CN109917292B - 一种基于daupf的锂离子电池寿命预测方法 - Google Patents
一种基于daupf的锂离子电池寿命预测方法 Download PDFInfo
- Publication number
- CN109917292B CN109917292B CN201910241178.8A CN201910241178A CN109917292B CN 109917292 B CN109917292 B CN 109917292B CN 201910241178 A CN201910241178 A CN 201910241178A CN 109917292 B CN109917292 B CN 109917292B
- Authority
- CN
- China
- Prior art keywords
- value
- new
- daupf
- algorithm
- mean
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 26
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 78
- 238000005070 sampling Methods 0.000 claims abstract description 43
- 230000003044 adaptive effect Effects 0.000 claims abstract description 42
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000009466 transformation Effects 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims description 25
- 238000009826 distribution Methods 0.000 claims description 14
- 238000010606 normalization Methods 0.000 claims description 6
- 238000012952 Resampling Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 10
- 230000009977 dual effect Effects 0.000 abstract description 7
- 238000012360 testing method Methods 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 208000032953 Device battery issue Diseases 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910241178.8A CN109917292B (zh) | 2019-03-28 | 2019-03-28 | 一种基于daupf的锂离子电池寿命预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910241178.8A CN109917292B (zh) | 2019-03-28 | 2019-03-28 | 一种基于daupf的锂离子电池寿命预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109917292A CN109917292A (zh) | 2019-06-21 |
CN109917292B true CN109917292B (zh) | 2020-12-15 |
Family
ID=66967283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910241178.8A Expired - Fee Related CN109917292B (zh) | 2019-03-28 | 2019-03-28 | 一种基于daupf的锂离子电池寿命预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109917292B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021004599A1 (en) * | 2019-07-05 | 2021-01-14 | Volvo Truck Corporation | A method for estimating an operating parameter of a battery unit |
CN110492866B (zh) * | 2019-07-22 | 2022-12-09 | 航天东方红卫星有限公司 | 一种对运动目标的卡尔曼滤波方法 |
CN110442941B (zh) * | 2019-07-25 | 2022-04-29 | 桂林电子科技大学 | 基于粒子滤波与过程噪声融合的电池状态与rul预测方法 |
CN111680848A (zh) * | 2020-07-27 | 2020-09-18 | 中南大学 | 基于预测模型融合的电池寿命预测方法及存储介质 |
CN112285568B (zh) * | 2020-10-21 | 2023-11-14 | 合肥工业大学 | 一种基于动力锂电池能量状态的剩余放电时间的估计方法 |
CN112560916B (zh) * | 2020-12-09 | 2022-11-01 | 甘肃靖远航天风力发电有限公司 | 基于倾角传感器信息的风电塔筒倾覆智能诊断方法 |
CN112763929B (zh) * | 2020-12-31 | 2024-03-08 | 华东理工大学 | 一种储能电站系统电池单体健康预测方法及装置 |
CN114791993B (zh) * | 2022-05-16 | 2022-11-11 | 江苏大学 | 一种动力电池组soh预测方法及系统 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6064857A (en) * | 1997-04-15 | 2000-05-16 | Globalstar L.P. | Dual mode satellite telephone with hybrid battery/capacitor power supply |
US6310789B1 (en) * | 1999-06-25 | 2001-10-30 | The Procter & Gamble Company | Dynamically-controlled, intrinsically regulated charge pump power converter |
US7612532B2 (en) * | 2005-06-21 | 2009-11-03 | Gm Global Technology Operations, Inc. | Method for controlling and monitoring using a state estimator having variable forgetting factors |
JP2009207332A (ja) * | 2008-02-29 | 2009-09-10 | Techno Core International Kk | パック電池の充電装置及びパック電池の品質判定装置 |
US8190384B2 (en) * | 2011-10-27 | 2012-05-29 | Sakti3, Inc. | Method and system for operating a battery in a selected application |
KR20150047873A (ko) * | 2013-10-25 | 2015-05-06 | 주식회사 엘지화학 | 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지 |
CN103675706B (zh) * | 2013-12-13 | 2016-04-13 | 桂林电子科技大学 | 一种动力电池电荷量估算方法 |
CN104267261B (zh) * | 2014-10-29 | 2017-02-15 | 哈尔滨工业大学 | 基于分数阶联合卡尔曼滤波的二次电池简化阻抗谱模型参数在线估计方法 |
CN104502851A (zh) * | 2014-12-12 | 2015-04-08 | 广西科技大学 | 一种基于aukf算法的soc估算方法 |
CN105277896B (zh) * | 2015-10-26 | 2018-01-26 | 安徽理工大学 | 基于elm‑mukf的锂电池剩余寿命预测方法 |
CN105629175A (zh) * | 2015-12-29 | 2016-06-01 | 北京航天测控技术有限公司 | 一种基于无迹卡尔曼滤波的锂离子电池寿命预测方法 |
US10686321B2 (en) * | 2016-01-29 | 2020-06-16 | Robert Bosch Gmbh | Secondary battery management |
CN105974329A (zh) * | 2016-07-22 | 2016-09-28 | 深圳市沃特玛电池有限公司 | 一种估算电池组soh的方法 |
CN107664751A (zh) * | 2016-07-28 | 2018-02-06 | 中兴通讯股份有限公司 | 一种蓄电池实时荷电状态的测算方法及测算装置 |
US10099679B2 (en) * | 2016-10-20 | 2018-10-16 | Fca Us Llc | Battery state and parameter estimation using a mixed sigma-point kalman filtering and recursive least squares technique |
CN108693472B (zh) * | 2017-04-12 | 2020-11-10 | 上海蓝诺新能源技术有限公司 | 电池等效模型参数在线辨识方法 |
CN107153163A (zh) * | 2017-06-20 | 2017-09-12 | 福建工程学院 | 一种基于自适应ukf的锂电池soc估算方法 |
CN107387064A (zh) * | 2017-07-27 | 2017-11-24 | 河南科技学院 | 一种新的排爆机器人隧进定位方法 |
CN108875126A (zh) * | 2018-04-27 | 2018-11-23 | 中国航空无线电电子研究所 | 电解电容剩余寿命预测方法 |
CN108872870A (zh) * | 2018-06-21 | 2018-11-23 | 浙江工业大学 | 一种基于粒子群优化扩展卡尔曼滤波算法的锂电池soc估算方法 |
CN108594135A (zh) * | 2018-06-28 | 2018-09-28 | 南京理工大学 | 一种用于锂电池均衡充放电控制的soc估算方法 |
CN109444757A (zh) * | 2018-10-09 | 2019-03-08 | 杭州中恒云能源互联网技术有限公司 | 一种电动汽车动力电池剩余电量估算方法 |
-
2019
- 2019-03-28 CN CN201910241178.8A patent/CN109917292B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN109917292A (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109917292B (zh) | 一种基于daupf的锂离子电池寿命预测方法 | |
Yuchen et al. | Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm | |
Ma et al. | State of health estimation and remaining useful life prediction for lithium-ion batteries by improved particle swarm optimization-back propagation neural network | |
CN110068774B (zh) | 锂电池健康状态的估计方法、装置及存储介质 | |
Cheng et al. | Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach | |
Chen et al. | A long short-term memory neural network based Wiener process model for remaining useful life prediction | |
Shen et al. | Accurate state of charge estimation with model mismatch for li-ion batteries: A joint moving horizon estimation approach | |
Kim et al. | Model-based condition monitoring for lithium-ion batteries | |
Dong et al. | A method for state of energy estimation of lithium-ion batteries based on neural network model | |
CN113109717B (zh) | 一种基于特征曲线优化的锂电池荷电状态估算方法 | |
Ma et al. | Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion | |
CN111581904A (zh) | 考虑循环次数影响的锂电池soc及soh协同估算方法 | |
CN107132490B (zh) | 一种实现锂电池组荷电状态估计的方法 | |
CN110457789A (zh) | 一种基于改进粒子滤波与双指数衰退经验物理模型融合的锂离子电池剩余寿命预测方法 | |
Takyi-Aninakwa et al. | Enhanced multi-state estimation methods for lithium-ion batteries considering temperature uncertainties | |
CN112816874A (zh) | 一种基于rvm与pf算法融合的电池剩余使用寿命预测方法 | |
Takyi-Aninakwa et al. | A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures | |
CN110442941A (zh) | 一种基于改进粒子滤波与过程噪声多特征融合算法的电池状态跟踪与rul预测方法 | |
CN109839596B (zh) | 基于ud分解的自适应扩展卡尔曼滤波的soc估算方法 | |
Shi et al. | The optimization of state of charge and state of health estimation for lithium‐ions battery using combined deep learning and Kalman filter methods | |
Duan et al. | Online parameter identification and state of charge estimation of battery based on multitimescale adaptive double Kalman filter algorithm | |
Vedhanayaki et al. | Certain investigation and implementation of Coulomb counting based unscented Kalman filter for state of charge estimation of lithium-ion batteries used in electric vehicle application | |
Mao et al. | State-of-charge of lithium-ion battery based on equivalent circuit model–Relevance vector machine fusion model considering varying ambient temperatures | |
Takyi-Aninakwa et al. | An ASTSEKF optimizer with nonlinear condition adaptability for accurate SOC estimation of lithium-ion batteries | |
Ozcan et al. | Online battery state-of-charge estimation based on sparse gaussian process regression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211210 Address after: 532605 Building D, yizilian mahogany processing zone, No. 8, Youyiguan Industrial Park, Xiashi Town, Pingxiang City, Chongzuo City, Guangxi Zhuang Autonomous Region Patentee after: Guangxi Jubang Energy Co.,Ltd. Address before: 100089 Beijing Haidian District 2 Huayuan Road peony Venture Building 4 floor 1424 room Patentee before: Beijing Zhonglian Technology Service Co.,Ltd. Effective date of registration: 20211210 Address after: 100089 Beijing Haidian District 2 Huayuan Road peony Venture Building 4 floor 1424 room Patentee after: Beijing Zhonglian Technology Service Co.,Ltd. Address before: No.56, Xisanhuan North Road, Haidian District, Beijing 100048 Patentee before: Capital Normal University |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201215 |