-02 | 2020-08-21 | 杜思傲 | Calibration method of bone cutting guide plate in medical robot navigation system |
CN111557736B (en) * | 2020-06-02 | 2021-03-12 | 杭州键嘉机器人有限公司 | Calibration method of bone cutting guide plate in medical robot navigation system |
CN111633652A (en) * | 2020-06-02 | 2020-09-08 | 杜思傲 | Method for registering robot coordinate system by using three-dimensional positioning device |
WO2021244037A1 (en) * | 2020-06-02 | 2021-12-09 | 杭州键嘉机器人有限公司 | Method and apparatus for registering robot coordinate system using three-dimensional positioning apparatus, and system, computer, and readable storage medium |
CN112525074A (en) * | 2020-11-24 | 2021-03-19 | 杭州素问九州医疗科技有限公司 | Calibration method, calibration system, robot, computer device and navigation system |
CN112568995A (en) * | 2020-12-08 | 2021-03-30 | 南京凌华微电子科技有限公司 | Bone saw calibration method for robot-assisted surgery |
CN112890954A (en) * | 2020-12-30 | 2021-06-04 | 北京和华瑞博医疗科技有限公司 | Mechanical arm motion control method and system and surgical operation system |
CN113995512A (en) * | 2021-02-07 | 2022-02-01 | 武汉光脉科技有限公司 | Full-automatic tracking minimally invasive laser ablation surgical robot system and treatment method thereof |
CN112842521A (en) * | 2021-02-09 | 2021-05-28 | 中国人民解放军陆军军医大学第二附属医院 | Laser cuts supplementary full knee joint replacement surgery robot of bone |
CN113040910A (en) * | 2021-03-11 | 2021-06-29 | 南京逸动智能科技有限责任公司 | Calibration method of tracer on tail end of surgical navigation robot |
CN113509269A (en) * | 2021-04-01 | 2021-10-19 | 中国人民解放军陆军军医大学第二附属医院 | Laser cuts supplementary full hip joint replacement operation robot of bone |
CN113509269B (en) * | 2021-04-01 | 2022-04-26 | 中国人民解放军陆军军医大学第二附属医院 | A laser osteotomy-assisted total hip replacement surgery robot |
CN113343412A (en) * | 2021-04-22 | 2021-09-03 | 国网浙江省电力有限公司嘉兴供电公司 | Accurate positioning virtual simulation method for tail end of mechanical arm |
CN113343412B (en) * | 2021-04-22 | 2022-02-22 | 国网浙江省电力有限公司嘉兴供电公司 | Accurate positioning virtual simulation method for tail end of mechanical arm |
CN113021358A (en) * | 2021-05-21 | 2021-06-25 | 季华实验室 | Method and device for calibrating origin of coordinate system of mechanical arm tool and electronic equipment |
CN113799130A (en) * | 2021-09-22 | 2021-12-17 | 西北工业大学 | A robot pose calibration method in human-robot collaborative assembly |
CN113843792B (en) * | 2021-09-23 | 2024-02-06 | 四川锋准机器人科技有限公司 | Hand-eye calibration method of surgical robot |
CN113843792A (en) * | 2021-09-23 | 2021-12-28 | 四川锋准机器人科技有限公司 | A hand-eye calibration method for surgical robot |
CN114670194A (en) * | 2022-03-22 | 2022-06-28 | 荣耀终端有限公司 | Manipulator system positioning method and device |
CN114939867A (en) * | 2022-04-02 | 2022-08-26 | 杭州汇萃智能科技有限公司 | Calibration method and system for mechanical arm external irregular asymmetric tool based on stereoscopic vision |
CN114536347A (en) * | 2022-04-08 | 2022-05-27 | 上海电气集团股份有限公司 | Mechanical arm calibration position determining method, mechanical arm calibration system and electronic equipment |
CN114888792A (en) * | 2022-04-21 | 2022-08-12 | 北京航空航天大学 | Tool coordinate system calibration method in osteotomy robot system based on TCP method |
CN114888791B (en) * | 2022-04-21 | 2023-08-25 | 北京航空航天大学 | A head-eye joint calibration method for osteotomy robot |
CN114888792B (en) * | 2022-04-21 | 2023-09-05 | 北京航空航天大学 | Tool coordinate system calibration method in osteotomy robot system based on TCP method |
CN114888791A (en) * | 2022-04-21 | 2022-08-12 | 北京航空航天大学 | Head-eye combined calibration method for osteotomy robot |
Also Published As
Publication number | Publication date |
---|---|
CN109974584B (en) | 2020-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109974584A (en) | A calibration system and calibration method for an auxiliary laser osteotomy robot | |
CN105919669B (en) | A method of realizing that optical operation navigation surgical instrument is demarcated using caliberating device | |
CN103895023B (en) | A kind of tracking measurement method of the mechanical arm tail end tracing measurement system based on coding azimuth device | |
CN106705956B (en) | Industrial robot end pose rapid measuring device and measuring method thereof | |
CN111203861B (en) | Calibration method and calibration system for robot tool coordinate system | |
CN100579479C (en) | Puncture hole positioning device for endoscope-operated surgical robot | |
CN108582076A (en) | A kind of Robotic Hand-Eye Calibration method and device based on standard ball | |
CN107607918B (en) | A robot-based approach to feed positioning and defocusing of cylindrical near-field measurement | |
CN105444672B (en) | Orthogonal plane calibration method and system for relation between laser range finder and tail end of mechanical arm | |
CN113681559B (en) | Line laser scanning robot hand-eye calibration method based on standard cylinder | |
CN105014677A (en) | Visual mechanical arm control device and method based on Camshift visual tracking and D-H modeling algorithms | |
CN111823233B (en) | Mechanical arm hand-eye calibration system and method based on high-precision three-dimensional optical positioning | |
CN110861091A (en) | Calibration method of cusp-type rotary tool for industrial robot based on crossed laser beams | |
CN104608129A (en) | Planar constraint based robot calibration method | |
CN102825602A (en) | PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device | |
CN110722558B (en) | Origin correction method and device for robot, controller and storage medium | |
CN109176488B (en) | Flexible robot kinematics calibration method and system | |
US20240130806A1 (en) | Surgical robot navigation and positioning system and measurement viewing angle multi-objective optimization method | |
CN110962127B (en) | Auxiliary calibration device for tail end pose of mechanical arm and calibration method thereof | |
CN112958960B (en) | Robot hand-eye calibration device based on optical target | |
CN109176487A (en) | A kind of cooperating joint section scaling method, system, equipment, storage medium | |
CN106335061A (en) | Hand-eye relation calibration method based on four-freedom-degree robot | |
CN105318838A (en) | Method and system for single-plane calibration of relation between laser range finder and tail end of mechanical arm | |
CN113160334A (en) | Double-robot system calibration method based on hand-eye camera | |
CN113843792B (en) | Hand-eye calibration method of surgical robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231017 Address after: Room 504, 5th Floor, Building A, No. 777 Shunfeng Road, High tech Zone, Jinan City, Shandong Province, 250101 Patentee after: Shandong Shanda Science and Technology Park Development Co.,Ltd. Address before: 250061, No. ten, No. 17923, Lixia District, Ji'nan City, Shandong Province Patentee before: SHANDONG University |