CN109883649A - A method to study the flow behavior of nanofluids in nanochannels by simulation model - Google Patents
A method to study the flow behavior of nanofluids in nanochannels by simulation model Download PDFInfo
- Publication number
- CN109883649A CN109883649A CN201910194329.9A CN201910194329A CN109883649A CN 109883649 A CN109883649 A CN 109883649A CN 201910194329 A CN201910194329 A CN 201910194329A CN 109883649 A CN109883649 A CN 109883649A
- Authority
- CN
- China
- Prior art keywords
- simulation model
- nano
- fluid
- model
- effective viscosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000002090 nanochannel Substances 0.000 title claims abstract description 16
- 239000002105 nanoparticle Substances 0.000 claims abstract description 34
- 239000012530 fluid Substances 0.000 claims abstract description 22
- 238000000329 molecular dynamics simulation Methods 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 51
- 239000007788 liquid Substances 0.000 claims description 29
- 229910052786 argon Inorganic materials 0.000 claims description 21
- 238000004510 Lennard-Jones potential Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims 1
- 239000010949 copper Substances 0.000 abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 230000003993 interaction Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 238000011067 equilibration Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种通过模拟模型研究纳米流体在纳米通道内流动行为的方法,包括步骤:1.构建模拟模型;2.选择势函数;3.设置模型的参数;4.平衡模型;5.更改控温命令;6.纳米颗粒流动;7.统计流体流速;8.计算有效粘度;9.稳定流动并计算有效粘度。该方法用Lammps软件模拟构建了纳米流体在两个平行铜板间流动的模型,通过改变纳米颗粒体积分数、温度以及尺寸,统计出纳米流体的流速并计算在该纳米通道内的有效粘度。由于纳米流体纳米尺度的影响,流体运动受表面力的控制,纳米粒子的加入和分子间效应使得纳米流体不能满足连续介质假说。因此,本发明利用分子动力学作为在纳米层次非常有效的方法研究纳米颗粒的流动性质具有说服力。
The invention discloses a method for studying the flow behavior of nano-fluids in nano-channels through a simulation model, comprising the steps of: 1. building a simulation model; 2. selecting a potential function; 3. setting the parameters of the model; Change the temperature control command; 6. Nanoparticle flow; 7. Statistical fluid flow rate; 8. Calculate effective viscosity; 9. Stabilize flow and calculate effective viscosity. The method uses Lammps software to simulate and build a model of nanofluid flowing between two parallel copper plates. By changing the volume fraction, temperature and size of nanoparticles, the flow rate of nanofluid is calculated and the effective viscosity in the nanochannel is calculated. Due to the influence of the nanoscale of nanofluids, the fluid motion is controlled by surface forces, and the addition of nanoparticles and intermolecular effects make nanofluids unable to satisfy the continuum hypothesis. Therefore, the present invention is convincing using molecular dynamics as a very efficient method to study the flow properties of nanoparticles at the nanoscale.
Description
技术领域technical field
本发明涉及分子动力学领域,尤其涉及一种通过模拟模型研究不同因素对纳米流体在纳米通道内流动行为影响的方法。The invention relates to the field of molecular dynamics, in particular to a method for studying the influence of different factors on the flow behavior of nanofluids in nanochannels through a simulation model.
背景技术Background technique
目前,常用来研究纳米流体流动行为的方法大部分为实验法和计算法。At present, most of the methods commonly used to study the flow behavior of nanofluids are experimental and computational.
实验法可以研究不同情况以及不同种类的纳米流体的传热性能以及流动行为,并可以分析出不同因素的影响,但纳米颗粒的粒径是纳米尺寸,纳米流体由于纳米尺度的影响,流体运动受表面力的控制。因此宏观的实验方法对纳米颗粒的研究有一定的局限性。除此之外,实验法很难精确控制纳米颗粒的尺寸,因此,实验结果可能有比较大的误差。The experimental method can study the heat transfer performance and flow behavior of different conditions and different types of nanofluids, and can analyze the influence of different factors, but the particle size of nanoparticles is nanometer size. Control of surface forces. Therefore, macroscopic experimental methods have certain limitations in the study of nanoparticles. Besides, it is difficult to accurately control the size of nanoparticles by experimental methods, so the experimental results may have relatively large errors.
