CN109636054A - Solar energy power generating amount prediction technique based on classification and error combination prediction - Google Patents
Solar energy power generating amount prediction technique based on classification and error combination prediction Download PDFInfo
- Publication number
- CN109636054A CN109636054A CN201811570233.XA CN201811570233A CN109636054A CN 109636054 A CN109636054 A CN 109636054A CN 201811570233 A CN201811570233 A CN 201811570233A CN 109636054 A CN109636054 A CN 109636054A
- Authority
- CN
- China
- Prior art keywords
- prediction
- power generation
- error
- data
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000010248 power generation Methods 0.000 claims abstract description 80
- 239000011159 matrix material Substances 0.000 claims abstract description 79
- 238000013528 artificial neural network Methods 0.000 claims abstract description 75
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000009825 accumulation Methods 0.000 claims description 4
- 238000013277 forecasting method Methods 0.000 abstract description 5
- 238000004422 calculation algorithm Methods 0.000 abstract description 3
- 238000007726 management method Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24147—Distances to closest patterns, e.g. nearest neighbour classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Tourism & Hospitality (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Evolutionary Biology (AREA)
- Primary Health Care (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Water Supply & Treatment (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种分类和误差组合预测的太阳能光伏发电量预测方法,包括S1、将预测数据根据时间确定其,根据预测日期的气象数据和历史气象数据采用KNN算法确定其天气类型;S2、分类后采用相应的组合预测模型,应用MPSO‑BP神经网络和灰色模型GM(1,1)分别进行预测得到各自的预测输出;S3、应用样本训练数据得到的误差矩阵,求得各自组合预测的权值矩阵;S4、根据权值矩阵将两部分预测输出值进行组合,最后得到太阳能光伏发电量。该方法分类后再根据误差得到每个输出点的权值,从而得到的预测结果更加可靠,实现对太阳能光伏发电量的可靠预测。
The invention discloses a solar photovoltaic power generation forecasting method of classification and error combination forecasting, which includes S1, determining the forecast data according to time, and using KNN algorithm to determine the weather type according to the meteorological data and historical meteorological data of the forecast date; S2, After classification, the corresponding combined prediction model is used, and the MPSO-BP neural network and the gray model GM(1, 1) are used to predict respectively to obtain their respective prediction outputs; S3. Apply the error matrix obtained from the sample training data to obtain the respective combined predictions. Weight matrix; S4, combine the two parts of the predicted output values according to the weight matrix, and finally obtain the solar photovoltaic power generation. After the method is classified, the weight of each output point is obtained according to the error, so that the obtained prediction result is more reliable, and the reliable prediction of solar photovoltaic power generation is realized.
Description
技术领域technical field
本发明属于太阳能利用技术领域,具体涉及一种基于分类和误差组合预测的太阳能光伏发电量预测方法。The invention belongs to the technical field of solar energy utilization, and in particular relates to a solar photovoltaic power generation amount prediction method based on classification and error combination prediction.
背景技术Background technique
如今,传统化石燃料能源日益枯竭,同时使用过程中对环境也会造成很大危害。而可再生能源是取之不尽,用之不竭的能源,为了人类社会的可持续发展,世界各国纷纷把目光投向了可再生能源,而太阳能发电则是可再生能源的主要利用方式,是智能电网的主要组成部分。智能电网努力的一个关键目标是大幅提高环保可再生能源的利用率,而微电网技术又是实现该目标的关键技术,但可再生能源发电具有的不可控的特性给我们的微电网能量管理带来较大的困难,对微电网经济、安全、稳定的运行造成了严重的影响和威胁,因此找到合适的方法提升微电网可靠性和有效性是非常重要的。Nowadays, traditional fossil fuel energy is increasingly depleted, and at the same time, it will cause great harm to the environment during its use. Renewable energy is an inexhaustible energy source. For the sustainable development of human society, countries around the world have turned their attention to renewable energy, and solar power is the main way to use renewable energy. The main components of the smart grid. A key goal of smart grid efforts is to greatly improve the utilization rate of environmentally friendly renewable energy, and microgrid technology is a key technology to achieve this goal. It is very important to find a suitable method to improve the reliability and effectiveness of the microgrid.
当前在微电网能量管理的一些方面所获得的进步已经非常显著,但是要实现高效的能源管理,需要准确地预测电网负荷和可再生能源发电。现有的太阳能发电量的预测方法,主要为统计学法和人工神经网络方法,统计学法是通过对历史数据进行统计分析,利用概率论找出其内在的规律并用于预测;而单独的人工神经网络方法将样本数据作为输入,建立预测模型,来对未来发电量进行预测;以上两种方法对于规律性和周期性较强的数据信息,能达到较高的预测精度,但太阳能有随机性、波动性等特点,运用这两种方法,其预测效果就很不理想,无法满足现有的能量管理的需要,大大限制了微电网能量管理的效率和可靠性。Current advances in some aspects of microgrid energy management have been significant, but efficient energy management requires accurate forecasting of grid loads and renewable energy generation. The existing forecasting methods for solar power generation are mainly statistical methods and artificial neural network methods. The neural network method takes the sample data as input and establishes a prediction model to predict the future power generation; the above two methods can achieve higher prediction accuracy for data information with strong regularity and periodicity, but solar energy has randomness , volatility and other characteristics, using these two methods, the prediction effect is very unsatisfactory, can not meet the needs of existing energy management, greatly limits the efficiency and reliability of microgrid energy management.
因此,寻找一种能够对太阳能光伏发电进行可靠预测的方法十分重要。Therefore, it is important to find a method that can reliably predict solar photovoltaic power generation.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的上述不足,本发明提供的基于分类和误差组合预测的太阳能光伏发电量预测方法解决了现有的光伏发电量预测方法中,预测效果不理想、无法满足现有能量管理、限制了微电网能量管理的效率和可靠性的问题。In view of the above deficiencies in the prior art, the solar photovoltaic power generation forecasting method based on classification and error combination prediction provided by the present invention solves the problems in the existing photovoltaic power generation forecasting method that the forecasting effect is not ideal, cannot meet the existing energy management, Issues that limit the efficiency and reliability of microgrid energy management.
