CN109839725B - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- CN109839725B CN109839725B CN201811616069.1A CN201811616069A CN109839725B CN 109839725 B CN109839725 B CN 109839725B CN 201811616069 A CN201811616069 A CN 201811616069A CN 109839725 B CN109839725 B CN 109839725B
- Authority
- CN
- China
- Prior art keywords
- lens
- image
- ttl
- optical lens
- imaging optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Lenses (AREA)
Abstract
本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;且满足下列关系式:1.51≤f1/f≤2.50;1.70≤n1≤2.20;0.60≤f3/f4≤2.00;‑10.00≤(R13+R14)/(R13‑R14)≤10.00;1.70≤n5≤2.20。该摄像光学镜头能获得高成像性能的同时,获得低TTL。
Description
技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄且色像差充分补正的广角摄像镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和广角化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第一透镜的折射率为n1,所述第五透镜的折射率为n5,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,满足下列关系式:
1.51≤f1/f≤2.50;
1.69≤n1≤2.20;
0.60≤f3/f4≤2.00;
-10.00≤(R13+R14)/(R13-R14)≤10.00;
1.70≤n5≤2.20。
优选的,所述摄像光学镜头满足下列关系式:
1.52≤f1/f≤2.45;
1.69≤n1≤2.18;
0.61≤f3/f4≤1.98;
-9.95≤(R13+R14)/(R13-R14)≤9.91;
1.71≤n5≤2.18。
优选的,所述第一透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-19.24≤(R1+R2)/(R1-R2)≤-3.30;
0.02≤d1/TTL≤0.20。
优选的,所述摄像光学镜头满足下列关系式:
-12.03≤(R1+R2)/(R1-R2)≤-4.13;
0.03≤d1/TTL≤0.16。
优选的,所述第二透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
1.14≤f2/f≤6.16;
-13.67≤(R3+R4)/(R3-R4)≤-2.33;
0.03≤d3/TTL≤0.18。
优选的,所述摄像光学镜头满足下列关系式:
1.82≤f2/f≤4.93;
-8.54≤(R3+R4)/(R3-R4)≤-2.91;
0.05≤d3/TTL≤0.14。
优选的,所述第三透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-12.39≤f3/f≤-2.00;
0.86≤(R5+R6)/(R5-R6)≤5.67;
0.02≤d5/TTL≤0.08。
优选的,所述摄像光学镜头满足下列关系式:
-7.75≤f3/f≤-2.50;
1.37≤(R5+R6)/(R5-R6)≤4.53;
0.04≤d5/TTL≤0.07。
优选的,所述第四透镜具有负屈折力,其像侧面于近轴为凹面;
所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-9.84≤f4/f≤-1.47;
0.26≤(R7+R8)/(R7-R8)≤1.86;
0.02≤d7/TTL≤0.21。
优选的,所述摄像光学镜头满足下列关系式:
-6.15≤f4/f≤-1.84;
0.42≤(R7+R8)/(R7-R8)≤1.49;
0.03≤d7/TTL≤0.16。
优选的,所述第五透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-6.60≤f5/f≤-1.36;
2.39≤(R9+R10)/(R9-R10)≤12.31;
0.02≤d9/TTL≤0.09。
优选的,所述摄像光学镜头满足下列关系式:
-4.13≤f5/f≤-1.71;
3.83≤(R9+R10)/(R9-R10)≤9.85;
0.03≤d9/TTL≤0.07。
优选的,所述第六透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.45≤f6/f≤1.89;
-4.21≤(R11+R12)/(R11-R12)≤-1.05;
0.04≤d11/TTL≤0.14。
优选的,所述摄像光学镜头满足下列关系式:
0.72≤f6/f≤1.51;
-2.63≤(R11+R12)/(R11-R12)≤-1.32;
0.06≤d11/TTL≤0.11。
优选的,所述第七透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第七透镜的焦距为f7,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-23.65≤f7/f≤3.97;
0.06≤d13/TTL≤0.22。
优选的,所述摄像光学镜头满足下列关系式:
-14.78≤f7/f≤3.17;
0.10≤d13/TTL≤0.17。
优选的,所述摄像光学镜头的光学总长TTL小于或等于6.85毫米。
优选的,所述摄像光学镜头的光学总长TTL小于或等于6.54毫米。
优选的,所述摄像光学镜头的光圈F数小于或等于1.60。