计算法是分子动力学模拟方法计算,分子动力学是一种确定性方法。它用经典力学来描述所模拟体系,通过数值求解运动方程得到粒子在相空间的轨迹,即其任意时刻的微观状态,进而可以研究模拟体系的不同性质。分子动力模拟系统中粒子的运动有正确的物理依据。此方法的优点为精准性高,可同时获得系统的动态与热力学状态。但是,分子动力学模拟方法计算需要引用数理积分方法,因此仅能研究系统短时间范围内的运动,而无法模拟一些时间较长的运动问题。Computational method is a molecular dynamics simulation method calculation, and molecular dynamics is a deterministic method. It uses classical mechanics to describe the simulated system, and numerically solves the equation of motion to obtain the trajectory of the particle in the phase space, that is, its microscopic state at any time, and then can study the different properties of the simulated system. The motion of particles in a molecular dynamics simulation system has a correct physical basis. The advantage of this method is that it is highly accurate, and the dynamic and thermodynamic states of the system can be obtained simultaneously. However, the calculation of molecular dynamics simulation method needs to refer to the mathematical integration method, so it can only study the motion of the system in a short time range, but cannot simulate some motion problems with a long time.
发明内容SUMMARY OF THE INVENTION
基于现有技术所存在的问题,本发明的目的是提供一种通过模拟模型研究纳米流体在纳米通道内流动行为的方法,能克服实验法对纳米尺寸的局限性,便于准确分析不同因素在纳米通道内对纳米流体流动行为的影响。Based on the problems existing in the prior art, the purpose of the present invention is to provide a method for studying the flow behavior of nanofluids in nanochannels through simulation models, which can overcome the limitations of experimental methods on nanometer size and facilitate accurate analysis of different factors in nanometers. Influences on nanofluid flow behavior within channels.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
本发明实施例提供一种通过模拟模型研究纳米流体在纳米通道内流动行为的方法,包括:Embodiments of the present invention provide a method for studying the flow behavior of nanofluids in nanochannels through a simulation model, including:
步骤1.构建模拟模型:采用分子动力学软件构建包含上、下平行壁面,并在上、下平行壁面之间设置液体氩和在所述液体氩内设置纳米颗粒的纳米流体的模拟模型;Step 1. Build a simulation model: use molecular dynamics software to build a simulation model of a nanofluid that includes upper and lower parallel walls, and sets liquid argon and nanoparticles in the liquid argon between the upper and lower parallel walls;
步骤2.选择势函数:用Lennard-Jones势函数计算所述模拟模型中各原子之间的相互作用,该Lennard-Jones势函数如下:Step 2. Select a potential function: Calculate the interaction between atoms in the simulation model with the Lennard-Jones potential function, which is as follows:
不同原子之间的σ和ε的值根据Lorentz Berthelot混合规则计算,公式如下:The values of σ and ε between different atoms are calculated according to the Lorentz Berthelot mixing rule with the following formula:
上式(1)、(2)和(3)中,rij为原子i和原子j的距离,σ和ε分别为原子之间的作用范围与作用强度;In the above formulas (1), (2) and (3), r ij is the distance between atom i and atom j, σ and ε are the interaction range and interaction strength between atoms, respectively;
步骤3.设置模拟模型的参数:按Lennard-Jones势函数的参数设置所述模型的各参数为:σCu-Cu为0.2338nm;εCu-Cu为6.563×10-20J;σAr-Ar为0.3405nm;εAr-Ar为1.67×10-21J;σCu-Ar为0.2872nm;εCu-Ar为1.041×10-20J;Step 3. Setting the parameters of the simulation model: According to the parameters of the Lennard-Jones potential function, the parameters of the model are set as follows: σ Cu-Cu is 0.2338 nm; ε Cu-Cu is 6.563×10 -20 J; σ Ar-Ar is 0.3405 nm; ε Ar-Ar is 1.67×10 -21 J; σ Cu-Ar is 0.2872 nm; ε Cu-Ar is 1.041×10 -20 J;
步骤4.平衡模型:在分子动力学软件中使用NVT系综对所述模拟模型进行平衡,每个时间步长为2fs,平衡时长为1200ps;Step 4. Equilibrium model: use the NVT ensemble to equilibrate the simulation model in molecular dynamics software, each time step is 2fs, and the equilibration time is 1200ps;