为了达到上述发明目的,本发明采用的技术方案为:基于分类和误差组合预测的太阳能光伏发电量预测方法,包括以下步骤:In order to achieve the above purpose of the invention, the technical solution adopted in the present invention is: a solar photovoltaic power generation forecast method based on classification and error combination prediction, comprising the following steps:
S1、从气象站获取太阳能光伏发电量预测日的气象数据;S1. Obtain the meteorological data of the solar photovoltaic power generation forecast day from the meteorological station;
S2、确定该气象数据所属季节中的天气类型,将预测日的气象数据输入到该天气类型下对应的训练好的MPSO-BP神经网络中,得到第一太阳能发电量输出时间序列 S2. Determine the weather type in the season to which the meteorological data belongs, input the meteorological data of the forecast day into the trained MPSO-BP neural network corresponding to the weather type, and obtain the first solar power output time series
同时将预测日的气象数据输入到该天气类型下对应的训练好的灰色模型GM(1,1)中,得到第二太阳能发电量输出时间序列 At the same time, the meteorological data of the predicted day is input into the trained gray model GM(1,1) corresponding to the weather type, and the second solar power generation output time series is obtained.
S3、将第一太阳能发电量输出时间序列与对应的训练好的MPSO-BP神经网络中的组合预测矩阵WBP相乘,得到第一太阳能发电预测量YBP;S3. Output the first solar power generation time series Multiply with the combined prediction matrix W BP in the corresponding trained MPSO-BP neural network to obtain the first solar power generation prediction quantity Y BP ;
同时将第二太阳能发电量输出时间序列与对应的训练好的灰色模型GM(1,1)中的组合预测矩阵WGM相乘,得到第二太阳能发电预测量YGM;At the same time, the second solar power generation output time series Multiply with the combined prediction matrix W GM in the corresponding trained grey model GM(1,1) to obtain the second solar power generation prediction quantity Y GM ;
S4、将第一太阳能发电预测量YBP和第二太阳能发电预测量YGM相加,得到太阳能光伏发电量预测日的预测发电量YP。S4. Add the first predicted amount of solar power generation YBP and the second predicted amount of solar power generation YGM to obtain the predicted amount of power generation YP on the predicted day of solar photovoltaic power generation.
进一步地,所述步骤S1中的气象数据包括最高气温值、最低气温值、每隔三小时的温度值、最高温度与前一日最高温度的差值、最低温度与前一日最低温度的差值、相对湿度和数值化的紫外线强度。Further, the meteorological data in the step S1 includes the highest temperature value, the lowest air temperature value, the temperature value every three hours, the difference between the highest temperature and the highest temperature on the previous day, and the difference between the lowest temperature and the lowest temperature on the previous day. value, relative humidity, and digitized UV intensity.
进一步地,所述步骤S2中的气象数据所属季节包括春季、夏季、秋季和冬季;每个季节均包括晴天、阴天和雨天三种天气类型;Further, the seasons to which the meteorological data in the step S2 belongs include spring, summer, autumn and winter; each season includes three weather types: sunny, cloudy and rainy;
每个季节中的每个天气类型下均有一个对应的训练好的MPSO-BP神经网络和训练好的灰色模型GM(1,1)。Each weather type in each season has a corresponding trained MPSO-BP neural network and a trained gray model GM(1,1).
进一步地,所述灰色模型GM(1,1)为:Further, the gray model GM(1,1) is:
式中,y(1)(ki+1j)表示预测得到的第j个样本的第i+1个输出点的累加序列值;In the formula, y (1) (k i+1j ) represents the accumulated sequence value of the i+1th output point of the jth sample obtained by prediction;
y(1)(kij)表示第j个样本的第i个输出点的累加序列值;y (1) (k ij ) represents the accumulated sequence value of the ith output point of the jth sample;
m为样本中输出点数目;m is the number of output points in the sample;
u,a模型待求参数;u, a model parameters to be found;
u和a根据输入到灰色模型中的数据确定。u and a are determined from the data entered into the grey model.
进一步地,所述步骤S2中训练一个天气类型下对应的灰色模型GM(1,1)的方法具体为:Further, the method for training the corresponding gray model GM(1,1) under one weather type in the step S2 is specifically:
A1、从气象站获取不同季节中三种天气类型的历史气象数据;A1. Obtain historical meteorological data of three weather types in different seasons from weather stations;
A2、将同一季节中的同一天气类型下的历史气象数据分为一类;A2. Divide the historical meteorological data under the same weather type in the same season into one category;
A3、根据同类历史气象数据中的日期数据,获取相应日期中的实际太阳能光伏发电量历史数据,并将其作为训练样本输入到灰色模型GM(1,1)中;A3. According to the date data in the similar historical meteorological data, obtain the actual solar photovoltaic power generation historical data in the corresponding date, and input it into the gray model GM(1,1) as a training sample;
A4、根据训练样本的前j×m+i个点的数据,计算灰色模型的累加序列y(1),并建立其对应的计算矩阵;A4. According to the data of the first j×m+i points of the training sample, calculate the accumulated sequence y (1) of the gray model, and establish its corresponding calculation matrix;
A5、根据计算矩阵,通过最小二乘法计算灰色模型中的u和a,并将其带入累加序列y(1)中,得到y(1)(ki+1j),完成灰色模型GM(1,1)的训练。A5. According to the calculation matrix, calculate u and a in the gray model by the least square method, and bring them into the accumulation sequence y (1) to obtain y (1) (ki +1j ), and complete the gray model GM(1 , 1) of the training.
