CN109630269B - 天然气-蒸汽联合循环洁净发电工艺 - Google Patents
天然气-蒸汽联合循环洁净发电工艺 Download PDFInfo
- Publication number
- CN109630269B CN109630269B CN201910034258.6A CN201910034258A CN109630269B CN 109630269 B CN109630269 B CN 109630269B CN 201910034258 A CN201910034258 A CN 201910034258A CN 109630269 B CN109630269 B CN 109630269B
- Authority
- CN
- China
- Prior art keywords
- gas
- air
- power generation
- steam
- pressurized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000008569 process Effects 0.000 title claims abstract description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000007789 gas Substances 0.000 claims abstract description 36
- 238000000926 separation method Methods 0.000 claims abstract description 35
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000003546 flue gas Substances 0.000 claims abstract description 32
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000003345 natural gas Substances 0.000 claims abstract description 30
- 238000002485 combustion reaction Methods 0.000 claims abstract description 25
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 25
- 239000007788 liquid Substances 0.000 claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000002826 coolant Substances 0.000 claims abstract description 8
- 239000002918 waste heat Substances 0.000 claims description 10
- 230000008016 vaporization Effects 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 5
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 238000004821 distillation Methods 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 238000009834 vaporization Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 241000183024 Populus tremula Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
- F02C3/06—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
- F02C3/073—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages the compressor and turbine stages being concentric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/22—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/30—Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本发明提供全碳回收的天然气‑蒸汽联合循环洁净发电工艺,冷换后的加压空气进入空分装置,液氧用于燃烧发电,液氮膨胀汽化发电并作为冷却剂与加压空气换热;天然气与氧气和循环水蒸气共同进入燃气轮机燃烧推动压气机和发电机高速旋转,压气机压缩空气到0.5‑0.8MPa,发电机产生电力;高温燃烧烟气再蒸汽轮机发电,乏汽冷却剂为加压液氧;中温烟气再与高压水换热生成循环水蒸气,冷却后烟气脱水和蒸馏分离CO2,部分水加压返回生成高压蒸汽循环用于燃气轮机燃烧控温,CO2产品外售。
Description
技术领域
本发明提供天然气-蒸汽联合循环洁净发电工艺,属于天然气利用领域。
背景技术