步骤5.更改控温命令:在分子动力学软件中移除NVT命令,通过液体氩原子z方向的速度计算温度,分子动力学中计算温度的公式如下:Step 5. Change the temperature control command: Remove the NVT command in the molecular dynamics software, and calculate the temperature through the velocity of the liquid argon atoms in the z direction. The formula for calculating the temperature in molecular dynamics is as follows:
KE=dim/2kBNT (4)KE=dim/2k B NT (4)
上式(4)中,KE为所计算原子组的总动能;dim为模拟的维数;kB为玻尔兹曼常数,N为所计算原子组组中的原子数;T为温度;In the above formula (4), KE is the total kinetic energy of the calculated atomic group; dim is the dimension of the simulation; k B is the Boltzmann constant, N is the number of atoms in the calculated atomic group; T is the temperature;
步骤6.纳米流体流动:对模拟模型中每个液体氩原子施加一个y方向的力,使液体氩向y方向移动;Step 6. Nanofluid flow: apply a y-direction force to each liquid argon atom in the simulation model to move the liquid argon in the y-direction;
步骤7.统计流体流速:将模拟模型沿z轴分成110层,统计每一层氩原子y方向的分速度并计算平均值,每一时间步输出一次该时间步每层氩原子的平均速度;Step 7. Statistical fluid flow rate: divide the simulation model into 110 layers along the z-axis, count the y-direction sub-velocities of argon atoms in each layer and calculate the average value, output the average velocity of each layer of argon atoms in each time step once;
步骤8.计算有效粘度:统计出每一层氩原子y方向的流动速度,根据以下公式计算有效粘度为:Step 8. Calculate the effective viscosity: Calculate the flow velocity of each layer of argon atoms in the y direction, and calculate the effective viscosity according to the following formula:
上式(5)、(6)中,η为有效粘度;dvy/dz为纳米流体沿z方向的剪切速率;τzy为zy平面的剪切应力;Fy为作用在纳米流体y方向的力;A为液体氩与上、下壁面的接触面积;In the above formulas (5) and (6), η is the effective viscosity; dv y /dz is the shear rate of the nanofluid along the z direction; τ zy is the shear stress on the zy plane; F y is the y direction acting on the nanofluid force; A is the contact area between the liquid argon and the upper and lower walls;
步骤9.稳定流动并计算有效粘度:当整个模拟模型内的纳米流体速度波动收敛时,确定纳米流体流动趋于稳定,根据上式(5)和(6)计算并得出有效粘度。Step 9. Stabilize the flow and calculate the effective viscosity: When the nanofluid velocity fluctuation in the entire simulation model converges, it is determined that the nanofluid flow tends to be stable, and the effective viscosity is calculated and obtained according to the above formulas (5) and (6).
由上述本发明提供的技术方案可以看出,本发明实施例提供的研究纳米流体在纳米通道内流动行为模拟模型的制作方法,其有益效果为:It can be seen from the technical solutions provided by the present invention that the method for making a simulation model for studying the flow behavior of nanofluids in nanochannels provided by the embodiments of the present invention has the following beneficial effects:
通过利用分子动力学软件构建初始模拟模型,再通过构建的初始模拟模型模拟不同因素下纳米流体在纳米通道中的流动状态,进而能准确分析不同因素对纳米流体在纳米通道中流动行为的影响。By using molecular dynamics software to build an initial simulation model, and then through the initial simulation model constructed to simulate the flow state of nanofluids in nanochannels under different factors, the influence of different factors on the flow behavior of nanofluids in nanochannels can be accurately analyzed.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例提供的方法制作的为纳米颗粒体积分数为5.72%的模拟模型的示意图;1 is a schematic diagram of a simulation model with a nanoparticle volume fraction of 5.72% produced by a method provided in an embodiment of the present invention;
图中:1-上壁面;2-下壁面;3-纳米颗粒。In the figure: 1-upper wall; 2-lower wall; 3-nanoparticles.
具体实施方式Detailed ways
下面结合本发明的具体内容,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the specific content of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention. Contents that are not described in detail in the embodiments of the present invention belong to the prior art known to those skilled in the art.
