CN109693576A - 一种基于模拟退火算法的电动汽车充电调度优化方法 - Google Patents
一种基于模拟退火算法的电动汽车充电调度优化方法 Download PDFInfo
- Publication number
- CN109693576A CN109693576A CN201910021607.0A CN201910021607A CN109693576A CN 109693576 A CN109693576 A CN 109693576A CN 201910021607 A CN201910021607 A CN 201910021607A CN 109693576 A CN109693576 A CN 109693576A
- Authority
- CN
- China
- Prior art keywords
- electric car
- road
- charging station
- ini
- follows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种基于模拟退火算法的电动汽车充电调度优化方法,包括如下步骤:1)当电动汽车处于电量值较低时,用户先向服务器发送充电请求,服务器收到请求后会先收集电动汽车电池的剩余能量、空调状态、电动汽车的当前位置及周边充电站分布情况,同时要参考周围道路拥堵情况;2)将道路网格化,电动汽车充电调度问题可以描述成优化问题;3)针对这个问题模型,采用模拟退火算法为电动汽车选择合适的目标充电站以及到达目标充电站的最优行驶路径;4)只要服务器和电动汽车处于连接状态,服务器会将目标充电站和到达目标充电站最优路径的信息发送给用户。本发明提高电动汽车的充电效率,给用户提供更加智能的充电路径规划方案。
Description
技术领域
本发明涉及到电动汽车充电调度与行驶路径优化领域,尤其是一种基于模拟退火算法的电动汽车充电调度优化方法。
背景技术
传统能源消耗速度非常迅速而再生速度非常缓慢,同时对环境的污染非常大。近年来,人们在绿色出行领域中不断探索,电动汽车就是其中的代表之一。电动汽车是用电池代替传统能源来提供动力,由于电动汽车的能源利用率高、零污染、噪声低,所以市面上的电动汽车保有量一直在增加。但是电动汽车与传统能源汽车相比也有其缺陷,存在无法远距离持续行驶、充电时间长、相关的充电设施配置不合理等问题。
如果行驶中的电动车可以根据电池剩余电量和充电站使用状态为用户提供合理的充电调度和行驶路径优化方案,就能减少用户对电动汽车可行驶距离的担忧。虽然目前对电动汽车充电调度上的相关研究还在起步阶段,但是基于模拟退火算法的电动汽车的充电调度和行驶路径优化的方案提供了一种可靠准确的方法,调度优化方法能让用户合理地安排电动汽车充电时机和充电行驶路径,减少用户的等待时间,也能够解决充电站资源的不合理分配给用户带来的不便,与此同时促进电动汽车的普及。
发明内容
为了克服现有电动汽车的充电效率较低的不足,为了提高电动汽车的充电效率,给用户提供更加智能的充电路径规划方案,本发明提供了一种基于模拟退火算法的电动汽车充电调度优化方法。
本发明解决其技术问题所采用的技术方案是:
一种基于模拟退火算法的电动汽车充电调度优化方法,所述调度优化方法包括如下步骤:
1)当电动汽车处于电量值较低时,用户先向服务器发送充电请求,服务器收到请求后会先收集电动汽车电池的剩余能量、空调状态、电动汽车的当前位置及周边充电站分布情况,同时要参考周围道路拥堵情况,步骤如下:
步骤1.1:通过测算流入和流出的库仑量并采用库仑计数法来估算电动汽车剩余能量,在测量过程中,电池容量以安培小时为计量单位,计算公式为:
Al=Amax-Au (1-1)
其中,各参数定义如下:
Amax:满电状态下电池容量;
Au:当前已使用的电池容量;
Al:剩余可使用的电池容量;
Emax:满电状态下电池的能量;
El:电池剩余能量;
步骤1.2:在电动汽车行驶过程中,电动汽车到达充电站的时间往往受到道路拥堵情况的影响,引入拥堵系数ε表示道路的拥堵情况,再根据每段路的拥堵情况计算出电动汽车在该道路的行驶时间,计算公式为:
其中,各参数定义如下:
num:进入道路的车辆数;
T:阈值容量,保证道路顺畅通行的最大车辆数;
C:临界值,引起道路拥堵的车辆数;
t:电动汽车在道路的行驶时间;
电动汽车在该路段顺畅通行的平均行驶时间;
步骤1.3:根据电动汽车行驶消耗的能量和电动汽车行驶过程中空调所消耗的能量计算电动汽车在道路上行驶消耗的总能量为:
E1=d×E(v) (1-6)
E2=t×E (1-7)
E=E1+E2 (1-8)
其中,各参数定义如下:
v:电动汽车在道路上的行驶速度;
d:道路长度;