天然气作为世界的主要清洁能源之一,使用方便,特别适合作为分布式能源和燃气发电。燃用天然气气几乎无粉尘(PM2.5)排放,SO2排放极低,经低氮燃烧器和烟气脱硝装置后NOx排放非常低,CO2等温室气体排放也是燃煤电厂的一半左右,环保优势十分突出。
燃用天然气发电常规都采用燃气-蒸汽联合循环方式,联合循环发电由布雷顿循环与朗肯循环组成,当今燃气轮机进气温度可高达1300°C以上,排烟温度500~600℃,简单循环热效率高达45%~50%;余热锅炉为进一步回收余热,提高热效率,一般为双压或三压系统。尤其当代大型9F级燃气-蒸汽联合循环发电热效率高达58%~60%,远高于燃煤发电热效率。燃煤发电机组热效率即使超超临界600MW级、1000MW级机组,一般为46%~48%,两类机组发电热效率相差10~20个百分点。
常规天然气联合发电流程为压气机从外界大气环境吸入空气,并经过轴流式压气机逐级压缩使之增压到2.8MPa,同时空气温度也相应提高;过量的2.8MPa压缩空气被压送到燃烧室与喷入的天然气混合燃烧生成高温高压烟气;然后高温高压烟气再进入到透平中膨胀做功,推动透平带动压气机和发电机一起高速旋转,实现了天然气的化学能部分转化为机械功,并输出电功;高温燃烧烟气再通过废热蒸汽锅炉得到高压蒸汽用于汽轮机发电,最后烟气通过脱硝后以超低排放标准外排;调峰时通过燃气轮机负荷变化来调整。这样,燃气轮机就把燃料的化学能转化为热能,又把部分热能转变成机械能。通常在燃气轮机中,压气机是由燃气透平膨胀做功来带动的,它是透平的负载。在简单循环中,透平发出的机械功有1/2到2/3左右用来带动压气机,其余的1/3左右的机械功用来驱动发电机。在燃气轮机起动的时候,首先需要外界动力,一般是起动机带动压气机,直到燃气透平发出的机械功大于压气机消耗的机械功时,外界起动机脱扣,燃气轮机才能自身独立工作。
随着可再生能和储能技术的快速发展和相互促进,在未来大集中与广分布并存的多元化智慧能源体系中,为了满足应对气候变化和大气污染治理的协同调控,以天然气为燃料的燃气联合发电电厂主要作为分布式能源用作电网调峰,但现有天然气联合发电技术存在着CO2捕集利用成本高、高耗水、发电效率有待进一步提高、排烟温度高、NOx减量困难等缺陷。
发明内容
本发明的目的就是为了克服传统天然气联合发电技术存在的不足而提供天然气-蒸汽联合循环洁净发电工艺,既解决现有天然气联合发电技术高耗水、发电效率低难题;又可大幅度降低压气机的负荷、实现低成本CO2捕集利用、无Nox的常温排放,大幅度提高发电效率。
本发明的技术方案。
本发明的目的是通过空气分离的液氧用于天然气燃烧发电和液氮用于膨胀发电与制冷、高温烟气余热用于蒸汽轮机发电、水蒸气返回燃气轮机进料用于循环控温、液氧用于蒸汽轮机发电和加压空气的冷却剂、二次液氧用于烟气冷却剂分级冷却脱水和CO2分离回收提纯等的系列技术耦合来提高天燃气联合发电效率,实现无NOx污染、无水消耗、全碳回收的清洁高效发电。其特征是压气机从外界大气环境吸入空气,并经过轴流式压气机逐级压缩使之增压到0.5-0.8MPa,同时空气温度也相应提高用于部分的加压液氧或液氮预热;换冷后的0.5-0.8MPa加压空气进入空分装置进行空气分离,得到液氧和液氮,泵送的加压液氧用于换热和天然气燃烧发电,泵送的加压液氮膨胀汽化推动氮气涡轮发电机发电;高压汽化氧气和循环水蒸气与喷入的天然气在燃气轮机的燃烧室混合燃烧,然后高温高压燃烧烟气再进入到透平中膨胀做功,推动透平带动压气机和发电机一起高速旋转,实现了天然气的化学能部分转化为机械功,并输出电功;高温燃烧烟气再通过废热锅炉进行汽轮机发电,其乏汽冷却剂为加压液氧或/和液氮,冷后凝结水通过高压泵加压闭路循环;中温烟气再与高压水换热制取循环水蒸气后,然后再与二级的加压液氧或/和液氮换热,冷却的烟气脱水后液体烟气通过蒸馏塔分离回收CO2作为产品外售,部分脱出水通过水泵加压得到高压水、剩余水外排,加压液氧汽化得到高压氧气送到燃气轮机燃烧室。
空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
氧气与循环水蒸气的质量比为1:2-12。
本发明将实施例来详细叙述本发明的特点。
附图说明
附图为本发明的工艺示意图。
附图的图面设明如下:
1、 空分装置 2、天然气压力罐 3、压气机 4、废热锅炉 5、发电机 6、冷却器 7、高压泵 8、汽轮发电机 9、燃气轮机 10、膨胀汽化换热器 11、氮气涡轮发电机 12、蒸馏塔13、空气-液氧换热器 14、一级液氧换热器 15、高压水回热器16、高压水换热器 17、水泵18、液氮泵 19、液氧泵。
下面结合附图和实施例来详述本发明的工艺特点。
具体实施方式
实施例,燃气轮机的压气机(3)从外界大气环境吸入空气,并经过轴流式压气机(3)逐级压缩使之增压到0.5-0.8MPa,同时空气温度也相应提高,通过空气-液氧换热器(13)用于液氧预热;通过膨胀汽化换热器(10)换冷后的0.5-0.8MPa加压空气进入空分装置(1)进行空气分离,得到液氧和液氮,液氧泵(18)加压液氧用于加压空气、汽轮机乏汽和烟气的换热和天然气燃烧发电,液氮泵(19)送的加压液氮通过膨胀汽化推动氮气涡轮发电机(11)发电和作为加压空气冷却剂通过膨胀汽化换热器(10)制冷后外排;经加压空气、汽轮机乏汽和烟气换热汽化后的高压氧气和循环水蒸气与从天然气压力罐(2)喷入的天然气在燃气轮机(9)的燃烧室混合燃烧,然后高温高压燃烧烟气再进入到透平中膨胀做功,推动透平带动压气机(3)和发电机(5)一起高速旋转,实现了天然气的化学能部分转化为机械功,并输出电功;高温燃烧烟气再通过废热锅炉(4)换热进行汽轮机发电,一级液氧换热器(14)中的冷却剂为部分一级的加压液氧,冷后凝结水通过高压泵(7)加压通过高压水回热器(15)和废热锅炉(4)形成闭路循环;中温烟气再与高压水通过高压水换热器(16)换热制取循环水蒸气后,然后再与二级的加压液氧通过冷却器(6)换热,冷却的烟气脱水后液体烟气通过蒸馏塔(12)分离回收CO2作为产品外售,部分脱出水通过水泵(17)加压得到高压水、剩余水外排,加压液氧汽化得到高压氧气送到燃气轮机(9)燃烧室。