进一步地,所述步骤S2中,训练一个天气类型下对应的MPSO-BP神经网络的方法具体为:Further, in the step S2, the method for training a corresponding MPSO-BP neural network under a weather type is specifically:
B1、从气象站获取不同季节中三种天气类型的历史气象数据;B1. Obtain historical meteorological data of three weather types in different seasons from weather stations;
B2、将同一季节中的同一天气类型下的历史气象数据分为一类;B2. Divide the historical meteorological data under the same weather type in the same season into one category;
B3、根据同类历史气象数据中的日期数据,获取相应日期中的实际太阳能光伏发电量历史数据;B3. According to the date data in the similar historical meteorological data, obtain the actual solar photovoltaic power generation historical data in the corresponding date;
B4、将历史气象数据作为样本输入训练数据,将实际太阳能光伏发电量历史数据中每隔半小时太阳能光伏发电量作为样本输出训练数据;B4. The historical meteorological data is used as the sample input training data, and the solar photovoltaic power generation in the actual solar photovoltaic power generation historical data is used as the sample output training data every half an hour;
B5、设定MPSO-BP神经网络的最大训练次数为EPmax和期望预测收敛误差εE;B5. Set the maximum training times of the MPSO-BP neural network as EP max and the expected prediction convergence error ε E ;
B6、将样本输入训练数据输入到MPSO-BP神经网络中,以输出样本输出训练数据为目标进行训练,直到训练次数达到设定的最大训练次数EPmax或训练时的预测误差值εp小于设定的期望预测误差值εE时,完成MPSO-BP神经网络的训练。B6. Input the sample input training data into the MPSO-BP neural network, and train with the output sample output training data as the goal, until the training times reach the set maximum training times EP max or the prediction error value ε p during training is less than the set When the expected prediction error value εE is determined, the training of the MPSO-BP neural network is completed.
进一步地,所述步骤S3中的确定训练好的MPSO-BP神经网络中的组合预测矩阵WBP和确定训练好的灰色模型GM(1,1)中的组合预测矩阵WGM的方法具体为:Further, the method of determining the combined prediction matrix W BP in the trained MPSO-BP neural network in the step S3 and determining the combined prediction matrix W GM in the trained gray model GM(1,1) is specifically:
C1、当完成MPSO-BP神经网络的训练时,确定第j个样本输入训练数据的第i个输出点的误差为:C1. When the training of the MPSO-BP neural network is completed, determine the error of the ith output point of the jth sample input training data as:
式中,为MPSO-BP神经网络中第j个样本输入训练数据的第i个输出点输出的预测太阳能光伏发电量;In the formula, The predicted solar photovoltaic power generation output of the ith output point of the input training data for the jth sample in the MPSO-BP neural network;
kij为输入到MPSO-BP神经网络中的第j个样本输入训练数据的第i个输出点对应的历史气象数据;k ij is the historical meteorological data corresponding to the ith output point of the jth sample input training data input into the MPSO-BP neural network;
yreal(kij)为第j个样本输入训练数据的第i个输出点对应的实际太阳能光伏发电量历史数据;y real (k ij ) is the actual historical data of solar photovoltaic power generation corresponding to the ith output point of the jth sample input training data;
同时,当完成灰色模型GM(1,1)的训练时,确定第j个样本输入训练数据的第i个输出点的误差为:At the same time, when the training of the gray model GM(1,1) is completed, it is determined that the error of the ith output point of the jth sample input training data is:
式中,为灰色模型GM(1,1)中第j个样本输入训练数据的第i个输出点输出的预测太阳能光伏发电量;In the formula, is the predicted solar photovoltaic power generation output from the ith output point of the jth sample input training data in the gray model GM(1,1);
kij为输入到灰色模型GM(1,1)的第j个样本输入训练数据的第i个输出点对应的历史气象数据;k ij is the historical meteorological data corresponding to the ith output point of the jth sample input training data input to the gray model GM(1,1);
C2、根据每个样本输入训练数据对应的输出点的误差,得到MPSO-BP神经网络中误差矩阵为:C2. According to the error of the output point corresponding to the input training data of each sample, the error matrix in the MPSO-BP neural network is obtained as:
式中,Et BP为神经网络中误差矩阵;In the formula, E t BP is the error matrix in the neural network;
m为输出点的个数;m is the number of output points;
同时,根据每个样本输入训练数据对应的输出点的误差,得到灰色模型GM(1,1)中误差矩阵为:At the same time, according to the error of the output point corresponding to the input training data of each sample, the error matrix in the gray model GM(1,1) is obtained as:
C3、对误差矩阵中每个输出点的误差求和,得到MPSO-BP神经网络中的预测误差矩阵为:C3. Sum the errors of each output point in the error matrix to obtain the prediction error matrix in the MPSO-BP neural network as:
式中,a为第a个训练误差样本;In the formula, a is the a-th training error sample;
同时,对误差矩阵中每个与神经网络输出的相对应输出点的误差求和,得到灰色模型GM(1,1)中的预测误差矩阵为:At the same time, sum the errors of each output point corresponding to the output of the neural network in the error matrix, and obtain the prediction error matrix in the gray model GM(1,1) as:
C4、根据MPSO-BP神经网络中的预测误差矩阵和灰色模型GM(1,1)中的预测误差矩阵,分别确定MPSO-BP神经网络的预测误差矩阵的权值WBP k和灰色模型GM(1,1)的预测误差矩阵的权值WGM k:C4. According to the prediction error matrix in the MPSO-BP neural network and the prediction error matrix in the gray model GM(1,1), respectively determine the weights W BP k of the prediction error matrix of the MPSO-BP neural network and the gray model GM ( The weights W GM k of the prediction error matrix of 1,1):
其中,MPSO-BP神经网络的预测误差矩阵的权值为:Among them, the weight of the prediction error matrix of MPSO-BP neural network is:
灰色模型GM(1,1)的预测误差矩阵的权值为:The weights of the prediction error matrix of the grey model GM(1,1) are:
C5、根据MPSO-BP神经网络的预测误差矩阵的权值和灰色模型GM(1,1)的预测误差矩阵的权值,分别确定训练好的MPSO-BP神经网络中的组合预测矩阵WBP和训练好的灰色模型GM(1,1)中的组合预测矩阵WGM;C5. According to the weight of the prediction error matrix of the MPSO-BP neural network and the weight of the prediction error matrix of the grey model GM(1,1), respectively determine the combined prediction matrix W BP and W BP in the trained MPSO-BP neural network The combined prediction matrix W GM in the trained grey model GM(1,1);
其中,训练好的MPSO-BP神经网络中的组合预测矩阵WBP为:Among them, the combined prediction matrix W BP in the trained MPSO-BP neural network is:
训练好的灰色模型GM(1,1)中的组合预测矩阵WGM为:The combined prediction matrix W GM in the trained grey model GM(1,1) is:
本发明的有益效果为:The beneficial effects of the present invention are:
1、本发明采用KNN对数据先进行分类处理,确保了在不同的天气数据有更高的准确性,即使在样本不多的情况下也有较高的准确性。1. The present invention uses KNN to classify the data first, which ensures higher accuracy in different weather data, even in the case of few samples.