E(V):电动汽车以速度v行驶所对应的能耗;
E1:电动汽车上行驶的总能耗;
E2:电动汽车的空调总能耗;
E:电动汽车需要的总能耗;
步骤1.4:筛选出允许电动汽车充电的f个充电站,引入索引集I={1,2,...,i,...,f},可允许充电的充电站记为{CSi}i∈I;
2)将道路网格化,假设电动汽车只能在路口f和路口m间的水平道路xfm以及路口n和路口m垂直道路ynm上行驶,水平和垂直方向路网的相邻两点的道路集合为{x11,x12,…xfm}和{y11,y12,…ynm},水平和垂直方向的拥堵系数集合为和f个充电站依次排列在路网的终端,结合步骤1),电动汽车充电调度问题描述成如下的优化问题:
s.t.xfm,ynm={0,1} (2-1)
x11+y11=1 (2-2)
xnm+ynm=xnm'+yn'm (2-3)
xfm=xfm'+ynm (2-4)
在此,各参数定义如下:
tf:选择的充电站的等待时间;
水平路段的道路数;
垂直路段的道路数;
电动汽车在水平路段xfm的行驶能耗;
电动汽车在垂直路段ynm的行驶能耗;
El:电动汽车的剩余能量;
其中,m'=m-1、n'=n-1,若m'=0、n'=0,则对应的xnm'、ynm'、xfm'为0;
3)针对这个问题模型,采用模拟退火算法为电动汽车选择合适的目标充电站以及到达目标充电站的最优行驶路径,步骤如下:
步骤3.1:设置电动汽车初始行驶总时间Tini=0,当前最佳解CBS=Tini,设置行驶路线为L,当前最佳驾驶路线CBV=L,设置迭代次数q=1,令初始温度tini=97,最终温度tfinal=3,温度衰减函数系数d=0.95,初始化路网模型并随机产生水平和垂直路段的拥堵系数,设置电动汽车的当前位置为起点,各充电站为终点;
步骤3.2:从起点开始,随机从I中选择一个目标充电站i作为终点,随机选择一条可以到达目标充电站i的行驶路线Lq,计算Tsum,令Tini=Tsum,q=q+1,CBV=Lq,CBS=Tini;
步骤3.3:如果Tini≥Tfinal,则执行步骤3.4,否则执行步骤3.8;
步骤3.4:扰动产生新的行驶路线Lq,计算Tsum,更新q=q+1,计算两次行驶路线的时间差Δ=Tsum-Tini;
步骤3.5:如果Δ≤0,则接受新的行驶路线CBV=Lq并计算Tsum,令Tini=Tsum,CBS=Tini;否则,跳到步骤3.7;
步骤3.6:判断是否还有其他行驶路线,若有则跳到步骤3.4;令tini=tini×d,q=1,并且把i从I剔除,并跳到步骤3.2;
步骤3.7:Δ>0时,需要进行Metropolis接受准则判断,确定行驶路线从Lq-1到Lq的转移概率,进而判断Lq是否为当前最优点,其中Metropolis接受准则如下:
步骤3.8:输出全局最优路线CBV和全局最短行驶总时间CBS;
4)之后,只要服务器和电动汽车处于连接状态,服务器会将目标充电站和到达目标充电站最优路径的信息发送给用户。
本发明的技术构思为:首先,当电动汽车的电量值较低时,用户需要先向服务器发送充电请求,服务器收到请求后会根据电动汽车电池的剩余能量以及空调状态,估算出可行驶的剩余里程数;接着,根据电动汽车的当前位置及周边充电站分布情况,同时要参考道路拥堵情况,选择出可到达的最优充电站,并为电动汽车的用户规划最优行驶路径。算法得到最优路径的过程中,可以有效的利用Metropolis接受准则避免解出局部最优点,找出全局最优点,从而得到电动汽车行驶路径的最优解。
本发明的有益效果主要表现在:1、模拟退火算法的鲁棒性强,通过搜索能有效地得到最优路径,较可靠地解决电动汽车的调度优化问题;2、模拟退火算法可以根据Metropolis接受准则避免解出局部最优点,找出全局最优点;3、模拟退火算法不需要遍历所有情况再比较它们的优劣而得出最优解,这降低了计算复杂度,也大大地减少了计算时间,提高计算效率。
附图说明
图1是路网模型图;
图2是模拟退火算法的流程图。
具体实施方式
下面结合附图对本发明作进一步详细描述。
参照图1和图2,一种基于模拟退火算法的电动汽车充电调度优化方法,换言之,即用模拟退火算法对电动汽车的充电调度进行优化。本发明是在简化的路网模型(如图1所示)中,通过模拟退火算法进行路径选择,最终提供充电的最优路径。发明面向急需充电的电动汽车,针对电动汽车剩余电池的能量、电动汽车的状态信息以及路网模型中道路的拥堵情况,提出了模拟退火算法来获得最优的充电站和充电路径。所述调度优化方法包括以下步骤:
1)当电动汽车处于电量值较低时,用户先向服务器发送充电请求,服务器收到请求后会先收集电动汽车电池的剩余能量、空调状态、电动汽车的当前位置及周边充电站分布情况,同时要参考周围道路拥堵情况,步骤如下:
步骤1.1:通过测算流入和流出的库仑量并采用库仑计数法来估算电动汽车剩余能量,在测量过程中,电池容量以安培小时为计量单位。计算公式为:
Al=Amax-Au (1-1)
其中,各参数定义如下:
Amax:满电状态下电池容量;
Au:当前已使用的电池容量;
Al:剩余可使用的电池容量;
Emax:满电状态下电池的能量;
El:电池剩余能量;
步骤1.2:在电动汽车行驶过程中,电动汽车到达充电站的时间往往受到道路拥堵情况的影响,引入拥堵系数ε表示道路的拥堵情况,再根据每段路的拥堵情况计算出电动汽车在该道路的行驶时间,计算公式为:
其中,各参数定义如下:
num:进入道路的车辆数;
T:阈值容量,保证道路顺畅通行的最大车辆数;
C:临界值,引起道路拥堵的车辆数;
t:电动汽车在道路的行驶时间;
电动汽车在该路段顺畅通行的平均行驶时间;
步骤1.3:根据电动汽车行驶消耗的能量和电动汽车行驶过程中空调所消耗的能量计算电动汽车在道路上行驶消耗的总能量为:
E1=d×E(v) (1-6)
E2=t×E (1-7)
E=E1+E2 (1-8)其中,各参数定义如下:
v:电动汽车在道路上的行驶速度;
d:道路长度;
E(V):电动汽车以速度v行驶所对应的能耗;
E1:电动汽车上行驶的总能耗;
E2:电动汽车的空调总能耗;
E:电动汽车需要的总能耗;
步骤1.4:筛选出允许电动汽车充电的f个充电站,引入索引集I={1,2,...,i,...,f},可允许充电的充电站记为{CSi}i∈I;
2)将道路网格化,假设电动汽车只能在路口f和路口m间的水平道路xfm以及路口n和路口m垂直道路ynm上行驶,水平和垂直方向路网的相邻两点的道路集合为{x11,x12,…xfm}和{y11,y12,…ynm},水平和垂直方向的拥堵系数集合为和f个充电站依次排列在路网的终端,结合步骤1),电动汽车充电调度问题描述成如下的优化问题:
s.t.xfm,ynm={0,1} (2-1)
x11+y11=1 (2-2)
xnm+ynm=xnm'+yn'm (2-3)
xfm=xfm'+ynm (2-4)
在此,各参数定义如下:
tf:选择的充电站的等待时间;
水平路段的道路数;
垂直路段的道路数;
电动汽车在水平路段xfm的行驶能耗;
电动汽车在垂直路段ynm的行驶能耗;
El:电动汽车的剩余能量;
其中,m'=m-1、n'=n-1,若m'=0、n'=0,则对应的xnm'、ynm'、xfm'为0;
3)针对这个问题模型,采用模拟退火算法为电动汽车选择合适的目标充电站以及到达目标充电站的最优行驶路径,步骤如下:
步骤3.1:设置电动汽车初始行驶总时间Tini=0,当前最佳解CBS=Tini,设置行驶路线为L,当前最佳驾驶路线CBV=L,设置迭代次数q=1,令初始温度tini=97,最终温度tfinal=3,温度衰减函数系数d=0.95,初始化路网模型并随机产生水平和垂直路段的拥堵系数,设置电动汽车的当前位置为起点,各充电站为终点;
步骤3.2:从起点开始,随机从I中选择一个目标充电站i作为终点,随机选择一条可以到达目标充电站i的行驶路线Lq,计算Tsum,令Tini=Tsum,q=q+1,CBV=Lq,CBS=Tini;
步骤3.3:如果Tini≥Tfinal,则执行步骤3.4,否则执行步骤3.8;
步骤3.4:扰动产生新的行驶路线Lq,计算Tsum,更新q=q+1,计算两次行驶路线的时间差Δ=Tsum-Tini;
步骤3.5:如果Δ≤0,则接受新的行驶路线CBV=Lq并计算Tsum,令Tini=Tsum,CBS=Tini;否则,跳到步骤3.7;
步骤3.6:判断是否还有其他行驶路线,若有则跳到步骤3.4;令tini=tini×d,q=1,并且把i从I剔除,并跳到步骤3.2;
步骤3.7:Δ>0时,需要进行Metropolis接受准则判断,确定行驶路线从Lq-1到Lq的转移概率,进而判断Lq是否为当前最优点,其中Metropolis接受准则如下:
步骤3.8:输出全局最优路线CBV和全局最短行驶总时间CBS;
4)之后,只要服务器和电动汽车处于连接状态,服务器会将目标充电站和到达目标充电站最优路径的信息发送给用户。
Claims (1)
1.一种基于模拟退火算法的电动汽车充电调度优化方法,其特征在于,所述调度优化方法包括如下步骤:
1)当电动汽车处于电量值较低时,用户先向服务器发送充电请求,服务器收到请求后会先收集电动汽车电池的剩余能量、空调状态、电动汽车的当前位置及周边充电站分布情况,同时要参考周围道路拥堵情况,步骤如下:
步骤1.1:通过测算流入和流出的库仑量并采用库仑计数法来估算电动汽车剩余能量,在测量过程中,电池容量以安培小时为计量单位。计算公式为:
Al=Amax-Au (1-1)
其中,各参数定义如下:
Amax:满电状态下电池容量;
Au:当前已使用的电池容量;
Al:剩余可使用的电池容量;
Emax:满电状态下电池的能量;
El:电池剩余能量;
步骤1.2:在电动汽车行驶过程中,电动汽车到达充电站的时间往往受到道路拥堵情况的影响,引入拥堵系数ε表示道路的拥堵情况,再根据每段路的拥堵情况计算出电动汽车在该道路的行驶时间,计算公式为:
其中,各参数定义如下:
num:进入道路的车辆数;
T:阈值容量,保证道路顺畅通行的最大车辆数;
C:临界值,引起道路拥堵的车辆数;
t:电动汽车在道路的行驶时间;
电动汽车在该路段顺畅通行的平均行驶时间;
步骤1.3:根据电动汽车行驶消耗的能量和电动汽车行驶过程中空调所消耗的能量计算电动汽车在道路上行驶消耗的总能量为:
E1=d×E(v) (1-6)
E2=t×E (1-7)
E=E1+E2 (1-8)
其中,各参数定义如下:
v:电动汽车在道路上的行驶速度;
d:道路长度;
E(V):电动汽车以速度v行驶所对应的能耗;
E1:电动汽车上行驶的总能耗;
E2:电动汽车的空调总能耗;
E:电动汽车需要的总能耗;
步骤1.4:筛选出允许电动汽车充电的f个充电站,引入索引集I={1,2,...,i,...,f},可允许充电的充电站记为{CSi}i∈I;
2)将道路网格化,假设电动汽车只能在路口f和路口m间的水平道路xfm以及路口n和路口m垂直道路ynm上行驶,水平和垂直方向路网的相邻两点的道路集合为{x11,x12,…xfm}和{y11,y12,…ynm},水平和垂直方向的拥堵系数集合为和f个充电站依次排列在路网的终端。结合步骤1),电动汽车充电调度问题描述成如下的优化问题:
s.t.xfm,ynm={0,1} (2-1)
x11+y11=1 (2-2)
xnm+ynm=xnm'+yn'm (2-3)
xfm=xfm'+ynm (2-4)
在此,各参数定义如下:
tf:选择的充电站的等待时间;
水平路段的道路数;
垂直路段的道路数;
电动汽车在水平路段xfm的行驶能耗;
电动汽车在垂直路段ynm的行驶能耗;
El:电动汽车的剩余能量;
其中,m'=m-1、n'=n-1,若m'=0、n'=0,则对应的xnm'、ynm'、xfm'为0;
3)针对这个问题模型,采用模拟退火算法为电动汽车选择合适的目标充电站以及到达目标充电站的最优行驶路径,步骤如下:
步骤3.1:设置电动汽车初始行驶总时间Tini=0,当前最佳解CBS=Tini,设置行驶路线为L,当前最佳驾驶路线CBV=L,设置迭代次数q=1,令初始温度tini=97,最终温度tfinal=3,温度衰减函数系数d=0.95,初始化路网模型并随机产生水平和垂直路段的拥堵系数,设置电动汽车的当前位置为起点,各充电站为终点;
步骤3.2:从起点开始,随机从I中选择一个目标充电站i作为终点,随机选择一条可以到达目标充电站i的行驶路线Lq,计算Tsum,令Tini=Tsum,q=q+1,CBV=Lq,CBS=Tini;
步骤3.3:如果Tini≥Tfinal,则执行步骤3.4,否则执行步骤3.8;
步骤3.4:扰动产生新的行驶路线Lq,计算Tsum,更新q=q+1,计算两次行驶路线的时间差Δ=Tsum-Tini;
步骤3.5:如果Δ≤0,则接受新的行驶路线CBV=Lq并计算Tsum,令Tini=Tsum,CBS=Tini;否则,跳到步骤3.7;
步骤3.6:判断是否还有其他行驶路线,若有则跳到步骤3.4;令tini=tini×d,q=1,并且把i从I剔除,并跳到步骤3.2;
步骤3.7:Δ>0时,需要进行Metropolis接受准则判断,确定行驶路线从Lq-1到Lq的转移概率,进而判断Lq是否为当前最优点,其中Metropolis接受准则如下:
步骤3.8:输出全局最优路线CBV和全局最短行驶总时间CBS;
4)之后,只要服务器和电动汽车处于连接状态,服务器会将目标充电站和到达目标充电站最优路径的信息发送给用户。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910021607.0A CN109693576B (zh) | 2019-01-10 | 2019-01-10 | 一种基于模拟退火算法的电动汽车充电调度优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910021607.0A CN109693576B (zh) | 2019-01-10 | 2019-01-10 | 一种基于模拟退火算法的电动汽车充电调度优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109693576A true CN109693576A (zh) | 2019-04-30 |