空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
氧气与循环水蒸气的质量比为1:2-12。
本发明中液氧和液氮的换热次序可以调换。
本发明所提供的天然气-蒸汽联合循环洁净发电工艺,按Aspen模拟结果,通过空分装置液氧液氮低能耗泵送加压将目前压气机压缩由2.8 MPa左右降到0.5-0.8MPa,使天然气燃气轮机用于压气机的能量消耗由1/2-2/3降到了10%左右;天然气和高压水蒸气混合氧气助燃发电,烟气比容增加,燃气轮机发电效率相对提高;高温烟气汽轮机发电和水换热制取循环水蒸汽以及液氧换热汽化形成联合系统,排烟温度由目前140℃左右降到60℃左右,能量回收率大大提高,烟气易于低成本脱水分离得到CO2,CO2捕集能耗大幅度降低;燃烧生成水部分循环用于燃气轮机控温和余热发电采用高压水闭路循环化解了天然气发电高耗水难题,特别适合西北缺水地区;燃气轮机氧气助燃和水蒸气循环控温,避免了目前天然气电厂烟气的NOx排放、大幅度减少了烟尘的排放,实现了天然气清洁高效全碳回收发电;同时氮气汽化膨胀涡轮发电机发电和用于空分空气制冷,加之水循环以及液氧液氮泵送加压,大幅度降低了系统内部耗能,系统净发电效率大于70%。
Claims (2)
1.天然气-蒸汽联合循环洁净发电工艺,其技术特征是压气机从外界大气环境吸入空气,并经过轴流式压气机逐级压缩使之增压到0.5-0.8MPa,同时空气温度也相应提高用于部分的加压液氧或液氮预热;换冷后的0.5-0.8MPa加压空气进入空分装置进行空气分离,得到液氧和液氮,泵送的加压液氧用于换热和天然气燃烧发电,泵送的加压液氮膨胀汽化推动氮气涡轮发电机发电;高压汽化氧气和循环水蒸气与喷入的天然气在燃气轮机的燃烧室混合燃烧,氧气与循环水蒸气的质量比为1:2-12;然后高温高压燃烧烟气再进入到透平中膨胀做功,推动透平带动压气机和发电机一起高速旋转,实现了天然气的化学能部分转化为机械功,并输出电功;高温燃烧烟气再通过废热锅炉进行汽轮机发电,其乏汽冷却剂为加压液氧或/和液氮,冷后凝结水通过高压泵加压闭路循环;中温烟气再与高压水换热制取循环水蒸气后,然后再与二级的加压液氧或/和液氮换热,冷却的烟气脱水后液体烟气通过蒸馏塔分离回收CO2作为产品外售,部分脱出水通过水泵加压得到高压水、剩余水外排,加压液氧汽化得到高压氧气送到燃气轮机燃烧室。
2.根据权利要求1所述的天然气-蒸汽联合循环洁净发电工艺,其特征在于空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910034258.6A CN109630269B (zh) | 2019-01-15 | 2019-01-15 | 天然气-蒸汽联合循环洁净发电工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910034258.6A CN109630269B (zh) | 2019-01-15 | 2019-01-15 | 天然气-蒸汽联合循环洁净发电工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109630269A CN109630269A (zh) | 2019-04-16 |
CN109630269B true CN109630269B (zh) | 2021-12-31 |
Family
ID=66060838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910034258.6A Active CN109630269B (zh) | 2019-01-15 | 2019-01-15 | 天然气-蒸汽联合循环洁净发电工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109630269B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115031407B (zh) * | 2022-06-20 | 2024-07-23 | 嵊州市浙江工业大学创新研究院 | 一种自发电式强排风燃气热水器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1784579A (zh) * | 2003-05-05 | 2006-06-07 | 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 | 通过低温空气蒸馏生产加压空气的方法和系统 |
CN103628982A (zh) * | 2013-11-27 | 2014-03-12 | 暨南大学 | 利用液化天然气冷能捕集二氧化碳的联合动力循环方法及其系统 |
CN104131849A (zh) * | 2014-06-24 | 2014-11-05 | 华北电力大学 | 天然气-氧与煤粉燃烧相结合的联合循环发电系统及方法 |
CN105579801A (zh) * | 2013-09-17 | 2016-05-11 | 乔治洛德方法研究和开发液化空气有限公司 | 通过空气的低温蒸馏而制备气态氧的方法和设备 |
CN106224024A (zh) * | 2016-07-19 | 2016-12-14 | 华中科技大学 | 一种零碳排放的多级循环发电集成系统 |
-
2019
- 2019-01-15 CN CN201910034258.6A patent/CN109630269B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1784579A (zh) * | 2003-05-05 | 2006-06-07 | 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 | 通过低温空气蒸馏生产加压空气的方法和系统 |
CN105579801A (zh) * | 2013-09-17 | 2016-05-11 | 乔治洛德方法研究和开发液化空气有限公司 | 通过空气的低温蒸馏而制备气态氧的方法和设备 |
CN103628982A (zh) * | 2013-11-27 | 2014-03-12 | 暨南大学 | 利用液化天然气冷能捕集二氧化碳的联合动力循环方法及其系统 |
CN104131849A (zh) * | 2014-06-24 | 2014-11-05 | 华北电力大学 | 天然气-氧与煤粉燃烧相结合的联合循环发电系统及方法 |
CN106224024A (zh) * | 2016-07-19 | 2016-12-14 | 华中科技大学 | 一种零碳排放的多级循环发电集成系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109630269A (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109441573B (zh) | 用于调峰的零碳排放天然气联合发电工艺 | |
CN108331625B (zh) | 一种利用天然气电厂排烟汽化潜热的发电系统 | |
US10899982B2 (en) | Integrated coal gasification combined power generation process with zero carbon emission | |
RU2551458C2 (ru) | Комбинированная тепловая система с замкнутым контуром для рекуперации отработанного тепла и способ ее эксплуатации | |
CN112780409B (zh) | 一种采用连续爆轰的燃机与液态压缩空气储能耦合系统及方法 | |
KR101705657B1 (ko) | 전기 발생 장치 및 방법 | |
KR101320593B1 (ko) | 히트펌프를 사용하는 열병합 발전시스템 | |
JPH0713474B2 (ja) | 燃焼ガスタービンを使用する動力発生方法、及び動力発生用の気体の燃焼方法 | |
CN101566104B (zh) | 利用液氢冷*的二氧化碳零排放的方法及装置 | |
CN109681325B (zh) | 天然气-超临界co2联合循环发电工艺 | |
CN102451599A (zh) | 二氧化碳回收方法及二氧化碳回收型火力发电系统 | |
Sun et al. | Multi-variable investigation of an innovative multigeneration process based on geothermal energy and Allam power unit for yielding electric power, cooling, heating, and liquid CO2 with zero CO2 footprint | |
Gou et al. | A novel hybrid oxy-fuel power cycle utilizing solar thermal energy | |
CN102061994A (zh) | 中低温太阳热能品位间接提升方法及装置 | |
CN115750009B (zh) | 碳捕集和液化天然气冷能利用的储能电力调峰系统及运行方法 | |
CN109630269B (zh) | 天然气-蒸汽联合循环洁净发电工艺 | |
RU2665794C1 (ru) | Способ и установка для выработки механической и тепловой энергии | |
Gou et al. | An advanced oxy-fuel power cycle with high efficiency | |
CN209875220U (zh) | 集成二氧化碳循环与液化空气储能的调峰发电系统 | |
CN109578098A (zh) | 零碳排放的天然气热电联供发电工艺 | |
RU2409746C2 (ru) | Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной | |
KR101936327B1 (ko) | 초임계 이산화탄소 발전 사이클을 적용한 열병합 발전 시스템 | |
CN209875312U (zh) | 适用于低温环境的热力发电系统 | |
WO2023040188A1 (zh) | 零碳冷力发电机及其发电方法 | |
CN210768960U (zh) | 带捕碳装置的燃煤发电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |