CN109957721A - 一种具有止裂性能的深海管线钢板及轧制工艺 - Google Patents
一种具有止裂性能的深海管线钢板及轧制工艺 Download PDFInfo
- Publication number
- CN109957721A CN109957721A CN201910241808.1A CN201910241808A CN109957721A CN 109957721 A CN109957721 A CN 109957721A CN 201910241808 A CN201910241808 A CN 201910241808A CN 109957721 A CN109957721 A CN 109957721A
- Authority
- CN
- China
- Prior art keywords
- steel plate
- deep
- temperature
- crack arrest
- pipeline steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明公开了一种具有止裂性能的深海管线钢板,其化学成分及质量百分比如下:C:0.040%~0.070%,Si:0.10%~0.35%,Mn:1.10%~1.50%,P:0.012%,S:0.0020%,Nb:0.030%~0.070%,Ti:0.006%~0.020%,Ni:0.8%~1.0%,Cr:0.10%~0.30%,Mo:0.010%,Cu:0.10%~0.30%,V:0.03%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。增加了组织的强度与韧性,有效提高了钢板止裂韧性性能。
Description
技术领域
本发明涉及钢铁冶炼技术领域,特别是涉及一种具有止裂性能的深海管线钢板及轧制工艺。
背景技术
随着世界经济的飞速发展,石油天然气的需求日益增加,海洋海底蕴藏着大量的石油资源,石油开发后通过管道运输经济安全。深海管线运输对管道材质要求极高,不但需要较高的抗腐蚀性能,还需要较大的屈服强度。深海管道运输一旦发生管道泄露,对海洋环境影响巨大,因此,能开发出一种具有止裂性能的深海管线钢板对石油管道输送意义重大。
发明内容
为了解决以上技术问题,本发明提供一种具有止裂性能的深海管线钢板,其化学成分及质量百分比如下:C:0.040%~0.070%,Si:0.10%~0.35%,Mn:1.10%~1.50%,P:0.012%,S:0.0020%,Nb:0.030%~0.070%,Ti:0.006%~0.020%,Ni:0.8%~1.0%,Cr:0.10%~0.30%,Mo:0.010%,Cu:0.10%~0.30%,V:0.03%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。
技术效果:本发明对管线钢组织进行了深入分析,采用了一种独特的成份设计,通过TMCP轧制工艺,得到了一种以针状铁素体为主加少量的多边形铁素体、少量贝氏体的组织,这种组织晶粒间结合紧密,韧性优异,具有止裂性能的管线钢板,满足了客户在深海2000~10000米的管道输送要求。
本发明进一步限定的技术方案是:
前所述的一种具有止裂性能的深海管线钢板,其化学成分及质量百分比如下:C:0.040%~0.060%,Si:0.10%~0.20%,Mn:1.30%~1.50%,P:0.012%,S:0.0020%,Nb:0.050%~0.070%,Ti:0.006%~0.020%,Ni:0.8%~0.9%,Cr:0.10%~0.20%,Mo:0.010%,Cu:0.10%~0.20%,V:0.03%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。
前所述的一种具有止裂性能的深海管线钢板,其化学成分及质量百分比如下:C:0.050%~0.070%,Si:0.20%~0.35%,Mn:1.10%~1.30%,P:0.012%,S:0.0020%,Nb:0.030%~0.050%,Ti:0.006%~0.020%,Ni:0.9%~1.0%,Cr:0.20%~0.30%,Mo:0.010%,Cu:0.20%~0.30%,V:0.05%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。
本发明的另一目的在于提供一种具有止裂性能的深海管线钢板轧制工艺,奥氏体温度1140~1150℃,二开温度780~790℃,终轧温度为770~790℃,入水温度为740~760℃,采用超快冷冷却至300~350℃,冷却速度0.8~1.2m/s,加速度0.006~0.012m/s2。
前所述的一种具有止裂性能的深海管线钢板及轧制工艺,奥氏体温度1145℃,二开温度781℃,终轧温度为780℃,入水温度为749℃,采用超快冷冷却至358℃,冷却速度0.8m/s,加速度0.009m/s2。
前所述的一种具有止裂性能的深海管线钢板及轧制工艺,奥氏体温度1148℃,二开温度788℃,终轧温度为779℃,入水温度为752℃,采用超快冷冷却至319℃,冷却速度1.1m/s,加速度0.011m/s2。
本发明的有益效果是:
(1)本发明通过低碳、低磷硫设计和轧制工艺得到了细小均匀的针状铁素体为主加少量的多边形铁素体、贝氏体的组织,组织间结合紧密、组织内部应力小,产品韧性优异;
(2)本发明通过适量的添加镍元素,有效提高了钢的强度与韧性,同时具有了良好的淬透性,当镍元素添加到0.9%左右时,钢板检测变脆温度达到-130℃以下,并且促使了铁的韧性保持极高的水平;
(3)本发明轧制后的冷却制度,得到了厚度方向的细晶组织,改善了钢板的耐蚀性能,从而达到钢板在深海条件下具有止裂性能要求。
附图说明
图1为实施例1得到的钢板在金相显微镜下典型的组织形貌图;
图2为实施例2得到的钢板在金相显微镜下典型的组织形貌图。
具体实施方式
实施例1
本实施例提供的一种具有止裂性能的深海管线钢板,其化学成分及质量百分比如下:C:0.040%~0.060%,Si:0.10%~0.20%,Mn:1.30%~1.50%,P:0.012%,S:0.0020%,Nb:0.050%~0.070%,Ti:0.006%~0.020%,Ni:0.8%~0.9%,Cr:0.10%~0.20%,Mo:0.010%,Cu:0.10%~0.20%,V:0.03%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。
上述钢板的轧制工艺,奥氏体温度1145℃,二开温度781℃,终轧温度为780℃,入水温度为749℃,采用超快冷冷却至358℃,冷却速度0.8m/s,加速度0.009m/s2。
实施例2
本实施例提供的一种具有止裂性能的深海管线钢板,其化学成分及质量百分比如下:C:0.050%~0.070%,Si:0.20%~0.35%,Mn:1.10%~1.30%,P:0.012%,S:0.0020%,Nb:0.030%~0.050%,Ti:0.006%~0.020%,Ni:0.9%~1.0%,Cr:0.20%~0.30%,Mo:0.010%,Cu:0.20%~0.30%,V:0.05%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。
奥氏体温度1148℃,二开温度788℃,终轧温度为779℃,入水温度为752℃,采用超快冷冷却至319℃,冷却速度1.1m/s,加速度0.011m/s2。
从图1、2中可以见,组织以针状铁素体为主,还具有少量的多边形铁素体、少量的贝氏体,组织均匀细小并且致密,有利于提高管线钢止裂性能,见表1。
制管后进行了整管止裂试验,整管开口度小于2米,满足止裂性能要求。本发明通过成份设计,改变钢板内的组织结构,得到了组织更稳定、韧性更优异的产品,通过低碳、低磷硫设计得到了以针状铁素体为主的组织结构,同时适量的添加镍合金,促使了针状铁素体始终保持极高的韧性水平,保证了钢板在较大的压力环境下具有止裂的性能要求,满足了客户需求。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
Claims (6)
1.一种具有止裂性能的深海管线钢板,其特征在于,其化学成分及质量百分比如下:C:0.040%~0.070%,Si:0.10%~0.35%,Mn:1.10%~1.50%,P:0.012%,S:0.0020%,Nb:0.030%~0.070%,Ti:0.006%~0.020%,Ni:0.8%~1.0%,Cr:0.10%~0.30%, Mo:0.010%,Cu:0.10%~0.30%,V:0.03%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。
2.根据权利要求1所述的一种具有止裂性能的深海管线钢板,其特征在于,其化学成分及质量百分比如下:C:0.040%~0.060%,Si:0.10%~0.20%,Mn:1.30%~1.50%,P:0.012%,S:0.0020%,Nb:0.050%~0.070%,Ti:0.006%~0.020%,Ni:0.8%~0.9%,Cr:0.10%~0.20%,Mo:0.010%,Cu:0.10%~0.20%,V:0.03%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。
3.根据权利要求1所述的一种具有止裂性能的深海管线钢板,其特征在于,其化学成分及质量百分比如下:C:0.050%~0.070%,Si:0.20%~0.35%,Mn:1.10%~1.30%,P:0.012%,S:0.0020%,Nb:0.030%~0.050%,Ti:0.006%~0.020%,Ni:0.9%~1.0%,Cr:0.20%~0.30%,Mo:0.010%,Cu:0.20%~0.30%,V:0.05%~0.050%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq:0.48%,Pcm:0.22%,余量为Fe和杂质。
4.一种具有止裂性能的深海管线钢板轧制工艺,其特征在于:奥氏体温度1140~1150℃,二开温度780~790℃,终轧温度为770~790℃,入水温度为740~760℃,采用超快冷冷却至300~350℃,冷却速度0.8~1.2m/s,加速度0.006~0.012m/s2。
5.根据权利要求4所述的一种具有止裂性能的深海管线钢板轧制工艺,其特征在于:奥氏体温度1145℃,二开温度781℃,终轧温度为780℃,入水温度为749℃,采用超快冷冷却至358℃,冷却速度0.8m/s,加速度0.009m/s2。
6.根据权利要求4所述的一种具有止裂性能的深海管线钢板轧制工艺,其特征在于:奥氏体温度1148℃,二开温度788℃,终轧温度为779℃,入水温度为752℃,采用超快冷冷却至319℃,冷却速度1.1m/s,加速度0.011m/s2。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910241808.1A CN109957721A (zh) | 2019-03-28 | 2019-03-28 | 一种具有止裂性能的深海管线钢板及轧制工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910241808.1A CN109957721A (zh) | 2019-03-28 | 2019-03-28 | 一种具有止裂性能的深海管线钢板及轧制工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109957721A true CN109957721A (zh) | 2019-07-02 |
Family
ID=67025033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910241808.1A Pending CN109957721A (zh) | 2019-03-28 | 2019-03-28 | 一种具有止裂性能的深海管线钢板及轧制工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109957721A (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012167336A (ja) * | 2011-02-15 | 2012-09-06 | Sumitomo Metal Ind Ltd | 高強度鋼管用鋼板及び高強度鋼管 |
WO2014024234A1 (en) * | 2012-08-10 | 2014-02-13 | Nippon Steel & Sumitomo Metal Corporation | Steel plate for high strength steel pipe and high strength steel pipe |