本发明实施例提供一种通过模拟模型研究纳米流体在纳米通道内流动行为的方法,包括:Embodiments of the present invention provide a method for studying the flow behavior of nanofluids in nanochannels through a simulation model, including:
步骤1.构建模拟模型:采用分子动力学软件构建包含上、下平行壁面,并在上、下平行壁面之间设置液体氩和在所述液体氩内设置纳米颗粒的纳米流体的模拟模型;Step 1. Build a simulation model: use molecular dynamics software to build a simulation model of a nanofluid that includes upper and lower parallel walls, and sets liquid argon and nanoparticles in the liquid argon between the upper and lower parallel walls;
步骤2.选择势函数:用Lennard-Jones势函数计算模拟模型中各原子之间的相互作用,该Lennard-Jones势函数如下:Step 2. Select the potential function: Calculate the interaction between atoms in the simulation model with the Lennard-Jones potential function. The Lennard-Jones potential function is as follows:
不同原子之间的σ和ε的值根据Lorentz Berthelot混合规则计算,公式如下:The values of σ and ε between different atoms are calculated according to the Lorentz Berthelot mixing rule with the following formula:
上式(1)、(2)和(3)中,rij为原子i和原子j的距离,σ和ε分别为原子之间的作用范围与作用强度;In the above formulas (1), (2) and (3), r ij is the distance between atom i and atom j, σ and ε are the interaction range and interaction strength between atoms, respectively;
步骤3.设置模拟模型的参数:按Lennard-Jones势函数的参数设置所述模型的各参数为:σCu-Cu为0.2338nm;εCu-Cu为6.563×10-20J;σAr-Ar为0.3405nm;εAr-Ar为1.67×10-21J;σCu-Ar为0.2872nm;εCu-Ar为1.041×10-20J;Step 3. Setting the parameters of the simulation model: According to the parameters of the Lennard-Jones potential function, the parameters of the model are set as follows: σ Cu-Cu is 0.2338 nm; ε Cu-Cu is 6.563×10 -20 J; σ Ar-Ar is 0.3405 nm; ε Ar-Ar is 1.67×10 -21 J; σ Cu-Ar is 0.2872 nm; ε Cu-Ar is 1.041×10 -20 J;
步骤4.平衡模型:在分子动力学软件中使用NVT系综对所述模拟模型进行平衡,每个时间步长为2fs,平衡时长为1200ps;具体的,通过Lammps软件的输入命令对模型施加NVT系综;分子动力学模拟是模拟一段时间内原子的运动过程,而时间步长为所选择模拟的最短时间间隔;Step 4. Equilibrium model: use the NVT ensemble to equilibrate the simulation model in the molecular dynamics software, each time step is 2fs, and the equilibration time is 1200ps; specifically, NVT is applied to the model through the input command of the Lammps software Ensemble; molecular dynamics simulation is to simulate the movement of atoms in a period of time, and the time step is the shortest time interval of the selected simulation;
步骤5.更改控温命令:在分子动力学软件中移除NVT命令(具体的,通过Lammps软件的输入命令移除对模型施加的NVT系综),通过液体氩原子z方向的速度计算温度,分子动力学中计算温度的公式如下:Step 5. Change the temperature control command: remove the NVT command in the molecular dynamics software (specifically, remove the NVT ensemble applied to the model through the input command of the Lammps software), calculate the temperature by the velocity of the liquid argon atom in the z direction, The formula for calculating temperature in molecular dynamics is as follows:
KE=dim/2kBNT (4)KE=dim/2k B NT (4)
上式(4)中,KE为所计算原子组的总动能;dim为模拟的维数;kB为玻尔兹曼常数,N为所计算原子组(即在模拟过程中所需计算温度的原子组)中的原子数;T为温度;In the above formula (4), KE is the total kinetic energy of the calculated atomic group; dim is the dimension of the simulation; k B is the Boltzmann constant, and N is the calculated atomic group (that is, the calculation temperature required in the simulation process) atomic number in the atomic group); T is the temperature;
步骤6.纳米流体流动:对模拟模型中每个液体氩原子施加一个y方向的力,使液体氩向y方向移动;Step 6. Nanofluid flow: apply a y-direction force to each liquid argon atom in the simulation model to move the liquid argon in the y-direction;
步骤7.统计流体流速:将模拟模型沿z轴分成110层,统计每一层氩原子y方向的分速度并计算平均值,每一时间步输出一次该时间步每层氩原子的平均速度;Step 7. Statistical fluid flow rate: divide the simulation model into 110 layers along the z-axis, count the y-direction sub-velocities of argon atoms in each layer and calculate the average value, output the average velocity of each layer of argon atoms in each time step once;
步骤8.计算有效粘度:统计出每一层氩原子y方向的流动速度,根据以下公式计算有效粘度为:Step 8. Calculate the effective viscosity: Calculate the flow velocity of each layer of argon atoms in the y direction, and calculate the effective viscosity according to the following formula:
上式(5)、(6)中,η为有效粘度;dvy/dz为沿z方向的剪切速率;τzy为zy平面的剪切应力;Fy为作用在纳米流体y方向的力;A为液体氩与上、下壁面的接触面积;In the above formulas (5) and (6), η is the effective viscosity; dv y /dz is the shear rate along the z direction; τ zy is the shear stress in the zy plane; F y is the force acting on the y direction of the nanofluid ; A is the contact area between the liquid argon and the upper and lower walls;
步骤9.稳定流动并计算有效粘度:当整个模拟模型内的纳米流体速度波动收敛时,确定纳米流体流动趋于稳定,根据上式(5)、(6)计算并得出有效粘度。Step 9. Stabilize the flow and calculate the effective viscosity: when the nanofluid velocity fluctuation in the entire simulation model converges, it is determined that the nanofluid flow tends to be stable, and the effective viscosity is calculated and obtained according to the above formulas (5) and (6).