2、本发明采用了基于各个输出点的误差值作为相应点的组合预测权值的计算参数,相比传统的统一所有输出点的组合权值的方法据有更高的精度,更加贴合实际情况。2. The present invention uses the error value based on each output point as the calculation parameter of the combined prediction weight of the corresponding point, which has higher precision and is more practical than the traditional method of unifying the combined weight of all output points. Happening.
3、本发明采用最高气温,最低气温,每相隔三个小时的温度数据,与前一日的最高温度的差值,与前一日的低温度的差值,数值化的紫外线强度作为的预测的输入参数,提高了预测的发电量的准确性。3. The present invention uses the highest temperature, the lowest temperature, the temperature data every three hours apart, the difference from the highest temperature on the previous day, the difference from the low temperature on the previous day, and the numerical ultraviolet intensity as the prediction. The input parameters improve the accuracy of the predicted power generation.
附图说明Description of drawings
图1为本发明中基于分类和误差组合预测的太阳能光伏发电量预测方法流程图。FIG. 1 is a flow chart of a method for predicting solar photovoltaic power generation based on classification and error combination prediction in the present invention.
具体实施方式Detailed ways
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。The specific embodiments of the present invention are described below to facilitate those skilled in the art to understand the present invention, but it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, as long as various changes Such changes are obvious within the spirit and scope of the present invention as defined and determined by the appended claims, and all inventions and creations utilizing the inventive concept are within the scope of protection.
如图1所示,基于分类和误差组合预测的太阳能光伏发电量预测方法,包括以下步骤:As shown in Figure 1, the forecasting method of solar photovoltaic power generation based on classification and error combination forecasting includes the following steps:
S1、从气象站获取太阳能光伏发电量预测日的气象数据;S1. Obtain the meteorological data of the solar photovoltaic power generation forecast day from the meteorological station;
其中的气象数据包括最高气温值、最低气温值、每隔三小时的温度值、最高温度与前一日最高温度的差值、最低温度与前一日最低温度的差值、相对湿度和数值化的紫外线强度。The meteorological data includes the highest temperature value, the lowest temperature value, the temperature value every three hours, the difference between the highest temperature and the highest temperature of the previous day, the difference between the lowest temperature and the lowest temperature of the previous day, relative humidity and numerical value UV intensity.
S2、确定该气象数据所属季节中的天气类型,将预测日的气象数据输入到该天气类型下对应的训练好的MPSO-BP神经网络中,得到第一太阳能发电量输出时间序列 S2. Determine the weather type in the season to which the meteorological data belongs, input the meteorological data of the forecast day into the trained MPSO-BP neural network corresponding to the weather type, and obtain the first solar power output time series
同时将预测日的气象数据输入到该天气类型下对应的训练好的灰色模型GM(1,1)中,得到第二太阳能发电量输出时间序列 At the same time, the meteorological data of the predicted day is input into the trained gray model GM(1,1) corresponding to the weather type, and the second solar power generation output time series is obtained.
上述步骤S2中的气象数据所属季节包括春季、夏季、秋季和冬季;每个季节均包括晴天、阴天和雨天三种天气类型,晴天、阴天和雨天作为三种典型的天气类型,对于不同季节下的非典型天气(如多云、阵雨等天气类型)的气象数据,可采用K-临近算法(KNN)计算与典型天气类型对应的气象数据的距离,将其归类为距离最近的典型天气类型,实现非典型天气分类到典型天气中。采用KNN算法即使在较少的样本下也可以实现较为准确的分类。The seasons to which the meteorological data in the above step S2 belongs include spring, summer, autumn and winter; each season includes three weather types: sunny, cloudy and rainy, and sunny, cloudy and rainy are three typical weather types. For the meteorological data of atypical weather (such as cloudy, showery and other weather types) under the season, the K-proximity algorithm (KNN) can be used to calculate the distance of the meteorological data corresponding to the typical weather type and classify it as the closest typical weather Type, to realize the classification of atypical weather into typical weather. The KNN algorithm can achieve more accurate classification even with fewer samples.
每个季节中的每个天气类型下均有一个对应的训练好的MPSO-BP神经网络和训练好的灰色模型GM(1,1)。Each weather type in each season has a corresponding trained MPSO-BP neural network and a trained gray model GM(1,1).