JP2014043627A (ja) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | ポリオレフィン被覆uoe鋼管及びその製造方法 |
CN105950973A (zh) * | 2016-05-13 | 2016-09-21 | 江阴兴澄特种钢铁有限公司 | 超低温落锤性能优异的厚规格x80管线用钢板及其制造方法 |
CN107881421A (zh) * | 2016-09-29 | 2018-04-06 | 宝山钢铁股份有限公司 | 550MPa级耐高温且有良好低温止裂韧性的管线钢及其制造方法 |
CN109234621A (zh) * | 2018-09-29 | 2019-01-18 | 南京钢铁股份有限公司 | 一种x70m深海抗应变管线钢板及轧制工艺 |
CN109338213A (zh) * | 2018-09-29 | 2019-02-15 | 南京钢铁股份有限公司 | X80m深海抗应变管线钢及轧制工艺 |
-
2019
- 2019-03-28 CN CN201910241808.1A patent/CN109957721A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012167336A (ja) * | 2011-02-15 | 2012-09-06 | Sumitomo Metal Ind Ltd | 高強度鋼管用鋼板及び高強度鋼管 |
WO2014024234A1 (en) * | 2012-08-10 | 2014-02-13 | Nippon Steel & Sumitomo Metal Corporation | Steel plate for high strength steel pipe and high strength steel pipe |
JP2014043627A (ja) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | ポリオレフィン被覆uoe鋼管及びその製造方法 |
CN105950973A (zh) * | 2016-05-13 | 2016-09-21 | 江阴兴澄特种钢铁有限公司 | 超低温落锤性能优异的厚规格x80管线用钢板及其制造方法 |
CN107881421A (zh) * | 2016-09-29 | 2018-04-06 | 宝山钢铁股份有限公司 | 550MPa级耐高温且有良好低温止裂韧性的管线钢及其制造方法 |
CN109234621A (zh) * | 2018-09-29 | 2019-01-18 | 南京钢铁股份有限公司 | 一种x70m深海抗应变管线钢板及轧制工艺 |
CN109338213A (zh) * | 2018-09-29 | 2019-02-15 | 南京钢铁股份有限公司 | X80m深海抗应变管线钢及轧制工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107619994B (zh) | 一种抗co2/h2s及硫酸盐还原菌腐蚀的无缝管线管及其制造方法 | |
WO2020063081A1 (zh) | X80m深海抗应变管线钢及轧制工艺 | |
CN108116006A (zh) | 一种超级奥氏体不锈钢轧制复合钢板及其制造方法 | |
CN103334055B (zh) | 一种抗二氧化碳及硫化氢腐蚀管线钢及其生产方法 | |
CN103361564A (zh) | 一种超级双相不锈钢无缝钢管及其制备方法 | |
CN103215513B (zh) | 一种抗腐蚀集输管线管及其制造方法 | |
CN103305777B (zh) | 一种大口径特厚壁无缝钢管及其制造方法 | |
CN108517461A (zh) | 一种高性能马氏体不锈钢法兰和锻件及其制造方法 | |
CN107904513B (zh) | 一种无磁钻铤用高氮奥氏体不锈钢及其制造方法 | |
Otárola et al. | Embrittlement of a superduplex stainless steel in the range of 550–700 C | |
CN106191671B (zh) | 高强度抗硫化氢腐蚀无缝管线管及其制备方法 | |
CN107587080B (zh) | 一种沉淀强化耐热钢及其制备工艺 | |
CN102230144B (zh) | 一种钢材 | |
CN109680204A (zh) | 一种深海抗酸管线钢及生产方法 | |
CN106319362A (zh) | 具有抗酸性腐蚀性能x52无缝管线钢管及其制造方法 | |
CN111534748B (zh) | 一种海底输送管用热轧钢板及其制备方法 | |
CN101879669B (zh) | 气保焊丝 | |
Gao et al. | CO 2 corrosion behavior of high-strength and toughness V140 steel for oil country tubular goods | |
CN110358981A (zh) | 一种超级双相不锈钢无缝钢管及其制备方法 | |
CN109957721A (zh) | 一种具有止裂性能的深海管线钢板及轧制工艺 | |
Wang et al. | Effect of strain rate on hot ductility of a duplex stainless steel | |
Huang et al. | Microstructure, properties and corrosion characterization of welded joint for composite pipe using a novel welding process | |
CN109234621B (zh) | 一种x70m深海抗应变管线钢板及轧制工艺 | |
CN108893678A (zh) | 一种抗酸管线钢及轧制方法 | |
CN106337104B (zh) | 一种具有耐微生物腐蚀性能的管线钢 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190702 |