上述方法的步骤1中,采用的分子动力学软件为:Lammps软件。In step 1 of the above method, the molecular dynamics software used is: Lammps software.
上述方法中,纳米流体的基液是液体氩,纳米颗粒可以是纳米流体中的一个个铜球。In the above method, the base fluid of the nanofluid is liquid argon, and the nanoparticles can be copper balls in the nanofluid.
上述方法的步骤1中,模拟模型为两类,包括:In step 1 of the above method, the simulation models are divided into two categories, including:
第一类模拟模型中,改变纳米流体的纳米颗粒的体积分数,通过改变同样直径的纳米颗粒的个数来控制其体积分数;In the first type of simulation model, the volume fraction of nanoparticles in the nanofluid is changed, and the volume fraction is controlled by changing the number of nanoparticles with the same diameter;
第二类模拟模型中,改变纳米流体的纳米颗粒直径,通过改变固定体积分数的纳米颗粒个数来控制其粒径大小。In the second type of simulation model, the diameter of the nanoparticles of the nanofluid is changed, and the particle size is controlled by changing the number of nanoparticles with a fixed volume fraction.
本发明的方法,通过制作一种基于分子动力学研究纳米颗粒对流体在无限平板间的流动行为影响的模型,进而能模拟纳米通道内纳米流体的流动行为,可以克服实验对纳米尺寸的局限性,通过该方法能准确分析纳米颗粒的不同因素在纳米通道内对纳米流体流动行为的影响。The method of the present invention can simulate the flow behavior of nanofluids in nanochannels by making a model based on molecular dynamics to study the influence of nanoparticles on the flow behavior of fluid between infinite flat plates, and can overcome the limitation of experiments on nanometer size. , through this method, the influence of different factors of nanoparticles on the flow behavior of nanofluid in the nanochannel can be accurately analyzed.
下面对本发明实施例具体作进一步地详细描述。The embodiments of the present invention will be described in further detail below.
本发明的方法,首先构建包含上、下壁面、液体氩以及纳米颗粒的模拟模型(参见图1),且选择Lennard-Jones势函数计算原子之间的相互作用,使用NVT系综对整体系统进行平衡,平衡时长为1200ps;系统平衡后,将NVT命令移除,修改为只通过液体氩原子z方向的速度计算温度;对每个液体氩原子施加一个y方向的力,使液体向y方向移动;将模拟盒子沿z轴分成110层,统计每一层氩原子y方向的分速度并计算平均值,每一时间步输出一次该时间步每层氩原子的平均速度;当纳米流体流动趋于稳定时,计算并输出有效粘度。In the method of the present invention, a simulation model including upper and lower walls, liquid argon and nanoparticles is first constructed (see Fig. 1), and the Lennard-Jones potential function is selected to calculate the interaction between atoms, and the NVT ensemble is used to conduct the whole system. Equilibrium, the equilibration time is 1200ps; after the system is balanced, remove the NVT command and modify it to calculate the temperature only by the velocity of the liquid argon atoms in the z direction; apply a y-direction force to each liquid argon atom to move the liquid in the y-direction ; Divide the simulation box into 110 layers along the z-axis, count the sub-velocities of each layer of argon atoms in the y-direction and calculate the average value, and output the average velocity of each layer of argon atoms in each time step once; when the nanofluid flow tends to When stable, the effective viscosity is calculated and output.
具体的,本发明的方法包括以下步骤:Specifically, the method of the present invention comprises the following steps:
步骤1.构建模拟模型:该模拟包含上、下壁面、液体氩以及纳米颗粒;该模拟模型分为两类:第一类是只改变纳米颗粒的体积分数,通过改变同样直径的纳米颗粒的个数来控制其体积分数;第二类是改变纳米颗粒直径,通过改变固定体积分数的纳米颗粒个数来控制其粒径大小;Step 1. Build a simulation model: the simulation includes the upper and lower walls, liquid argon and nanoparticles; the simulation model is divided into two categories: the first type is to only change the volume fraction of nanoparticles, by changing the size of nanoparticles with the same diameter. The second type is to change the diameter of nanoparticles, by changing the number of nanoparticles with a fixed volume fraction to control their particle size;
步骤2.选择势函数:使用Lennard-Jones势函数计算模型中各原子之间的相互作用,势函数如下:Step 2. Select the potential function: Use the Lennard-Jones potential function to calculate the interaction between the atoms in the model. The potential function is as follows:
不同原子之间的σ和ε的值根据Lorentz Berthelot混合规则计算,公式如下:The values of σ and ε between different atoms are calculated according to the Lorentz Berthelot mixing rule with the following formula:
上式(1)、(2)和(3)中,rij表示原子i和原子j的距离;σ和ε分别表示原子之间的作用范围与作用强度;In the above formulas (1), (2) and (3), r ij represents the distance between atom i and atom j; σ and ε represent the interaction range and interaction strength between atoms, respectively;
步骤3.模型的参数设置:各参数见表1,Step 3. Parameter setting of the model: See Table 1 for the parameters.