S3、将第一太阳能发电量输出时间序列与对应的训练好的MPSO-BP神经网络中的组合预测矩阵WBP相乘,得到第一太阳能发电预测量YBP;S3. Output the first solar power generation time series Multiply with the combined prediction matrix W BP in the corresponding trained MPSO-BP neural network to obtain the first solar power generation prediction quantity Y BP ;
同时将第二太阳能发电量输出时间序列与对应的训练好的灰色模型GM(1,1)中的组合预测矩阵WGM相乘,得到第二太阳能发电预测量YGM;At the same time, the second solar power generation output time series Multiply with the combined prediction matrix W GM in the corresponding trained grey model GM(1,1) to obtain the second solar power generation prediction quantity Y GM ;
其中,MPSO-BP神经网络对应的太阳能发电预测量YBP为:Among them, the predicted solar power generation Y BP corresponding to the MPSO-BP neural network is:
灰色模型GM(1,1)对应的太阳能发电预测量YGM为:The predicted solar power generation Y GM corresponding to the gray model GM(1,1) is:
S4、将第一太阳能发电预测量YBP和第二太阳能发电预测量YGM相加,得到太阳能光伏发电量预测日的预测发电量YP。S4. Add the first predicted amount of solar power generation YBP and the second predicted amount of solar power generation YGM to obtain the predicted amount of power generation YP on the predicted day of solar photovoltaic power generation.
其中,太阳能光伏发电量预测日的预测发电量YP为:Among them, the predicted power generation Y P of the solar photovoltaic power generation forecast day is:
上述步骤S2中的灰色模型GM(1,1)为:The gray model GM(1,1) in the above step S2 is:
式中,y(1)(ki+1j)表示预测得到的第j个样本的第i+1个输出点的累加序列值;In the formula, y (1) (k i+1j ) represents the accumulated sequence value of the i+1th output point of the jth sample obtained by prediction;
y(1)(kij)表示第j个样本的第i个输出点的累加序列值;y (1) (k ij ) represents the accumulated sequence value of the ith output point of the jth sample;
m为样本中输出点数目;m is the number of output points in the sample;
u,a为模型待求参数;u, a are the parameters to be found in the model;
u和a为根据输入到灰色模型中的数据确定的待定参数;u and a are undetermined parameters determined according to the data input into the grey model;
所述步骤S2中训练一个季节中的一个天气类型下对应的灰色模型GM(1,1)的方法具体为:The method for training the corresponding gray model GM(1,1) under one weather type in one season in the step S2 is specifically:
A1、从气象站获取不同季节中三种天气类型的历史气象数据;A1. Obtain historical meteorological data of three weather types in different seasons from weather stations;
A2、将同一季节中的同一天气类型下的历史气象数据分为一类;A2. Divide the historical meteorological data under the same weather type in the same season into one category;
A3、根据同类历史气象数据中的日期数据,获取相应日期中的实际太阳能光伏发电量历史数据,并将其作为训练样本输入到灰色模型GM(1,1)中;A3. According to the date data in the similar historical meteorological data, obtain the actual solar photovoltaic power generation historical data in the corresponding date, and input it into the gray model GM(1,1) as a training sample;
A4、根据训练样本的前j×m+i个点的数据,计算灰色模型的累加序列y(1),并建立其对应的计算矩阵;A4. According to the data of the first j×m+i points of the training sample, calculate the accumulated sequence y (1) of the gray model, and establish its corresponding calculation matrix;
A5、根据计算矩阵,通过最小二乘法计算灰色模型中的u和a,并将其带入累加序列y(1)中,得到y(1)(ki+1j),完成灰色模型GM(1,1)的训练。A5. According to the calculation matrix, calculate u and a in the gray model by the least square method, and bring them into the accumulation sequence y (1) to obtain y (1) (ki +1j ), and complete the gray model GM(1 , 1) of the training.
上述步骤A5中,得到y(1)(ki+1j)后,灰色模型即为:In the above step A5, after obtaining y (1) (k i+1j ), the gray model is:
令y(1)(k11)=y(k11),即可得到训练样本各历史数据点的预测值。Let y (1) (k 11 )=y(k 11 ), the predicted value of each historical data point of the training sample can be obtained.
上述步骤S2中,训练一个季节中的一个天气类型下对应的MPSO-BP神经网络的方法具体为:In the above step S2, the method for training the MPSO-BP neural network corresponding to one weather type in one season is as follows:
B1、从气象站获取不同季节中三种天气类型的历史气象数据;B1. Obtain historical meteorological data of three weather types in different seasons from weather stations;
B2、将同一季节中的同一天气类型下的历史气象数据分为一类;B2. Divide the historical meteorological data under the same weather type in the same season into one category;
B3、根据同类历史气象数据中的日期数据,获取相应日期中的实际太阳能光伏发电量历史数据;B3. According to the date data in the similar historical meteorological data, obtain the actual solar photovoltaic power generation historical data in the corresponding date;
B4、将历史气象数据作为样本输入训练数据,将实际太阳能光伏发电量历史数据中每隔半小时太阳能光伏发电量作为样本输出训练数据;B4. The historical meteorological data is used as the sample input training data, and the solar photovoltaic power generation in the actual solar photovoltaic power generation historical data is used as the sample output training data every half an hour;
B5、设定MPSO-BP神经网络的最大训练次数为EPmax和期望预测收敛误差εE;B5. Set the maximum training times of the MPSO-BP neural network as EP max and the expected prediction convergence error ε E ;
B6、将样本输入训练数据输入到MPSO-BP神经网络中,以输出样本输出训练数据为目标进行训练,直到训练次数达到设定的最大训练次数EPmax或训练时的预测误差值εp小于设定的期望预测误差值εE时,完成MPSO-BP神经网络的训练;B6. Input the sample input training data into the MPSO-BP neural network, and train with the output sample output training data as the goal, until the training times reach the set maximum training times EP max or the prediction error value ε p during training is less than the set When the expected prediction error value εE is set, the training of the MPSO-BP neural network is completed;
在上述步骤B6中,设置MPSO-BP神经网络的收敛误差为εBP=0.5×εE,In the above step B6, the convergence error of the MPSO-BP neural network is set as ε BP =0.5×ε E ,
每输入一组样本输入训练数据,MPSO-BP神经网络输出对应数据,均有一个预测收敛误差值εp,且其中,为此时根据灰色模型GM(1,1)和MPSO-BP神经网络组合预测得到的预测发电量,Yreal为与样本输入训练数据对应的实际太阳能光伏发电量历史数据,当εp≤εE时,则该MPSO-BP神经网络预测模型收敛,即使此时MPSO-BP神经网络没有满足收敛误差,该MPSO-BP神经网络也不再继续学习;反之,该神经网络继续输入样本输入训练数据,直到训练次数达到设定的最大训练次数EPmax或训练时的预测误差值εP小于设定的期望预测误差值εE,完成MPSO-BP神经网络的训练。For each input set of sample input training data, MPSO-BP neural network outputs corresponding data, there is a prediction convergence error value ε p , and in, For this reason, the predicted power generation is predicted according to the combination of the grey model GM(1,1) and the MPSO-BP neural network. Y real is the actual historical data of solar photovoltaic power generation corresponding to the sample input training data. When ε p ≤ ε E When the MPSO-BP neural network prediction model converges, even if the MPSO-BP neural network does not meet the convergence error at this time, the MPSO-BP neural network will not continue to learn; on the contrary, the neural network will continue to input the sample input training data, Until the training times reaches the set maximum training times EP max or the prediction error value ε P during training is less than the set expected prediction error value ε E , the training of the MPSO-BP neural network is completed.