CN109693576B CN109693576B (zh) | 2022-05-03 |
Family
ID=66232630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910021607.0A Active CN109693576B (zh) | 2019-01-10 | 2019-01-10 | 一种基于模拟退火算法的电动汽车充电调度优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109693576B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110281807A (zh) * | 2019-06-28 | 2019-09-27 | 上海电力学院 | 一种用于电动汽车和充电桩的匹配方法及系统 |
CN110363311A (zh) * | 2019-06-10 | 2019-10-22 | 上海交通大学 | 基于预约的充电桩分配方法及系统 |
CN110543967A (zh) * | 2019-07-23 | 2019-12-06 | 浙江工业大学 | 一种网联充电站环境下电动汽车等待时间分布短时预测方法 |
CN110738356A (zh) * | 2019-09-20 | 2020-01-31 | 西北工业大学 | 一种基于sdn增强网络的电动汽车充电智能调度方法 |
CN111768851A (zh) * | 2020-06-22 | 2020-10-13 | 杭州电子科技大学 | 一种动态需求下多级别家庭护理调度方法及系统 |
CN112070300A (zh) * | 2020-09-07 | 2020-12-11 | 电子科技大学 | 一种基于多目标优化的电动汽车充电平台选取方法 |
CN113442791A (zh) * | 2021-05-17 | 2021-09-28 | 隆瑞三优新能源汽车科技有限公司 | 一种电动汽车电能补充方法 |
CN113505912A (zh) * | 2021-06-10 | 2021-10-15 | 广东工业大学 | 基于路网信息与计算资源补偿的电动汽车充电规划方法 |
CN113942401A (zh) * | 2021-10-29 | 2022-01-18 | 文远苏行(江苏)科技有限公司 | 充电站确定方法、装置、可移动载体及存储介质 |
CN115545582A (zh) * | 2022-12-02 | 2022-12-30 | 天津大学 | 一种电动牵引车循环送货调度问题的解决方法和装置 |
US11775872B1 (en) | 2022-12-01 | 2023-10-03 | Recentive Analytics, Inc. | Techniques for identifying optimal EV charging station locations |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101881624A (zh) * | 2009-05-05 | 2010-11-10 | 通用汽车环球科技运作公司 | 用于车辆的路线规划系统 |
US20100286909A1 (en) * | 2009-05-05 | 2010-11-11 | Gm Global Technology Operations, Inc. | Route planning system and method |
CN103001259A (zh) * | 2012-12-29 | 2013-03-27 | 南方电网科学研究院有限责任公司 | 一种基于退火算法的并网型微电网优化调度方法 |
CN105681431A (zh) * | 2016-01-26 | 2016-06-15 | 深圳市德传技术有限公司 | 一种基于位置的空闲充电桩查找方法 |
CN106965688A (zh) * | 2017-03-17 | 2017-07-21 | 南京邮电大学 | 一种电网和交通网协同环境下的电动汽车充电方法 |
CN108106626A (zh) * | 2017-12-18 | 2018-06-01 | 浙江工业大学 | 一种基于行驶工况的电动汽车出行路径规划方法 |
CN108562300A (zh) * | 2018-05-10 | 2018-09-21 | 西南交通大学 | 考虑目的地导向及下一行程用电需求的电动汽车充电引导方法 |
CN109029474A (zh) * | 2018-04-26 | 2018-12-18 | 杭州中恒云能源互联网技术有限公司 | 一种电动汽车充电导航能耗计算方法 |