优选的,所述摄像光学镜头的光圈F数小于或等于1.57。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,超薄,广角且色像差充分补正,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括七个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。第七透镜L7和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
第一透镜L1为玻璃材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为玻璃材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质。
定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,1.51≤f1/f≤2.50,规定了第一透镜L1的正屈折力。超过下限规定值时,虽然有利于镜头向超薄化发展,但是第一透镜L1的正屈折力会过强,难以补正像差等问题,同时不利于镜头向广角化发展。相反,超过上限规定值时,第一透镜的正屈折力会变过弱,镜头难以向超薄化发展。优选的,满足1.52≤f1/f≤2.45。
定义所述第一透镜L1的折射率为n1,1.69≤n1≤2.20,规定了第一透镜L1的折射率,在此范围内更有利于向超薄化发展,同时利于修正像差。优选的,满足1.69≤n1≤2.18。
定义所述第三透镜L3的焦距为f3,所述第四透镜L4的焦距为f4,0.60≤f3/f4≤2.00,规定了第三透镜L3的焦距f3与第四透镜L4的焦距f4的比值,可有效降低摄像用光学透镜组的敏感度,进一步提升成像质量。优选的,满足0.61≤f3/f4≤1.98。
定义所述第七透镜L7物侧面的曲率半径为R13,所述第七透镜L7像侧面的曲率半径为R14,-10.00≤(R13+R14)/(R13-R14)≤10.00,规定了第七透镜L7的形状,在范围外时,随着向超薄广角化发展,很难补正轴外画角的像差等问题。优选的,满足-9.95≤(R13+R14)/(R13-R14)≤9.91。
定义所述第五透镜L5的折射率为n5,满足1.70≤n5≤2.20,在此范围内更有利于向超薄化发展,同时利于修正像差。优选的,满足1.71≤n5≤2.18。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有正屈折力。
第一透镜L1物侧面的曲率半径R1,第一透镜L1像侧面的曲率半径R2,满足下列关系式:-19.24≤(R1+R2)/(R1-R2)≤-3.30,合理控制第一透镜的形状,使得第一透镜能够有效地校正系统球差;优选的,-12.03≤(R1+R2)/(R1-R2)≤-4.13。
第一透镜L1的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d1/TTL≤0.20,有利于实现超薄化。优选的,0.03≤d1/TTL≤0.16。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有正屈折力。
第二透镜L2焦距f2,满足下列关系式:1.14≤f2/f≤6.16,通过将第二透镜L2的正光焦度控制在合理范围,有利于矫正光学系统的像差。优选的,1.82≤f2/f≤4.93。
第二透镜L2物侧面的曲率半径R3,第二透镜L2像侧面的曲率半径R4,满足下列关系式:-13.67≤(R3+R4)/(R3-R4)≤-2.33,规定了第二透镜L2的形状,在范围外时,随着镜头向超薄广角化发展,难以补正像差问题。优选的,-8.54≤(R3+R4)/(R3-R4)≤-2.91。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.03≤d3/TTL≤0.18,有利于实现超薄化。优选的,0.05≤d3/TTL≤0.14。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力。
第三透镜L3焦距f3,以及满足下列关系式:-12.39≤f3/f≤-2.00,有利于系统获得良好的平衡场曲的能力,以有效地提升像质。优选的,-7.75≤f3/f≤-2.50。
第三透镜L3物侧面的曲率半径R5,第三透镜L3像侧面的曲率半径R6,满足下列关系式:0.86≤(R5+R6)/(R5-R6)≤5.67,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。优选的,1.37≤(R5+R6)/(R5-R6)≤4.53。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.08,有利于实现超薄化。优选的,0.04≤d5/TTL≤0.07。
本实施方式中,第四透镜L4的像侧面于近轴处为凹面,具有负屈折力。
第四透镜L4焦距f4,满足下列关系式:-9.84≤f4/f≤-1.47,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-6.15≤f4/f≤-1.84。
第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式:0.26≤(R7+R8)/(R7-R8)≤1.86,规定的是第四透镜L4的形状,在范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题。优选的,0.42≤(R7+R8)/(R7-R8)≤1.49。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.02≤d7/TTL≤0.21,有利于实现超薄化。优选的,0.03≤d7/TTL≤0.16。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力。
第五透镜L5焦距f5,满足下列关系式:-6.60≤f5/f≤-1.36,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选的,-4.13≤f5/f≤-1.71。
第五透镜L5物侧面的曲率半径R9,第五透镜L5像侧面的曲率半径R10,满足下列关系式:2.39≤(R9+R10)/(R9-R10)≤12.31,规定的是第五透镜L5的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的,3.83≤(R9+R10)/(R9-R10)≤9.85。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.02≤d9/TTL≤0.09,有利于实现超薄化。优选的,0.03≤d9/TTL≤0.07。
本实施方式中,第六透镜L6的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有正屈折力。
第六透镜L6焦距f6,满足下列关系式:0.45≤f6/f≤1.89,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,0.72≤f6/f≤1.51。
第六透镜L6物侧面的曲率半径R11,第六透镜L6像侧面的曲率半径R12,满足下列关系式:-4.21≤(R11+R12)/(R11-R12)≤-1.05,规定的是第六透镜L6的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的,-2.63≤(R11+R12)/(R11-R12)≤-1.32。
第六透镜L6的轴上厚度为d11,满足下列关系式:0.04≤d11/TTL≤0.14,有利于实现超薄化。优选的,0.06≤d11/TTL≤0.11。
本实施方式中,第七透镜L7的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
第七透镜L7焦距f7,满足下列关系式:-23.65≤f7/f≤3.97,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-14.78≤f7/f≤3.17。
第七透镜L7的轴上厚度为d13,满足下列关系式:0.06≤d13/TTL≤0.22,有利于实现超薄化。优选的,0.10≤d13/TTL≤0.17。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于6.85毫米,有利于实现超薄化。优选的,摄像光学镜头10的光学总长TTL小于或等于6.54。
本实施方式中,摄像光学镜头10的光圈F数小于或等于1.60。大光圈,成像性能好。优选的,摄像光学镜头10的光圈F数小于或等于1.57。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:光学过滤片GF的物侧面的曲率半径;
R16:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:光学过滤片GF的轴上厚度;
d16:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
IH:像高
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | |
P1R1 | 0 | 0 | 0 |
P1R2 | 0 | 0 | 0 |
P2R1 | 0 | 0 | 0 |
P2R2 | 1 | 1.315 | 0 |
P3R1 | 1 | 0.385 | 0 |
P3R2 | 2 | 0.795 | 1.255 |
P4R1 | 1 | 0.155 | 0 |
P4R2 | 1 | 0.505 | 0 |
P5R1 | 1 | 1.055 | 0 |
P5R2 | 1 | 0.935 | 0 |
P6R1 | 1 | 1.285 | 0 |
P6R2 | 2 | 1.015 | 2.245 |
P7R1 | 2 | 0.775 | 2.255 |
P7R2 | 1 | 1.275 | 0 |
【表4】
驻点个数 | 驻点位置1 | 驻点位置2 | 驻点位置3 | |
P1R1 | 1 | 1.485 | 0 | 0 |
P1R2 | 1 | 1.125 | 0 | 0 |
P2R1 | 1 | 1.245 | 0 | 0 |
P2R2 | 1 | 1.025 | 0 | 0 |
P3R1 | 2 | 0.225 | 1.235 | 0 |
P3R2 | 2 | 0.475 | 1.125 | 0 |
P4R1 | 1 | 0.095 | 0 | 0 |
P4R2 | 1 | 0.285 | 0 | 0 |
P5R1 | 2 | 0.485 | 1.665 | 0 |
P5R2 | 1 | 0.335 | 0 | 0 |
P6R1 | 2 | 0.665 | 1.885 | 0 |
P6R2 | 2 | 0.645 | 1.925 | 0 |
P7R1 | 3 | 0.395 | 1.475 | 2.675 |
P7R2 | 1 | 0.585 | 0 | 0 |
图2、图3分别示出了波长为650.0nm、555.0nm、470.0nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555.0nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.127mm,全视场像高为4mm,对角线方向的视场角为80.55°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 0 | 0 | 0 | 0 |
P1R2 | 1 | 1.485 | 0 | 0 |
P2R1 | 1 | 1.465 | 0 | 0 |
P2R2 | 1 | 1.305 | 0 | 0 |
P3R1 | 1 | 0.535 | 0 | 0 |
P3R2 | 2 | 0.795 | 1.305 | 0 |
P4R1 | 0 | 0 | 0 | 0 |
P4R2 | 2 | 0.505 | 1.515 | 0 |
P5R1 | 1 | 1.125 | 0 | 0 |
P5R2 | 1 | 1.175 | 0 | 0 |
P6R1 | 1 | 1.325 | 0 | 0 |
P6R2 | 1 | 0.975 | 0 | 0 |
P7R1 | 3 | 0.775 | 2.345 | 2.775 |
P7R2 | 1 | 1.635 | 0 | 0 |
【表8】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | 1 | 1.385 | 0 |
P1R2 | 1 | 1.085 | 0 |
P2R1 | 1 | 1.255 | 0 |
P2R2 | 1 | 1.035 | 0 |
P3R1 | 2 | 0.315 | 1.235 |
P3R2 | 2 | 0.495 | 1.165 |
P4R1 | 2 | 1.175 | 1.375 |
P4R2 | 2 | 0.285 | 1.255 |
P5R1 | 1 | 0.635 | 0 |
P5R2 | 1 | 0.405 | 0 |
P6R1 | 2 | 0.685 | 1.915 |
P6R2 | 2 | 0.635 | 1.985 |
P7R1 | 3 | 0.415 | 1.485 |
P7R2 | 1 | 0.655 | 0 |
图6、图7分别示出了波长为650.0nm、555.0nm、470.0nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555.0nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.2mm,全视场像高为4mm,对角线方向的视场角为80.11°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
反曲点个数 | 反曲点位置1 | |
P1R1 | 0 | 0 |
P1R2 | 0 | 0 |
P2R1 | 0 | 0 |
P2R2 | 0 | 0 |
P3R1 | 1 | 0.775 |
P3R2 | 0 | 0 |
P4R1 | 0 | 0 |
P4R2 | 1 | 0.625 |
P5R1 | 1 | 0.625 |
P5R2 | 1 | 0.625 |
P6R1 | 1 | 1.095 |
P6R2 | 1 | 0.975 |
P7R1 | 1 | 0.855 |
P7R2 | 1 | 1.545 |
【表12】
驻点个数 | 驻点位置1 | 驻点位置2 | 驻点位置3 | |
P1R1 | 1 | 1.185 | 0 | 0 |
P1R2 | 1 | 1.155 | 0 | 0 |
P2R1 | 0 | 0 | 0 | 0 |
P2R2 | 0 | 0 | 0 | 0 |
P3R1 | 2 | 0.495 | 1.255 | 0 |
P3R2 | 0 | 0 | 0 | 0 |
P4R1 | 0 | 0 | 0 | 0 |
P4R2 | 1 | 0.255 | 0 | 0 |
P5R1 | 1 | 0.285 | 0 | 0 |
P5R2 | 1 | 0.325 | 0 | 0 |
P6R1 | 1 | 0.575 | 0 | 0 |
P6R2 | 3 | 0.585 | 1.835 | 2.205 |
P7R1 | 3 | 0.455 | 1.645 | 2.725 |
P7R2 | 1 | 0.665 | 0 | 0 |
图10、图11分别示出了波长为650.0nm、555.0nm、470.0nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为470.0nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.21mm,全视场像高为4mm,对角线方向的视场角为81.03°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 | 实施例1 | 实施例2 | 实施例3 |
f | 4.847 | 4.885 | 4.806 |
f1 | 7.368 | 10.255 | 11.570 |
f2 | 19.914 | 12.590 | 10.938 |
f3 | -14.548 | -30.270 | -20.108 |
f4 | -23.846 | -15.518 | -10.584 |
f5 | -9.919 | -15.717 | -15.862 |
f6 | 6.094 | 5.034 | 4.302 |
f7 | 12.824 | -53.934 | -56.822 |
f12 | 5.478 | 5.823 | 5.643 |
FNO | 1.55 | 1.53 | 1.50 |
f1/f | 1.52 | 2.10 | 2.41 |
n1 | 1.79 | 1.70 | 2.16 |
f3/f4 | 0.61 | 1.95 | 1.90 |
(R13+R14)/(R13-R14) | -9.89 | 9.82 | 9.79 |
n5 | 1.81 | 1.72 | 2.16 |
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (20)
1.一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含七片透镜,所述七片透镜自物侧至像侧依序为:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;所述第一透镜具有正屈折力,所述第二透镜具有正屈折力,所述第三透镜具有负屈折力,所述第四透镜具有负屈折力,所述第五透镜具有负屈折力,所述第六透镜具有正屈折力;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第一透镜的折射率为n1,所述第五透镜的折射率为n5,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,满足下列关系式:
1.51≤f1/f≤2.50;
1.69≤n1≤2.20;
0.60≤f3/f4≤2.00;
-10.00≤(R13+R14)/(R13-R14)≤10.00;
1.70≤n5≤2.20。
2.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
1.52≤f1/f≤2.45;
1.69≤n1≤2.18;
0.61≤f3/f4≤1.98;
-9.95≤(R13+R14)/(R13-R14)≤9.91;
1.71≤n5≤2.18。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-19.24≤(R1+R2)/(R1-R2)≤-3.30;
0.02≤d1/TTL≤0.20。
4.根据权利要求3所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
-12.03≤(R1+R2)/(R1-R2)≤-4.13;
0.03≤d1/TTL≤0.16。
5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
1.14≤f2/f≤6.16;
-13.67≤(R3+R4)/(R3-R4)≤-2.33;
0.03≤d3/TTL≤0.18。
6.根据权利要求5所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
1.82≤f2/f≤4.93;
-8.54≤(R3+R4)/(R3-R4)≤-2.91;
0.05≤d3/TTL≤0.14。
7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-12.39≤f3/f≤-2.00;
0.86≤(R5+R6)/(R5-R6)≤5.67;
0.02≤d5/TTL≤0.08。
8.根据权利要求7所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
-7.75≤f3/f≤-2.50;
1.37≤(R5+R6)/(R5-R6)≤4.53;
0.04≤d5/TTL≤0.07。
9.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的像侧面于近轴为凹面;
所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-9.84≤f4/f≤-1.47;
0.26≤(R7+R8)/(R7-R8)≤1.86;
0.02≤d7/TTL≤0.21。
10.根据权利要求9所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
-6.15≤f4/f≤-1.84;
0.42≤(R7+R8)/(R7-R8)≤1.49;
0.03≤d7/TTL≤0.16。
11.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-6.60≤f5/f≤-1.36;
2.39≤(R9+R10)/(R9-R10)≤12.31;
0.02≤d9/TTL≤0.09。
12.根据权利要求11所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
-4.13≤f5/f≤-1.71;
3.83≤(R9+R10)/(R9-R10)≤9.85;
0.03≤d9/TTL≤0.07。
13.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.45≤f6/f≤1.89;
-4.21≤(R11+R12)/(R11-R12)≤-1.05;
0.04≤d11/TTL≤0.14。
14.根据权利要求13所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
0.72≤f6/f≤1.51;
-2.63≤(R11+R12)/(R11-R12)≤-1.32;
0.06≤d11/TTL≤0.11。
15.根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第七透镜的焦距为f7,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-23.65≤f7/f≤3.97;
0.06≤d13/TTL≤0.22。
16.根据权利要求15所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
-14.78≤f7/f≤3.17;
0.10≤d13/TTL≤0.17。
17.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于6.85毫米。
18.根据权利要求17所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于6.54毫米。
19.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于1.60。
20.根据权利要求19所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于1.57。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811616069.1A CN109839725B (zh) | 2018-12-27 | 2018-12-27 | 摄像光学镜头 |
JP2019150705A JP6778468B2 (ja) | 2018-12-27 | 2019-08-20 | 撮像光学レンズ |
PCT/CN2019/108938 WO2020134280A1 (zh) | 2018-12-27 | 2019-09-29 | 摄像光学镜头 |
US16/675,259 US11435558B2 (en) | 2018-12-27 | 2019-11-06 | Camera optical lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811616069.1A CN109839725B (zh) | 2018-12-27 | 2018-12-27 | 摄像光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109839725A CN109839725A (zh) | 2019-06-04 |
CN109839725B true CN109839725B (zh) | 2021-07-30 |
Family
ID=66883439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811616069.1A Active CN109839725B (zh) | 2018-12-27 | 2018-12-27 | 摄像光学镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109839725B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6778468B2 (ja) * | 2018-12-27 | 2020-11-04 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像光学レンズ |
CN110346904B (zh) * | 2019-06-29 | 2021-08-17 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01185507A (ja) * | 1988-01-19 | 1989-07-25 | Canon Inc | インナーフォーカス式の撮影レンズ |
CN106896476A (zh) * | 2016-12-30 | 2017-06-27 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN107678131A (zh) * | 2017-10-19 | 2018-02-09 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN107797237A (zh) * | 2017-10-19 | 2018-03-13 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN107942483A (zh) * | 2017-10-19 | 2018-04-20 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004037927A (ja) * | 2002-07-04 | 2004-02-05 | Minolta Co Ltd | 撮像装置 |
KR101457416B1 (ko) * | 2008-08-06 | 2014-11-03 | 삼성전자주식회사 | 소형 줌 렌즈 |
-
2018
- 2018-12-27 CN CN201811616069.1A patent/CN109839725B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01185507A (ja) * | 1988-01-19 | 1989-07-25 | Canon Inc | インナーフォーカス式の撮影レンズ |
CN106896476A (zh) * | 2016-12-30 | 2017-06-27 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN107678131A (zh) * | 2017-10-19 | 2018-02-09 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN107797237A (zh) * | 2017-10-19 | 2018-03-13 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN107942483A (zh) * | 2017-10-19 | 2018-04-20 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN109839725A (zh) | 2019-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109828350B (zh) | 摄像光学镜头 | |
CN108363186B (zh) | 摄像光学镜头 | |
CN108363180B (zh) | 摄像光学镜头 | |
CN109856779B (zh) | 摄像光学镜头 | |
CN107797232B (zh) | 摄像光学镜头 | |
CN110471163B (zh) | 摄像光学镜头 | |
CN108761720B (zh) | 摄像光学镜头 | |
CN110221408B (zh) | 摄像光学镜头 | |
CN110346922B (zh) | 摄像光学镜头 | |
CN109856780B (zh) | 摄像光学镜头 | |
CN109061851B (zh) | 摄像光学镜头 | |
CN108363189B (zh) | 摄像光学镜头 | |
CN108519659B (zh) | 摄像光学镜头 | |
CN107942487B (zh) | 摄像光学镜头 | |
CN111007639B (zh) | 摄像光学镜头 | |
CN109839725B (zh) | 摄像光学镜头 | |
CN110346905B (zh) | 摄像光学镜头 | |
CN109828353B (zh) | 摄像光学镜头 | |
CN109839722B (zh) | 摄像光学镜头 | |
CN109870785B (zh) | 摄像光学镜头 | |
CN109856773B (zh) | 摄像光学镜头 | |
CN109839727B (zh) | 摄像光学镜头 | |
CN109061849B (zh) | 摄像光学镜头 | |
CN109143543B (zh) | 摄像光学镜头 | |
CN108363188B (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200420 Address after: No. 8, 2 floor, 85 Cavendish Science Park Avenue, Singapore Applicant after: Raytheon solutions Pte Ltd Address before: No. 8, 2 floor, 85 Cavendish Science Park Avenue, Singapore Applicant before: Raytheon Technology (Singapore) Co., Ltd |
|
GR01 | Patent grant | ||
GR01 | Patent grant |