上述步骤S3中的确定训练好的MPSO-BP神经网络中的组合预测矩阵WBP和确定训练好的灰色模型GM(1,1)中的组合预测矩阵WGM的方法具体为:The method of determining the combined prediction matrix W BP in the trained MPSO-BP neural network and determining the combined prediction matrix W GM in the trained gray model GM(1,1) in the above step S3 is specifically:
C1、当完成MPSO-BP神经网络的训练时,确定第j个样本输入训练数据的第i个输出点的误差为:C1. When the training of the MPSO-BP neural network is completed, determine the error of the ith output point of the jth sample input training data as:
式中,为MPSO-BP神经网络中第j个样本输入训练数据的第i个输出点输出的预测太阳能光伏发电量;In the formula, The predicted solar photovoltaic power generation output of the ith output point of the input training data for the jth sample in the MPSO-BP neural network;
kij为输入到MPSO-BP神经网络中的第j个样本输入训练数据的第i个输出点对应的历史气象数据;k ij is the historical meteorological data corresponding to the ith output point of the jth sample input training data input into the MPSO-BP neural network;
yreal(kij)为第j个样本输入训练数据的第i个输出点对应的实际太阳能光伏发电量历史数据;y real (k ij ) is the actual historical data of solar photovoltaic power generation corresponding to the ith output point of the jth sample input training data;
同时,当完成灰色模型GM(1,1)的训练时,确定第j个样本输入训练数据的第i个输出点的误差为:At the same time, when the training of the gray model GM(1,1) is completed, it is determined that the error of the ith output point of the jth sample input training data is:
式中,为灰色模型GM(1,1)中第j个样本输入训练数据的第i个输出点输出的预测太阳能光伏发电量;In the formula, is the predicted solar photovoltaic power generation output from the ith output point of the jth sample input training data in the gray model GM(1,1);
kij为输入到灰色模型GM(1,1)的第j个样本输入训练数据的第i个输出点对应的历史气象数据;k ij is the historical meteorological data corresponding to the ith output point of the jth sample input training data input to the gray model GM(1,1);
C2、根据每个样本输入训练数据对应的输出点的误差,得到MPSO-BP神经网络中误差矩阵为:C2. According to the error of the output point corresponding to the input training data of each sample, the error matrix in the MPSO-BP neural network is obtained as:
式中,Et BP为神经网络中误差矩阵;In the formula, E t BP is the error matrix in the neural network;
m为输出点的个数;m is the number of output points;
同时,根据每个样本输入训练数据对应的输出点的误差,得到灰色模型GM(1,1)中误差矩阵为:At the same time, according to the error of the output point corresponding to the input training data of each sample, the error matrix in the gray model GM(1,1) is obtained as:
C3、对误差矩阵中每个输出点的误差求和,得到MPSO-BP神经网络中的预测误差矩阵为:C3. Sum the errors of each output point in the error matrix to obtain the prediction error matrix in the MPSO-BP neural network as:
式中,a为第a个训练误差样本;In the formula, a is the a-th training error sample;
同时,对误差矩阵中每个与神经网络输出的相对应输出点的误差求和,得到灰色模型GM(1,1)中的预测误差矩阵为:At the same time, sum the errors of each output point corresponding to the output of the neural network in the error matrix, and obtain the prediction error matrix in the gray model GM(1,1) as:
C4、根据MPSO-BP神经网络中的预测误差矩阵和灰色模型GM(1,1)中的预测误差矩阵,分别确定MPSO-BP神经网络的预测误差矩阵的权值WBP k和灰色模型GM(1,1)的预测误差矩阵的权值WGM k:C4. According to the prediction error matrix in the MPSO-BP neural network and the prediction error matrix in the gray model GM(1,1), respectively determine the weights W BP k of the prediction error matrix of the MPSO-BP neural network and the gray model GM ( The weights W GM k of the prediction error matrix of 1,1):
其中,MPSO-BP神经网络的预测误差矩阵的权值为:Among them, the weight of the prediction error matrix of MPSO-BP neural network is:
灰色模型GM(1,1)的预测误差矩阵的权值为:The weights of the prediction error matrix of the grey model GM(1,1) are:
C5、根据MPSO-BP神经网络的预测误差矩阵的权值和灰色模型GM(1,1)的预测误差矩阵的权值,分别确定训练好的MPSO-BP神经网络中的组合预测矩阵WBP和训练好的灰色模型GM(1,1)中的组合预测矩阵WGM;C5. According to the weight of the prediction error matrix of the MPSO-BP neural network and the weight of the prediction error matrix of the grey model GM(1,1), respectively determine the combined prediction matrix W BP and W BP in the trained MPSO-BP neural network The combined prediction matrix W GM in the trained grey model GM(1,1);
其中,训练好的MPSO-BP神经网络中的组合预测矩阵WBP为:Among them, the combined prediction matrix W BP in the trained MPSO-BP neural network is:
训练好的灰色模型GM(1,1)中的组合预测矩阵WGM为:The combined prediction matrix W GM in the trained grey model GM(1,1) is:
本发明的有益效果为:The beneficial effects of the present invention are:
1、本发明采用KNN对数据先进行分类处理,确保了在不同的天气数据有更高的准确性,即使在样本不多的情况下也有较高的准确性。1. The present invention uses KNN to classify the data first, which ensures higher accuracy in different weather data, even in the case of few samples.
2、本发明采用了基于各个输出点的误差值作为相应点的组合预测权值的计算参数,相比传统的统一所有输出点的组合权值的方法据有更高的精度,更加贴合实际情况。2. The present invention uses the error value based on each output point as the calculation parameter of the combined prediction weight of the corresponding point, which has higher precision and is more practical than the traditional method of unifying the combined weight of all output points. Happening.
3、本发明采用最高气温,最低气温,每相隔三个小时的温度数据,与前一日的最高温度的差值,与前一日的低温度的差值,数值化的紫外线强度作为的预测的输入参数,提高了预测的发电量的准确性。3. The present invention uses the highest temperature, the lowest temperature, the temperature data every three hours apart, the difference from the highest temperature on the previous day, the difference from the low temperature on the previous day, and the numerical ultraviolet intensity as the prediction. The input parameters improve the accuracy of the predicted power generation.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811570233.XA CN109636054A (en) | 2018-12-21 | 2018-12-21 | Solar energy power generating amount prediction technique based on classification and error combination prediction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811570233.XA CN109636054A (en) | 2018-12-21 | 2018-12-21 | Solar energy power generating amount prediction technique based on classification and error combination prediction |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109636054A true CN109636054A (en) | 2019-04-16 |
Family
ID=66076313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811570233.XA Pending CN109636054A (en) | 2018-12-21 | 2018-12-21 | Solar energy power generating amount prediction technique based on classification and error combination prediction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109636054A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110598896A (en) * | 2019-07-26 | 2019-12-20 | 陕西省水利电力勘测设计研究院 | Photovoltaic power prediction method based on prediction error correction |
CN111178450A (en) * | 2019-12-31 | 2020-05-19 | 上海三一重机股份有限公司 | Method and device for evaluating state of welding seam |
CN111798055A (en) * | 2020-07-06 | 2020-10-20 | 国网山东省电力公司电力科学研究院 | Prediction method of variable weight combined photovoltaic output based on grey correlation degree |
CN111814826A (en) * | 2020-06-08 | 2020-10-23 | 武汉理工大学 | Rapid detection and rating method for residual energy of retired power batteries |
CN111931981A (en) * | 2020-07-06 | 2020-11-13 | 安徽天尚清洁能源科技有限公司 | Photovoltaic power generation ultra-short-term prediction method based on machine learning multi-model combination |
CN114048896A (en) * | 2021-10-27 | 2022-02-15 | 国核自仪系统工程有限公司 | Method, system, equipment and medium for predicting photovoltaic power generation data |
JP2022550619A (en) * | 2019-11-14 | 2022-12-02 | エンヴィジョン デジタル インターナショナル ピーティーイー.エルティーディー. | Methods for Processing Solar Radiation Predictions, Methods for Training Stacked Generalized Models, and Apparatuses Therefor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103390199A (en) * | 2013-07-18 | 2013-11-13 | 国家电网公司 | Photovoltaic power generation capacity/power prediction device |
CN104021427A (en) * | 2014-06-10 | 2014-09-03 | 上海电力学院 | Method for predicting daily generating capacity of grid-connected photovoltaic power station based on factor analysis |
CN104463349A (en) * | 2014-11-11 | 2015-03-25 | 河海大学 | Photovoltaic generated power prediction method based on multi-period comprehensive similar days |
CN104820877A (en) * | 2015-05-21 | 2015-08-05 | 河海大学 | Photovoltaic system generation power prediction method based on cloud adaptive PSO-SNN |
CN104978611A (en) * | 2015-07-06 | 2015-10-14 | 东南大学 | Neural network photovoltaic power generation output prediction method based on grey correlation analysis |
CN104992248A (en) * | 2015-07-07 | 2015-10-21 | 中山大学 | Microgrid photovoltaic power station generating capacity combined forecasting method |
CN105160423A (en) * | 2015-09-14 | 2015-12-16 | 河海大学常州校区 | Photovoltaic power generation prediction method based on Markov residual error correction |
CN107358318A (en) * | 2017-06-29 | 2017-11-17 | 上海电力学院 | Based on GM(1,1)The urban power consumption Forecasting Methodology of model and Grey Markov chain predicting model |
CN107563573A (en) * | 2017-09-29 | 2018-01-09 | 南京航空航天大学 | A prediction method of solar power generation based on adaptive learning hybrid model |
-
2018
- 2018-12-21 CN CN201811570233.XA patent/CN109636054A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103390199A (en) * | 2013-07-18 | 2013-11-13 | 国家电网公司 | Photovoltaic power generation capacity/power prediction device |
CN104021427A (en) * | 2014-06-10 | 2014-09-03 | 上海电力学院 | Method for predicting daily generating capacity of grid-connected photovoltaic power station based on factor analysis |
CN104463349A (en) * | 2014-11-11 | 2015-03-25 | 河海大学 | Photovoltaic generated power prediction method based on multi-period comprehensive similar days |
CN104820877A (en) * | 2015-05-21 | 2015-08-05 | 河海大学 | Photovoltaic system generation power prediction method based on cloud adaptive PSO-SNN |
CN104978611A (en) * | 2015-07-06 | 2015-10-14 | 东南大学 | Neural network photovoltaic power generation output prediction method based on grey correlation analysis |
CN104992248A (en) * | 2015-07-07 | 2015-10-21 | 中山大学 | Microgrid photovoltaic power station generating capacity combined forecasting method |
CN105160423A (en) * | 2015-09-14 | 2015-12-16 | 河海大学常州校区 | Photovoltaic power generation prediction method based on Markov residual error correction |
CN107358318A (en) * | 2017-06-29 | 2017-11-17 | 上海电力学院 | Based on GM(1,1)The urban power consumption Forecasting Methodology of model and Grey Markov chain predicting model |
CN107563573A (en) * | 2017-09-29 | 2018-01-09 | 南京航空航天大学 | A prediction method of solar power generation based on adaptive learning hybrid model |
Non-Patent Citations (3)
Title |
---|
刘静宜: "基于组合模型的光伏电站发电功率短期预测方法研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 * |
孙佳等: "基于改进灰色模型与BP神经网络模型组合的风力发电量预测研究", 《水电能源科学》 * |
师彪等: "改进粒子群—BP神经网络模型的短期电力负荷预测", 《计算机应用》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110598896A (en) * | 2019-07-26 | 2019-12-20 | 陕西省水利电力勘测设计研究院 | Photovoltaic power prediction method based on prediction error correction |
JP2022550619A (en) * | 2019-11-14 | 2022-12-02 | エンヴィジョン デジタル インターナショナル ピーティーイー.エルティーディー. | Methods for Processing Solar Radiation Predictions, Methods for Training Stacked Generalized Models, and Apparatuses Therefor |
JP7369868B2 (en) | 2019-11-14 | 2023-10-26 | エンヴィジョン デジタル インターナショナル ピーティーイー.エルティーディー. | Methods for processing solar radiation prediction, methods for training stacked generalized models, and apparatus thereof |
CN111178450A (en) * | 2019-12-31 | 2020-05-19 | 上海三一重机股份有限公司 | Method and device for evaluating state of welding seam |
CN111178450B (en) * | 2019-12-31 | 2023-07-14 | 上海三一重机股份有限公司 | Weld joint state evaluation method and device |
CN111814826A (en) * | 2020-06-08 | 2020-10-23 | 武汉理工大学 | Rapid detection and rating method for residual energy of retired power batteries |
CN111814826B (en) * | 2020-06-08 | 2022-06-03 | 武汉理工大学 | Rapid detection and rating method for residual energy of retired power batteries |
CN111798055A (en) * | 2020-07-06 | 2020-10-20 | 国网山东省电力公司电力科学研究院 | Prediction method of variable weight combined photovoltaic output based on grey correlation degree |
CN111931981A (en) * | 2020-07-06 | 2020-11-13 | 安徽天尚清洁能源科技有限公司 | Photovoltaic power generation ultra-short-term prediction method based on machine learning multi-model combination |
CN114048896A (en) * | 2021-10-27 | 2022-02-15 | 国核自仪系统工程有限公司 | Method, system, equipment and medium for predicting photovoltaic power generation data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109636054A (en) | Solar energy power generating amount prediction technique based on classification and error combination prediction | |
Liu et al. | Forecasting power output of photovoltaic system using a BP network method | |
CN110880789B (en) | Economic dispatching method for wind power and photovoltaic combined power generation system | |
CN109858673A (en) | A kind of photovoltaic generating system power forecasting method | |
CN105184678A (en) | Method for constructing photovoltaic power station generation capacity short-term prediction model based on multiple neural network combinational algorithms | |
CN110729764B (en) | An optimal scheduling method for photovoltaic power generation systems | |
CN106650784A (en) | Feature clustering comparison-based power prediction method and device for photovoltaic power station | |
CN105631558A (en) | BP neural network photovoltaic power generation system power prediction method based on similar day | |
CN103904682B (en) | A kind of power forecasting method based on scene mixed model | |
CN108280545A (en) | A kind of photovoltaic power prediction technique based on K mean cluster neural network | |
CN104463349A (en) | Photovoltaic generated power prediction method based on multi-period comprehensive similar days | |
CN110084412A (en) | A kind of photovoltaic power generation big data prediction technique based on the study of Feature Conversion multi-tag | |
CN103218673A (en) | Method for predicating short-period output power of photovoltaic power generation based on BP (Back Propagation) neural network | |
CN110097220B (en) | A method for forecasting the monthly electricity quantity of wind power generation | |
CN104732296A (en) | Modeling method for distributed photovoltaic output power short-term prediction model | |
CN103023065A (en) | Wind power short-term power prediction method based on relative error entropy evaluation method | |
CN110766134A (en) | Short-term power prediction method of photovoltaic power station based on recurrent neural network | |
CN112149879A (en) | A new energy medium and long-term electricity forecast method considering macro-volatility classification | |
CN115374995A (en) | Distributed photovoltaic and small wind power station power prediction method | |
CN112418346B (en) | A Calculation Method for Error Classification of Global Radiation System in Numerical Weather Forecast | |
CN108075471B (en) | Multi-objective constraint optimization grid dispatch strategy based on stochastic power output forecasting | |
CN116581755B (en) | Power prediction method, device, equipment and storage medium | |
CN106570594A (en) | Similar day photovoltaic power generation short period prediction method based on TMBP | |
CN104915727B (en) | Various dimensions allomer BP neural network optical power ultra-short term prediction method | |
CN108694475B (en) | Short-time-scale photovoltaic cell power generation capacity prediction method based on hybrid model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190416 |