表1为Lennard-Jones势函数的参数表Table 1 is the parameter table of the Lennard-Jones potential function
步骤4.模型的平衡:由于是人造的构型,内部能量分布不均,因此模拟需要经历平衡过程;所有模型使用NVT系综对整体系统进行平衡,每个时间步长为2fs,平衡时长1200ps;Step 4. Balance of the model: Because it is a man-made configuration, the internal energy distribution is uneven, so the simulation needs to go through a balance process; all models use the NVT ensemble to balance the overall system, each time step is 2fs, and the balance time is 1200ps ;
步骤5.更改控温命令:分子动力学中计算温度的公式如下:Step 5. Change the temperature control command: The formula for calculating temperature in molecular dynamics is as follows:
KE=dim/2kBNT (4)KE=dim/2k B NT (4)
上式(4)中,KE表示所计算原子组的总动能;dim表示模拟的维数;kB表示玻尔兹曼常数;N表示所计算原子组中的原子数;T表示温度;为了避免液体流动导致体系的温度升高,将NVT命令移除,修改为只通过液体氩原子z方向的速度计算温度;In the above formula (4), KE represents the total kinetic energy of the calculated atomic group; dim represents the dimension of the simulation; k B represents the Boltzmann constant; N represents the number of atoms in the computed atomic group; T represents the temperature; The liquid flow causes the temperature of the system to increase, the NVT command is removed, and the temperature is calculated only by the velocity of the liquid argon atoms in the z direction;
步骤6.纳米流体流动:对每个液体氩原子施加一个y方向的力,使液体向y方向移动;Step 6. Nanofluid flow: apply a y-direction force to each liquid argon atom to move the liquid in the y-direction;
步骤7.统计流体流速:将模拟模型的上、下壁面之间沿z轴分成110层,统计每一层氩原子y方向的分速度并计算平均值,每一时间步输出一次该时间步每层氩原子的平均速度;Step 7. Statistical fluid flow rate: divide the upper and lower walls of the simulation model into 110 layers along the z-axis, count the y-direction sub-velocities of argon atoms in each layer and calculate the average value, and output the time step once per time step. the average velocity of the layer argon atoms;
步骤8.计算有效粘度:统计出每一层氩原子y方向的流动速度,根据公式计算有效粘度:Step 8. Calculate the effective viscosity: Calculate the flow velocity of each layer of argon atoms in the y direction, and calculate the effective viscosity according to the formula:
其中,η表示有效粘度,dvy/dz表示沿z方向的剪切速率,τzy表示zy平面的剪切应力,Fy表示作用在纳米流体y方向的力,A表示液体氩与上、下壁面的接触面积;where η is the effective viscosity, dv y /dz is the shear rate along the z direction, τ zy is the shear stress in the zy plane, F y is the force acting in the y direction of the nanofluid, A is the liquid argon and the upper and lower the contact area of the wall;
步骤9.稳定流动并计算有效粘度:当整个系统的速度波动收敛时,确认纳米流体流动趋于稳定,根据公式(5)和(6)计算并输出有效粘度。Step 9. Stabilize the flow and calculate the effective viscosity: When the velocity fluctuation of the whole system converges, confirm that the nanofluid flow tends to be stable, and calculate and output the effective viscosity according to equations (5) and (6).
本发明的方法使用Lammps软件模拟构建了纳米流体(流动的纳米颗粒)在两个平行铜板间流动的模型,通过改变纳米颗粒的体积分数、温度以及尺寸,统计出纳米流体的流速并计算在该纳米通道内的有效粘度。纳米流体由于纳米颗粒尺度的影响,流体运动受表面力的控制,纳米颗粒的加入和分子间效应使得纳米流体不能满足连续介质假说。解决了由于纳米颗粒的尺寸不超过100nm,导致很难预测管道中纳米颗粒对流体流动阻力的影响,目前的方法很难从微观上研究纳米颗粒对纳米流体流动行为的影响。而本发明利用分子动力学作为在纳米层次非常有效的研究了纳米流体的流动性质。The method of the present invention uses Lammps software to simulate and construct a model of nanofluid (flowing nanoparticles) flowing between two parallel copper plates, and by changing the volume fraction, temperature and size of nanoparticles, the flow rate of nanofluid is calculated and calculated in this Effective viscosity within nanochannels. Due to the influence of nanoparticle size, the fluid motion is controlled by surface forces, and the addition of nanoparticles and intermolecular effects make nanofluids unable to satisfy the continuum hypothesis. It is solved that it is difficult to predict the influence of nanoparticles on the fluid flow resistance in the pipeline because the size of the nanoparticles does not exceed 100 nm, and the current method is difficult to study the influence of nanoparticles on the flow behavior of nanofluids from the microscopic level. The present invention uses molecular dynamics as a very effective method to study the flow properties of nanofluids at the nanometer level.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910194329.9A CN109883649A (en) | 2019-03-14 | 2019-03-14 | A method to study the flow behavior of nanofluids in nanochannels by simulation model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910194329.9A CN109883649A (en) | 2019-03-14 | 2019-03-14 | A method to study the flow behavior of nanofluids in nanochannels by simulation model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109883649A true CN109883649A (en) | 2019-06-14 |
Family
ID=66932356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910194329.9A Pending CN109883649A (en) | 2019-03-14 | 2019-03-14 | A method to study the flow behavior of nanofluids in nanochannels by simulation model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109883649A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110762950A (en) * | 2019-09-18 | 2020-02-07 | 宁波大学 | Method, simulation method and device for dehumidifying porous graphene with high voltage |
CN111288222A (en) * | 2020-02-05 | 2020-06-16 | 鲁东大学 | A nanoscale one-way valve structure and its function simulation verification method |
CN113111604A (en) * | 2021-04-08 | 2021-07-13 | 桂林电子科技大学 | Method for researching influence degree of nano particle oxidation on nano fluid viscosity |
CN113223635A (en) * | 2021-04-09 | 2021-08-06 | 中国石油大学(北京) | Fluid shear viscosity determining method and device and electronic equipment |
CN115270516A (en) * | 2022-09-05 | 2022-11-01 | 兰州理工大学 | A method and device for determining the optimal characteristic combination surface of a nanochannel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070131646A1 (en) * | 2005-12-08 | 2007-06-14 | University Of Houston | Method and apparatus for nano-pantography |
CN101944151A (en) * | 2010-09-30 | 2011-01-12 | 重庆大学 | Wall boundary simulation method in molecular dynamics simulation |
CN103279645A (en) * | 2013-04-28 | 2013-09-04 | 暨南大学 | Carbon nano tube molecular dynamics simulation method based on GPU parallel computation |
CN104657564A (en) * | 2015-03-16 | 2015-05-27 | 长春理工大学 | Abrasive flow machining numerical simulation research method based on molecular dynamics |
CN108416119A (en) * | 2018-02-12 | 2018-08-17 | 大连理工大学 | A method for testing the mechanical properties of carbon nanotubes based on molecular dynamics simulation |
CN108509724A (en) * | 2018-04-03 | 2018-09-07 | 嘉兴学院 | A kind of method of multi-scale Simulation nano particle heterogeneous fluid characteristic |
-
2019
- 2019-03-14 CN CN201910194329.9A patent/CN109883649A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070131646A1 (en) * | 2005-12-08 | 2007-06-14 | University Of Houston | Method and apparatus for nano-pantography |
CN101944151A (en) * | 2010-09-30 | 2011-01-12 | 重庆大学 | Wall boundary simulation method in molecular dynamics simulation |
CN103279645A (en) * | 2013-04-28 | 2013-09-04 | 暨南大学 | Carbon nano tube molecular dynamics simulation method based on GPU parallel computation |
CN104657564A (en) * | 2015-03-16 | 2015-05-27 | 长春理工大学 | Abrasive flow machining numerical simulation research method based on molecular dynamics |
CN108416119A (en) * | 2018-02-12 | 2018-08-17 | 大连理工大学 | A method for testing the mechanical properties of carbon nanotubes based on molecular dynamics simulation |
CN108509724A (en) * | 2018-04-03 | 2018-09-07 | 嘉兴学院 | A kind of method of multi-scale Simulation nano particle heterogeneous fluid characteristic |
Non-Patent Citations (4)
Title |
---|
崔文政等: "纳米流体粘度的预测修正模型", 《中国工程热物理学会(传热传质学)学术会议论文集》 * |
张云峰等: "封闭腔内纳米流体蒸发冷凝过程的分子动力学模拟 ", 《长沙理工大学学报(自然科学版)》 * |
王慧等: "纳米摩擦学的分子动力学模拟研究 ", 《中国科学A辑》 * |
范庆梅等: "纳米流体热导率和粘度的分子动力学模拟计算 ", 《工程热物理学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110762950A (en) * | 2019-09-18 | 2020-02-07 | 宁波大学 | Method, simulation method and device for dehumidifying porous graphene with high voltage |
CN110762950B (en) * | 2019-09-18 | 2020-08-14 | 宁波大学 | Method, simulation method and device for dehumidifying porous graphene with high voltage |
CN111288222A (en) * | 2020-02-05 | 2020-06-16 | 鲁东大学 | A nanoscale one-way valve structure and its function simulation verification method |
CN113111604A (en) * | 2021-04-08 | 2021-07-13 | 桂林电子科技大学 | Method for researching influence degree of nano particle oxidation on nano fluid viscosity |
CN113111604B (en) * | 2021-04-08 | 2023-04-07 | 桂林电子科技大学 | Method for researching influence degree of nano particle oxidation on nano fluid viscosity |
CN113223635A (en) * | 2021-04-09 | 2021-08-06 | 中国石油大学(北京) | Fluid shear viscosity determining method and device and electronic equipment |
CN115270516A (en) * | 2022-09-05 | 2022-11-01 | 兰州理工大学 | A method and device for determining the optimal characteristic combination surface of a nanochannel |
CN115270516B (en) * | 2022-09-05 | 2023-05-12 | 兰州理工大学 | A method and device for determining the optimal characteristic combination surface of a nanochannel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109883649A (en) | A method to study the flow behavior of nanofluids in nanochannels by simulation model | |
Hemmat Esfe et al. | Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network | |
Kahkeshani et al. | Preferred interparticle spacings in trains of particles in inertial microchannel flows | |
CN105044146B (en) | A kind of random heat homogenizing analysis method of two-phase composite material | |
Dietzel et al. | Numerical calculation of flow resistance for agglomerates with different morphology by the Lattice–Boltzmann Method | |
CN113987947B (en) | High-pressure fuel filter and simulation design optimization method thereof | |
CN105868540B (en) | Forecasting Methodology using Intelligent Support vector machine to polycyclic aromatic hydrocarbon property/toxicity | |
Jiang et al. | Effect of copper nanoparticles on thermal behavior of water flow in a zig-zag nanochannel using molecular dynamics simulation | |
CN116306186B (en) | Active nanoparticle oil/water interface adsorption-diffusion behavior simulation method and device | |
Henry et al. | A stochastic approach for the simulation of particle resuspension from rough substrates: Model and numerical implementation | |
Suleiman et al. | Long-domain simulation of flow in open-cell mesoporous metal foam and direct comparison to experiment | |
CN102230943A (en) | Method for measuring particle movement speed in gas-solid two-phase flow | |
Shi et al. | Clusters and coherent voids in particle-laden wake flow | |
Ferrari et al. | Fully-resolved simulations of a sphere settling in an initially unstructured thixo-viscoplastic fluid | |
CN115458065A (en) | A Molecular Dynamics Based Nanofluid Aggregation Model Construction Method | |
Guo et al. | Prediction of water transport properties on an anisotropic wetting surface via deep learning | |
HASSANZADEH et al. | Dispersion and deposition of micro particles over two square obstacles in a channel via hybrid lattice Boltzmann method and discrete phase model | |
CN110276131A (en) | Shape optimization method of wing-body fusion underwater glider based on polynomial response surface model | |
CN107622665B (en) | A Traffic Allocation Method for Interaction between Macro and Micro Traffic Simulation Systems | |
Ding et al. | Numerical study on particle dispersion and deposition in a scaled ventilated chamber using a lattice Boltzmann method | |
Channouf et al. | Study of falling condensate droplets on parallelepiped solid surface using hybrid 3D MRT-LBM | |
Maroo et al. | A novel fluid–wall heat transfer model for molecular dynamics simulations | |
Nere et al. | Solution of population balance equation with pure aggregation in a fully developed turbulent pipe flow | |
Mesgarpour et al. | A hybrid deep learning-CFD approach for modeling nanoparticles’ sedimentation processes for possible application in clean energy systems | |
Dizaji et al. | A stochastic vortex structure method for interacting particles in turbulent shear flows |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190614 |