CN109118023A (zh) * | 2018-09-21 | 2019-01-01 | 北京交通大学 | 一种公共交通线网优化方法 |
-
2019
- 2019-01-10 CN CN201910021607.0A patent/CN109693576B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101881624A (zh) * | 2009-05-05 | 2010-11-10 | 通用汽车环球科技运作公司 | 用于车辆的路线规划系统 |
US20100286909A1 (en) * | 2009-05-05 | 2010-11-11 | Gm Global Technology Operations, Inc. | Route planning system and method |
CN103001259A (zh) * | 2012-12-29 | 2013-03-27 | 南方电网科学研究院有限责任公司 | 一种基于退火算法的并网型微电网优化调度方法 |
CN105681431A (zh) * | 2016-01-26 | 2016-06-15 | 深圳市德传技术有限公司 | 一种基于位置的空闲充电桩查找方法 |
CN106965688A (zh) * | 2017-03-17 | 2017-07-21 | 南京邮电大学 | 一种电网和交通网协同环境下的电动汽车充电方法 |
CN108106626A (zh) * | 2017-12-18 | 2018-06-01 | 浙江工业大学 | 一种基于行驶工况的电动汽车出行路径规划方法 |
CN109029474A (zh) * | 2018-04-26 | 2018-12-18 | 杭州中恒云能源互联网技术有限公司 | 一种电动汽车充电导航能耗计算方法 |
CN108562300A (zh) * | 2018-05-10 | 2018-09-21 | 西南交通大学 | 考虑目的地导向及下一行程用电需求的电动汽车充电引导方法 |
CN109118023A (zh) * | 2018-09-21 | 2019-01-01 | 北京交通大学 | 一种公共交通线网优化方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110363311B (zh) * | 2019-06-10 | 2021-12-10 | 上海交通大学 | 基于预约的充电桩分配方法及系统 |
CN110363311A (zh) * | 2019-06-10 | 2019-10-22 | 上海交通大学 | 基于预约的充电桩分配方法及系统 |
CN110281807A (zh) * | 2019-06-28 | 2019-09-27 | 上海电力学院 | 一种用于电动汽车和充电桩的匹配方法及系统 |
CN110543967A (zh) * | 2019-07-23 | 2019-12-06 | 浙江工业大学 | 一种网联充电站环境下电动汽车等待时间分布短时预测方法 |
CN110543967B (zh) * | 2019-07-23 | 2021-06-08 | 浙江工业大学 | 一种网联充电站环境下电动汽车等待时间分布短时预测方法 |
CN110738356A (zh) * | 2019-09-20 | 2020-01-31 | 西北工业大学 | 一种基于sdn增强网络的电动汽车充电智能调度方法 |
CN111768851A (zh) * | 2020-06-22 | 2020-10-13 | 杭州电子科技大学 | 一种动态需求下多级别家庭护理调度方法及系统 |
CN111768851B (zh) * | 2020-06-22 | 2023-10-03 | 杭州电子科技大学 | 一种动态需求下多级别家庭护理调度方法及系统 |
CN112070300B (zh) * | 2020-09-07 | 2023-05-23 | 电子科技大学 | 一种基于多目标优化的电动汽车充电平台选取方法 |
CN112070300A (zh) * | 2020-09-07 | 2020-12-11 | 电子科技大学 | 一种基于多目标优化的电动汽车充电平台选取方法 |
CN113442791A (zh) * | 2021-05-17 | 2021-09-28 | 隆瑞三优新能源汽车科技有限公司 | 一种电动汽车电能补充方法 |
CN113505912A (zh) * | 2021-06-10 | 2021-10-15 | 广东工业大学 | 基于路网信息与计算资源补偿的电动汽车充电规划方法 |
CN113505912B (zh) * | 2021-06-10 | 2023-08-25 | 广东工业大学 | 基于路网信息与计算资源补偿的电动汽车充电规划方法 |
CN113942401A (zh) * | 2021-10-29 | 2022-01-18 | 文远苏行(江苏)科技有限公司 | 充电站确定方法、装置、可移动载体及存储介质 |
CN113942401B (zh) * | 2021-10-29 | 2023-11-24 | 文远苏行(江苏)科技有限公司 | 充电站确定方法、装置、可移动载体及存储介质 |
US11775872B1 (en) | 2022-12-01 | 2023-10-03 | Recentive Analytics, Inc. | Techniques for identifying optimal EV charging station locations |
CN115545582A (zh) * | 2022-12-02 | 2022-12-30 | 天津大学 | 一种电动牵引车循环送货调度问题的解决方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109693576B (zh) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109693576A (zh) | 一种基于模拟退火算法的电动汽车充电调度优化方法 | |
CN109784558A (zh) | 一种基于蚁群算法的电动汽车充电调度优化方法 | |
CN107392336B (zh) | 智能交通中基于预约的分布式电动汽车充电调度方法 | |
CN109636067A (zh) | 一种基于粒子群算法的电动汽车充电调度优化方法 | |
CN110533225B (zh) | 一种基于机会约束规划的商业园区综合能源系统优化调度方法 | |
CN110880054B (zh) | 一种电动网约车充换电路径的规划方法 | |
CN108199100B (zh) | 智能交通中电动汽车长途运行充电规划方法 | |
Amirgholy et al. | Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach | |
US10467556B2 (en) | Information systems and methods for deployment of charging infrastructure in support of electric vehicles | |
CN109711630A (zh) | 一种基于出行概率矩阵的电动汽车快充站选址定容方法 | |
CN108955711B (zh) | 一种应用于电动汽车智能充放电的导航方法 | |
CN109840624A (zh) | 一种基于狄克斯特拉算法的电动汽车充电调度优化方法 | |
CN106447129B (zh) | 一种基于快速充电桩的高效率的充电站推荐方法 | |
CN111160588B (zh) | 一种预约充电服务方法及系统 | |
CN108932561B (zh) | 一种考虑非线性充电函数的电动汽车充电路径选择方法 | |
CN107274035B (zh) | 一种交通网络和电动汽车充电站协调规划的方法 | |
CN110053508B (zh) | 基于车联网平台的能源互联网集群运行调度方法及系统 | |
CN108596667B (zh) | 一种基于车联网的电动汽车实时充电电价计算方法 | |
Zhang et al. | Deploying public charging stations for battery electric vehicles on the expressway network based on dynamic charging demand | |
CN115239032B (zh) | 计及能源自洽率的高速公路服务区微电网规划方法及系统 | |
CN110677445A (zh) | 动态分配电池模组的方法和相应的服务器 | |
CN115510672A (zh) | 一种物联网感知环境下电动微出行车辆换电需求预测方法 | |
CN110232219A (zh) | 一种基于数据挖掘的电动汽车可调度容量核定方法 | |
CN110949151B (zh) | 一种车用bms充放电控制系统 | |
CN114485702A (zh) | 一种电动汽车充电路径规划方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |