一种基于少量基质栽培植物的方法
技术领域
本发明涉及植物培育领域,尤其涉及基于少量基质的完整生育期培育,特别地,涉及一种基于少量基质栽培植物的方法。
背景技术
在我国农产品栽培过程中,一直深受大水大肥的栽培思想指导,同时我国人多地少,作物连茬成为不得已的习惯,由此形成的病虫害累积又带来了农药残留的逐年提高,致使农产品培育过程中出现三高投入,高水分投入、高养分投入、高农药投入,针对这类问题,从2015年开始农业部正式启动“减肥减药”行动力争到2020年,化肥利用率和主要农作物农药利用率均达到40%以上,分别比2013年提高7个百分点和5个百分点,实现农作物化肥、农药使用量零增长。测土配方、绿色防控、精准施肥,化肥、农药、兽药的科学使用,直接关乎农产品的安全生产和品质保障。同时随着现代人对食品安全的要求越来越高,农产品的质量安全问题也受到全社会的关注。而随着人们生活水平的提高,人们对农作物绿色种植的要求也越来越高。但是,我国人多地少的矛盾使作物不得不连茬种植,从而导致市售农产品容易出现农药和有害物质残留等现象,从而危害人们健康。另一方面,由于农作物的贮存期短,很多情况下、尤其是城市居民很难获得新鲜的蔬菜。
因此,无污染、无化肥农药残留而又新鲜的农产品越来越受到人们的青睐,但是,绿色产品的价格平均比普通农产品高出4~5倍,性价比较低,还不能普遍走上大众餐桌。其中,导致绿色农产品如此高价的原因之一在于种植基地的选择,如3年内不得使用化学农药、化肥等违禁物质等。
发明内容
为了解决上述问题,本发明人进行了锐意研究,通过系列试验证明,根系分布范围内的介质的吸水能力决定了根系的发育和养分吸收,由此推论得出,提高介质的吸水比例就可降低根系的分布空间,如正常土壤的吸水比为70%左右,如根系周围介质吸水比为420%,则根系就可能缩减到1/6,由70%/420%得出,这种情况下,仅需在介质中保持充足的养分供应,就可在实现减少水分绝对施用量、减少养分的绝对施用量、减少农药的绝对施用量条件下依旧实现高产,而吸水比的提高,使极少量基质栽培成为可能。通常基质栽培多采用栽培架或栽培槽进行,基质施用量也遵循传统的根系分布空间进行配置,使得正常一亩地仅基质投入就需3-8万元,严重制约了基质栽培的推广使用,本发明在吸水比和根系介质需求成反比的原理指导下,最低仅需1/6基质量就可实现极少量基质高产栽培,并完全控制了连茬对土地的影响。所述方法不同于国外引进的基质栽培,需要配备栽培槽、施肥罐等,而类似我国传统的土壤栽培,仅需在栽培过程中进行打穴、膜隔离、基质配置、就可实现,既结合了传统栽培过程中耕作层的保温保湿性能,也结合了基质优良的保水保肥性能,用极少量基质,完成基质栽培全过程,并实现了农产品大田栽培和家庭园艺产品的无缝流通。其中,在所述基质中,以有机肥为养分,并加入功能微生物促进养分吸收、防病虫害,进行绿色农产品的培育,从而完成本发明。
本发提供了一种基于极少量基质栽培的植物的栽培方法,具体体现在以下方面:
(1)一种基于少量基质栽培植物的方法,其特征在于,利用配置基质的吸水比来换取根系所需介质的减量,所述方法包括以下步骤:
步骤1、进行地面病虫害处理以及地布或地膜的铺设;
步骤2、在地面打穴孔,并防治苗钵或隔离膜;
步骤3、将基质填充于所述穴孔内;
步骤4、向基质内点播植物种子或移栽幼苗,优选点播植物种子,进行植物的培育;
步骤5、培育结束后,进行收割和采摘,或者,将植物连同基质一起从穴孔内取出,得到自生长植物,然后任选地重复步骤3~4。
(2)根据上述(1)所述的方法,其中,
在步骤1中,所述地面病虫害处理包括土壤拌药、喷洒杀虫杀菌药物和/或高温闷棚处理;和/或
在步骤2中,打穴孔后进行如下处理:任选地在穴孔的底部铺设垫板或砖块,防治底部形成积水,用于调节穴孔的深度;优选地,铺设的垫板或砖块的厚度为1~10cm,优选为1~5cm;更优选地,在步骤2中,打穴孔后还进行如下处理:在穴孔内铺设塑料布或苗钵,用于盛放基质;和/或
在步骤2中,所述穴孔的深度为10~40cm,优选为10~30cm,更优选为20cm;和/或
在步骤2中,所述穴孔的内径为5~20cm,优选为10~20cm,更优选为14cm或15cm。
(3)根据上述(1)或(2)所述的方法,其中,
所述基质的重量为50~3000g/株,优选为100~2000g/株,更优选为300~1500g/株;和/或
所述基质包括主体介质、有机无机养分和功能微生物。
(4)根据上述(1)至(3)之一所述的方法,其特征在于,
所述主体介质选自草炭、泥炭、椰糠珍珠岩、蛭石中的一种或几种,例如泥炭,优选地,所述泥炭为苔类泥炭;和/或
所述主体介质的粒径为0.1~30mm,优选为5~15mm,更优选为10mm;和/或
所述主体介质的吸水量为150~550%,优选为200~500%,更优选为200~400%,例如400%。
(5)根据上述(1)至(4)之一所述的方法,其中,所述有机无机养分包括畜禽粪便、农业废弃物、工业废弃物和矿物肥;和/或
所述有机无机养分与基质的重量比为(2~6):15,优选为(3~5):15,更优选为(4~5):15。
(6)根据上述(1)至(5)之一所述的方法,其特征在于,所述功能微生物包括促进养分固定与释放微生物和防病虫害微生物,
优选地:所述促进养分固定与释放微生物与基质的重量比为(1~4):1000,优选为(1~3):1000,更优选为(1~2):1000;
更优选地,所述防治病虫害微生物与基质的重量比为(1~4):1000,优选为(1~3):1000,更优选为(1~2):1000。
(7)根据上述(1)至(6)之一所述的方法,其中,所述促进养分固定与释放微生物为复合微生物,具体包括固氮微生物、解磷微生物和解钾微生物,其中,
在促进养分固定与释放微生物中,固氮微生物、解磷微生物和解钾微生物的重量比为(3~5):(1~3):(3~5),优选为(3.5~4.5):(1.5~2.5):(3.5~4.5),更优选为4:2:4。
(8)根据上述(1)至(7)之一所述的方法,其中,
所述固氮微生物选自固氮菌(Azotobacter)、拜叶林克氏菌(Beijerinckia)、固氮单胞菌(Azomonas)、固氮球菌(Azococcus)、德克斯氏菌(Derxia)、黄色分枝杆菌(Mycobacterium flavum)、产脂螺菌(Spirillum lipoferum)、氧化亚铁硫杆菌(Thiobacillus ferroxidans)、念珠蓝菌(Nostoc)、鱼腥蓝菌(Anabaena)、着色菌(Chromatium)、绿假单胞菌(Ch loropseudomonas)、棒杆菌(Corymebacterium)、固氮螺菌(Azospirillum)、红螺菌(Rhodospirillum)、红假单胞菌(Rhodopseudomonas)和氮单孢菌中的一种或几种,优选选自固氮菌(Azotobacter)和/或氮单孢菌;和/或
所述解磷微生物选自枯草芽孢杆菌(Bacillus subtilis)、根霉属(Rhizopus)、链霉菌(Streptomvces)、假单孢菌(Pseudomonas)、环状芽孢杆菌(Bacillus circulans)和黄杆菌属(Flavobacterium)中的一种或几种,优选选自链霉菌(Streptomvces)、环状芽孢杆菌(Bacillus circulans)和黄杆菌属(Flavobacterium)中的一种或几种;和/或
所述解钾微生物选自枯草芽孢杆菌(Bacillus subtilis)、硅酸盐细菌(Silicatebacteria)和环状芽孢杆菌(Bacillus circulans)中的一种或几种,优选选自硅酸盐细菌(Silicate bacteria)和/或环状芽孢杆菌(Bacillus circulans),更优选为硅酸盐细菌(Silicate bacteria);和/或
所述防病虫害微生物选自苏云金杆菌(Bacillus thuringiensis)、哈茨木霉菌(Trichoderma harzianum)、枯草芽孢杆菌(Bacillus subtilis)、假单孢菌(Pseudomonas)和蚜霉(Entomophthora aphidis Hoffm)中的一种或几种。
(9)根据上述(1)至(8)之一所述的方法,其中,在步骤4中,
所述点播种子为点播同种植物种子或点播不同植物种子,优选地,所述不同植物种子选自不同科属的植物种子,更优选地,所述不同植物种子选自果菜种子和豆科种子;和/或
所述种子为发芽率和壮苗率均在90%以上的种子,优选发芽率和壮苗率均在95%以上的种子;和/或
所述培育如下进行:采用喷灌、漫灌或沟灌进行水分补充,优选利用自动喷淋装置进行喷水,待生长期满后,得到所述自生长植物,所述生长期满为生长25~180天后;和/或
于露地、拱棚或大棚内进行培育,优选设置有防虫网,用于维护种子的生长;和/或
在培育时,在穴孔上方设置有封口膜或盖子,以控制空气湿度为40~70%,优选为50~70%,更优选为60~70%。
(10)一种自生长植物,优选采用上述(1)至(9)之一所述的方法栽培得到。
具体实施方式
下面通过对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
本发明一方面提供了一种基于少量基质栽培植物的方法,所述方法如下进行:
步骤1、进行地面病虫害处理以及地布或地膜的铺设。
根据本发明一种优选的实施方式,在步骤1中,所述地面病虫害处理包括土壤拌药、喷洒杀虫杀菌药物和/或高温闷棚处理。
其中,在对地面进行病虫害处理后,在地面进行地布或地膜的铺设,用于防止病虫害再发生,进而可以避免栽培过程使用农药。
步骤2、在地面打穴孔。
根据本发明一种优选的实施方式,在步骤2中,打穴孔后进行如下处理:任选地在穴孔的底部铺设垫板或砖块,用于调节穴孔的深度。
其中,通过在穴孔内放置不同厚度的砖块,可以实现对穴孔深度的调节。当穴孔深度与根系所需空间吻合时则不需要铺设垫板或砖块,当穴孔深度大于与根系所需空间时,在穴孔底部铺设一定厚度的垫板或砖块,进行穴孔深度的调节。
在进一步优选的实施方式,铺设的垫板或砖块的厚度为1~10cm,优选为1~5cm。
在更进一步优选的实施方式中,在步骤2中,打穴孔后还进行如下处理:在穴孔内铺设塑料膜或苗钵,用于盛放基质。
这样,基质被塑料膜或苗钵包围,可以进一步防止土壤中的病虫害进入基质,同时,当该次植物培育结束后直接通过塑料布或苗钵将带有基质的植物从穴孔中取出即可,在下茬种植时,无须整地做畦,只需在穴孔内放入基质就可以继续下一次植物的种植。
根据本发明一种优选的实施方式,在步骤2中,所述穴孔的深度为10~40cm。
在进一步优选的实施方式中,在步骤2中,所述穴孔的深度为10~30cm。
在更进一步优选的实施方式中,在步骤2中,所述穴孔的深度为20cm。
根据本发明一种优选的实施方式,在步骤2中,所述穴孔的内径为5~20cm。
在进一步优选的实施方式中,在步骤2中,所述穴孔的内径为10~20cm。
在更进一步优选的实施方式中,在步骤2中,所述穴孔的内径为14cm或15cm。
步骤3、将基质填充于所述穴孔内。
根据本发明一种优选的实施方式,在步骤3中,根据植物根系发育特点配备不同重量,填充的基质的体积与所述植物的成熟根系的体积比为1/3~1/2,即满足根系发育的最少量基质栽培,具体计算来自介质的吸水比,其中成熟根系的根长决定基质的深浅度,根系分布决定基质的长宽度。
其中,所述成熟根系是指植物长成后的根系,本发明中的基质体积远小于成熟根系是由于基质仅为根系提供生长发育的水分和养分,确保根系的各个部分都附着有基质,即可保证植株的水分和养分供应,从而保持健康生长,同时植物从播种开始即在塑料膜或苗钵一类的定型容器中生长,其根系在发育过程中沿容器进行了数次盘绕,故确定基质体积为成熟根系1/3-1/2,从试验生产过程中,结合植物采摘的食用方式,可采摘数次,而无需养分补充,也说明该方法可行。
在进一步优选的实施方式中,所述基质的形状根据植物的种类不同而不一样。
其中,由于不同的植物,其成熟根系的形状不一样,例如针对须根系,减小了穴孔的深度,增加了穴孔的宽度,针对直根系,增加了穴孔的深度,减小了穴孔的宽度。
在更进一步优选的实施方式中,所述基质的形状与所述植物的成熟根系的形状基本一致。
在本发明中,穴孔可以用于多次栽培,具体地,根据所栽培的植物的根系需求,在穴孔的底部铺设具有一定厚度的垫板或砖块,使穴孔深度达到使用要求。当该次培养成功后,将长成的植物连带基质一起从穴孔内移除,然后所述穴孔还可以继续进行下一次的培育。其中,基质中培养的植物根系随着植物生长在穴孔内可以包裹所述基质,拔出后,根系与基质不散坨,便于携带运输,即使在客户家中仍可持续生长几个采摘周期。
在本发明中,将基质置于土壤中进行植物的培育,不仅利用了土壤的培育环境(例如温度、湿度),而且通过土壤病虫害的预除以及塑料膜或苗钵的隔离作用,可以有效防止土壤病虫害对植物的危害。因此,本发明所述方法不仅利用了土壤的环境,而且不会使所培育的植物受土壤中病虫害的危害。
根据本发明一种优选的实施方式,在步骤3中,所述基质的重量为50-3000g/株。
其中,所述基质的重量不含有培育喷淋过程中吸收的水分的重量。并且,根据植物根系发育特点配备不同重量的基质,原则上基质体积为常规植物根系分布的1/2-1/3,即满足根系发育的最少量基质栽培。
在进一步优选的实施方式中,所述基质的重量为100~2000g/株。
在更进一步优选的实施方式中,所述基质的重量为300~1500g/株。
其中,相较于传统盆栽植物,本发明所述植物在长成之后可以连带基质一起从穴孔中取出,即脱离穴孔,从而不需要花盆,植物直接在基质内生长,而基质重量低,这样易于运输,大大节约了运输成本。
根据本发明一种优选的实施方式,所述基质包括主体介质、有机无机养分和功能微生物。
在进一步优选的实施方式中,所述主体介质选自草炭、泥炭、椰糠、珍珠岩、蛭石、工农业废弃物中的一种或几种,例如泥炭。
在本发明中,主体介质可以是几种的组合,只要使主体介质的吸水比达到要求即可,一般地,主体介质的吸水量为150~550%,优选为200~500%,更优选为200~400%,例如400%。
其中,采用泥炭替代普通土壤:(1)泥炭是由植物残体积累并形成泥炭层的土壤,其重量较轻、质地柔软,相较于普通土壤,其更便于运输,减少运输成本;(2)泥炭在一定程度上是无菌的,这样,采用无菌泥炭替代土壤,可以有效防止土传染病毒害,更利于培育起管理,因为在培育期主要为防病虫害管理,而大多数病虫害不是植物本身的细菌造成,而是不干净的土壤带来的细菌侵蚀了植物;(3)泥炭本身为植物残体,因此,相较于普通土壤,其自身就含有一定养分。
在更进一步优选的实施方式中,所述泥炭为苔类泥炭,所述苔类泥炭由苔藓类植物腐烂后形成。
其中,苔藓类植物死亡后,细胞壁不会坍塌,形成中空的薄壁细胞,可以实现吸收和传输水分,具有持水性能,同时具有很好的透气,浇水不板结,利于植物根系生长,所述苔类泥炭具有较高的吸水率,可以为植物提供持续水分,因此,由于苔类泥炭本身具有很高的吸水性,在作为主体介质时,不需要再加入蛭石或珍珠岩来提高主体基质的孔隙率。而其它类泥炭,例如草本类泥炭,多由莎草和芦苇腐烂形成,由于莎草和芦苇都是较高等的维管束植物,一旦死亡,维管束便失去吸水能力,通气量便明显降低,因此,在使用其为主体介质时,需要配合蛭石或珍珠岩一起使用,以提高孔隙率,但这样会增加植物的整体重量,并且即使是与蛭石或珍珠岩配合使用,其最终效果也远不及苔类泥炭。因此,在本发明中,采用苔类泥炭为主体基质。
根据本发明一种优选的实施方式,所述主体介质的粒径为0.1~30mm。
在进一步优选的实施方式中,所述主体介质的粒径为5~15mm。
在更进一步优选的实施方式中,所述主体介质的粒径为10mm。
根据本发明一种优选的实施方式,所述主体介质的吸水量为150~550%。
在进一步优选的实施方式中,所述主体介质的吸水量为200~500%。
在更进一步优选的实施方式中,所述主体介质的吸水量为200~400%。
其中,所述吸水量为主体介质的持水量(吸水量)与主体介质重量的比值,以百分比计。所述主体介质的吸水量可达自身重量的1.5~5.5倍,这样,不仅可确保植物根系水分的供应,同时肥料也不宜流失,确保植物的生长。
在本发明中,无论是在所述植物的培育过程中,还有后期销售后进入消费者家中,只需隔日(甚至在菜叶出现蔫时)对所述植物喷水,其就可几乎完全将水分吸收,达到很好的水分吸收效果,保证植物的生长。当所述植物长成进入消费家中后,可以直接将所述植物置于盘中,隔日直接往盘里倒水而不需可以对植物进行喷淋,这样,当所述植物内水分缺失时,其会自动自下而上吸收盘内的水分,而这一特性主要依赖于主体介质的强吸水性。
根据本发明一种优选的实施方式,所述有机无机养分包括畜禽粪便、农业废弃物和工业废弃物、矿物肥。
具体地,畜禽粪便、农业废弃物和工业废弃物属于有机肥,而矿物肥属于无机肥。所述有机无机养分的供应以植物生长期需求建立,阶段性的进行补充。
在进一步优选的实施方式中,所述农业废弃物包括秸秆、玉米芯、豆粕和棉粕。
在更进一步优选的实施方式中,所述工业废弃物包括酒糟、醋糟、木薯渣、糖渣和糠醛渣。
其中,有机肥含有丰富的有机质,营养全面,关键是采用有机肥培育的植物,可以放心食用。
根据本发明一种优选的实施方式,所述有机无机养分与基质的重量比为(2~6):15。
在进一步优选的实施方式中,所述有机无机养分的重量占基质总重量的(3~5):15。
在更进一步优选的实施方式中,所述有机无机养分的重量占基质总重量的(4~5):15。
其中,在本发明中,有机无机养分的用量不用太多,因为在基质中还采用功能微生物,所述功能微生物可以大大提高有机的利用率,因此添加少量的有机肥即可提供大量的养分供植物生长使用。
根据本发明一种优选的实施方式,所述功能微生物包括促进养分固定与释放微生物和防病虫害微生物
其中,本发明采用的是无公害的有机无机养分作为养分,但是其中的有机养分释放缓慢,因此,在本发明中采用促进养分固定与释放微生物,所述促进养分固定与释放微生物用于促进有机肥中的有效养分的释放;所述防病虫害微生物用于防止病虫害。
在进一步优选的实施方式中,所述促进养分固定与释放微生物为复合微生物,具体包括固氮微生物、解磷微生物和解钾微生物。
其中,所述固氮微生物用于将空气中游离态的氮素直接转变为含氮化合物,所述解磷微生物和解钾微生物分别用于将有机肥中的磷和钾转化为可溶性磷和可溶性钾。在本发明中,将促进养分固定与释放微生物与有机肥结合使用,使原本需要两年或更多年才能释放完全的有机肥可以在两个月左右释放完全,来满足植物养分的需求,同时避免了复杂的养分管理,后期不需要施肥,从而一方面实现了植物的自生长,另一方面缩短了植物的生长周期,第三方面还节省了人工。因此,本发明所述需要从培育过程至中间运输过程,乃至可食用过程中,均无需另外添加养分。
因此,在本发明中,在配制基质时,一次性加入有机肥和功能微生物,在功能微生物的作用下,有机肥内的养分可以充分释放,为后期生长提供养分,因此,无论是后期培育还是长成进入消费者家中均无需再加入肥料;另一方面,采用无土栽培本身就减少了植物培育中的病虫害,而功能微生物又可以进一步预防病虫害,因此,在后期培育时几乎不用做任何病虫害的防治工作,因而,在配好基质后,在植物的后期培育或长成进入消费者家中后,不需要再添加肥料或做除虫工作,而植物也可以实现自生长。
根据本发明一种优选的实施方式,所述促进养分固定与释放微生物与基质的重量比为(1~4):1000。
在进一步优选的实施方式中,所述促进养分固定与释放微生物与基质的重量比为(1~3):1000。
在更进一步优选的实施方式中所述促进养分固定与释放微生物与基质的重量比为(1~2):1000。
其中,对于每株植物,促进养分固定与释放微生物的用量很少即可达到很好的养分促进作用。
根据本发明一种优选的实施方式,在促进养分固定与释放微生物中,固氮微生物、解磷微生物和解钾微生物的重量比为(3~5):(1~3):(3~5)。
在进一步优选的实施方式,在促进养分固定与释放微生物中,固氮微生物、解磷微生物和解钾微生物的重量比为(3.5~4.5):(1.5~2.5):(3.5~4.5)。
在更进一步优选的实施方式,在促进养分固定与释放微生物中,固氮微生物、解磷微生物和解钾微生物的重量比为4:2:4。
根据本发明一种优选的实施方式,所述固氮微生物选自固氮菌(Azotobacter)、拜叶林克氏菌(Beijerinckia)、固氮单胞菌(Azomonas)、固氮球菌(Azococcus)、德克斯氏菌(Derxia)、黄色分枝杆菌(Mycobacterium flavum)、产脂螺菌(Spirillum lipoferum)、氧化亚铁硫杆菌(Thiobacillus ferroxidans)、念珠蓝菌(Nostoc)、鱼腥蓝菌(Anabaena)、着色菌(Chromatium)、绿假单胞菌(Ch loropseudomonas)、棒杆菌(Corymebacterium)、固氮螺菌(Azospirillum)、红螺菌(Rhodospirillum)、红假单胞菌(Rhodopseudomonas)和氮单孢菌中的一种或几种。
在进一步优选的实施方式中,所述固氮微生物选自固氮菌(Azotobacter)和/或氮单孢菌。
根据本发明一种优选的实施方式,所述解磷微生物选自枯草芽孢杆菌(Bacillussubtilis)、根霉属(Rhizopus)、链霉菌(Streptomvces)、假单孢菌(Pseudomonas)、胶质芽孢杆菌(Bacillus mucilaginosus)、环状芽孢杆菌(Bacillus circulans)和黄杆菌属(Flavobacterium)中的一种或几种。
在进一步优选的实施方式中,所述解磷微生物选自链霉菌(Streptomvces)、环状芽孢杆菌(Bacillus circulans)和黄杆菌属(Flavobacterium)中的一种或几种。
根据本发明一种优选的实施方式,所述解钾微生物选自枯草芽孢杆菌(Bacillussubtilis)、硅酸盐细菌(Silicate bacteria)、胶质芽孢杆菌(Bacillus mucilaginosus)和环状芽孢杆菌(Bacillus circulans)中的一种或几种。
在进一步优选的实施方式中,所述解钾微生物选自硅酸盐细菌(Silicatebacteria)和/或环状芽孢杆菌(Bacillus circulans)。
在更进一步优选的实施方式中,所述解钾微生物为硅酸盐细菌(Silicatebacteria)。
根据本发明一种优选的实施方式,所述防病虫害微生物选自苏云金杆菌(Bacillus thuringiensis)、哈茨木霉菌(Trichoderma harzianum)、枯草芽孢杆菌(Bacillus subtilis)和假单孢菌(Pseudomonas)、蚜霉(Entomophthora aphidis Hoffm)中的一种或几种。
其中,所述环状芽孢杆菌(Bacillus circulans)既具有解磷功能又具有解钾功能,所述枯草芽孢杆菌(Bacillus subtilis)兼具解磷解钾以及防治病虫害的功能,所述假单孢菌具有解磷和防治病虫害的功能。在本发明中,硅酸盐细菌(Silicate bacteria)由于其生命活动作用可将难溶性钾溶解出来供作物利用,又将其称为钾细菌。
根据本发明一种优选的实施方式,所述防治病虫害微生物与基质的重量比为(1~4):1000。
在进一步优选的实施方式中,所述防治病虫害微生物与基质的重量比为(1~3):1000。
在更进一步优选的实施方式中,所述防治病虫害微生物与基质的重量比为(1~2):1000。
其中,在本发明中,采用泥炭为主体介质,即采用无土栽培,因此,在基质中不存在土传病虫害,而根系的病虫害绝大部分是由土壤带来,因此,相较于土壤培育,本发明所述基质中几乎不含有病虫害,因此,只需加入微量的防病虫害微生物对病虫害进行预防即可。
步骤4、向基质内点播植物种子或移栽幼苗,优选点播植物种子,进行植物的培育。
根据本发明一种优选的实施方式,在步骤4中,所述点播种子为点播同种植物种子或点播不同植物种子。
在进一步优选的实施方式中,所述不同植物种子选自不同科属的植物种子。
在更进一步优选的实施方式中,所述不同植物种子选自果菜种子和豆科种子。
根据本发明一种优选的实施方式中,在步骤4中,所述种子为发芽率和壮苗率均在90%以上的种子。
在进一步优选的实施方式中,在步骤4中,所述种子为发芽率和壮苗率均在95%以上的种子。
其中,选择发芽率和壮苗率较高的种子可以保证植物的成活率。
根据本发明一种优选的实施方式,在步骤4中,所述培育如下进行:采用喷灌、漫灌或沟灌进行水分补充,优选利用自动喷淋装置进行喷水,待生长期满后,得到所述自生长有机植物。
其中,在整个培育的过程中,只需要进行喷淋水即可,无需人工施肥和病虫害防治,实现了半自动培育。并且,一般生长25~180天后生长期满,得到所述自生长有机植物。
根据本发明一种优选的实施方式,在步骤4中,于露地、拱棚或大棚内进行培育,优选设置有防虫网,用于维护种子的生长。
根据本发明一种优选的实施方式,在步骤4中,在培育时,在穴孔上方设置有翻盖,以控制空气湿度为40~70%。
在进一步优选的实施方式中,在步骤4中,在培育时,在穴孔上方设置有翻盖,以控制空气湿度为50~70%。
在更进一步优选的实施方式中,在步骤4中,在培育时,在穴孔上方设置有翻盖,以控制空气湿度为60~70%。
其中,功能微生物对空气湿度具有一定要求,若空气湿度在小于40%,则功能微生物会死亡。
在本发明中,在培育时,将基质置于土壤内进行培养,这样,一方面,基质周围的土壤保持了基质内的水分,防止了水分的过量流失,减少了基质的需求量,另一方面,周围的土壤可以为基质内植物的生长提供良好的温度环境,进而不需要进行温度的控制。
根据本发明一种优选的实施方式,在生长15~120天后,植物的根系包裹基质。
这样,将根系与基质一起拔出穴孔后,根系与基质不散坨,便于携带运输,即使在客户家中仍可持续生长几个采摘周期。
步骤5、培育结束后,进行收割和采摘,或者,将植物连同基质一起从穴孔内取出,得到自生长植物,然后任选地重复步骤3~4。
其中,在一次培育结束后,将经过培育得到的植物连同基质一起取出,得到自生长植物。并且,如果需要进行下次的培育,则直接重复步骤3~4,即重新填充基质进行下次培育。
本发明第二方面提供了一种根据本发明第一方面所述培育方法得到的自生长植物。
其中,所述植物随种类不同可以采摘1~10茬。
这样,所述植物在消费者进行自生长,可以生长1~10茬,使消费者随时都可以吃到绿色农产品。在现有技术中,售卖植物的最大局限在于植物的新鲜程度,一般为了保持植物的新鲜而需要在销售过程中对植物进行冷藏、甚至使用保鲜剂,而且,很多情况下,随着货架期的延长,即使使用了保鲜剂也不能防止植物失鲜甚至腐烂。
而在本发明中,所述植物在进入消费者家里之前以及进行消费者家里之后,均无须冷链储运、不使用保鲜剂,仍能够保鲜,在柜台存放过程中,见光仍可保持生长,延长了货架期,保证消费者食用的植物的新鲜性。
其中,所述植物优选为果菜,更优选包括辣椒、青椒、番茄、黄瓜和茄子等。
本发明所具有的有益效果:
(1)本发明所述方法将基质置于土壤的天然环境中对植物后水果进行培育,这样,可以有效利用土壤的环境温度进行培育,并且,能够保证基质内不会出现大量水分流失的现象;
(2)本发明所述方法简单,易于实现,无需施肥等复杂技术和人工成本,只需自动喷淋即可,实现了半自动培育,并且可重复进行培育;
(3)利用本发明所述方法得到的自生长有机植物不需要花盆,重量轻,有效减少了销售过程中的运输成本;
(4)利用本发明所述方法得到的自生长有机植物避免了土传性病虫害的危险,为连茬种植问题提供解决方案;
(5)利用本发明所述方法得到的自生长有机植物不含有化肥、农药等化学成分,保证了食用的安全性;
(6)利用本发明所述方法得到的植物具有自生长能力,基质中按照通气、保水、养分和微量元素及微生物菌群生态构建原则进行配置,在食用一茬后,其还可以自动生长,直至食用1~10茬,而最终的产量可以达到原植株产量120%-150%/株;
(7)利用本发明所述方法得到的自生长有机植物成本低,一般低于普通农产品种植成本,而其产量可提高20%-50%左右,质量为国家绿色标准;说明其具有很好的性价比,与市售的高价有机植物形成鲜明对比;
(8)利用本发明所述方法得到的自生长有机植物的自生长性,消费者几乎可以现摘现吃,保证了食用植物的新鲜性;
(9)利用本发明所述方法得到的自生长有机植物在消费者家中自生长时,不需要施肥、除虫等,仅需要隔日喷水即可。
实施例
以下通过具体实施例进一步描述本发明。不过这些实施例仅仅是范例性的,并不对本发明的保护范围构成任何限制。
在实施例中,所述泥炭为丹麦PINDSTRUP(品氏托普)泥炭。实施例3中采用的中微量元素矿物肥购于贵州美加特肥业(商品名:矿物肥)。
实施例1自生长有机辣椒的培育
采用土壤拌药的方式进行地面病虫害处理,并在处理之后铺设地膜;
然后在地面打深度为20cm、内径为14cm的穴孔,并在穴孔内铺设0-5cm厚的砖块,然后在穴孔内铺设塑料布;
将泥炭300g,充分发酵后的牛粪144g,固氮菌336mg,链霉菌168mg,硅酸盐细菌336mg;苏云金杆菌360mg和哈茨木霉菌360mg、蚜霉120mg混合,置于穴孔内;
向基质内点播发芽率、壮苗率都在95%以上的辣椒种子,设置防虫网;利用自动喷淋装置进行喷水,其中,一天喷一次,一次喷30min;并控制空气湿度为60%,进行自动化管理,无须人工施肥和病虫害防治;60天后,根系包裹基质,120天后,培育结束,将得到的辣椒带根系包裹基质一起从穴孔内取出,得到所述自生长辣椒,辣椒的产量为5000g。
农户可采摘辣椒直接销售,亦可将所述自生长辣椒(辣椒带根系包裹基质)整体销售于家庭用户,无须冷链储运和保鲜剂喷施。
消费者购入家庭后,可持续栽培,依靠基质中有机肥和功能微生物持续供应养分,依靠生防菌控制病虫害,保持辣椒的国家绿色标准品质,消费者需隔日进行水分喷施;采摘时,每周一茬,可持续7茬。
实施例2自生长有机番茄的培育
采用喷洒杀虫杀菌药物的方式进行地面病虫害处理,并在处理之后铺设地膜;
然后在地面打深度为20cm、内径为14cm的穴孔,并在穴孔内铺设2cm后的砖块,然后在穴孔内铺设塑料布;
将泥炭1500g,充分发酵后的牛粪600g,固氮菌1.6g,黄杆菌属0.8g,硅酸盐细菌1.6g,苏云金杆菌2g和哈茨木霉菌2g、蚜霉1g混合,置于穴孔内;
向基质内点播发芽率、壮苗率都在95%以上的番茄种子,设置防虫网;利用自动喷淋装置进行喷水,其中,一天喷1次,一次喷30min;并控制空气湿度为50%,进行自动化管理,无须人工施肥和病虫害防治;60天后,根系包裹基质,90天后,培育结束,将得到的番茄带根系包裹基质一起从穴孔内取出,得到所述自生长有机番茄,番茄的产量高出普通种植50%。
可直接将所述自生长有机番茄(番茄带根系包裹基质)整体销售,无须冷链储运和保鲜剂喷施。
消费者购入家庭后,可持续栽培,依靠基质中有机肥和功能微生物持续供应养分,依靠生防菌控制病虫害,保持番茄有机品质,消费者需隔日进行水分喷施;采摘时,每周一茬,最终产量比普通种植高50%。
实施例3自生长有机青椒的培育
采用高温闷棚处理的方式进行地面病虫害处理,并在处理之后铺设地膜;
然后在地面打深度为20cm、内径为14cm的穴孔,并在穴孔内铺设10cm厚的砖块,然后在穴孔内铺设塑料布;
将泥炭500g,充分发酵后的牛粪200g、25g中微量元素矿物肥、氮单孢菌0.5g、环状芽孢杆菌3.75g、硅酸盐细菌3.75g、苏云金杆菌6.25g和哈茨木霉菌6.25g、蚜霉1.25g混合,置于穴孔内;
向基质内点播发芽率、壮苗率都在95%以上的青椒种子,设置防虫网;利用自动喷淋装置进行喷水,其中,一天最多喷一次水,以植株短暂萎蔫和基质湿度为标准;由于栽培场所进行了地膜覆盖,降低了蒸腾作用,从而有利于控制空气湿度为65%,可预防多数病虫害发生;90天后,根系完全包裹基质,120天后,培育阶段结束,农户可将青椒采摘销售,青椒产量高出普通土壤栽培20%左右,亦可将得到的青椒带根系包裹基质一起从穴孔内取出,得到所述自生长青椒,带到客户家中构建家庭菜园,随摘随吃。
可直接将所述自生长有机青椒(青椒根系包裹基质)整体销售,无须冷链储运和保鲜剂喷施。
消费者购入家庭后,可持续栽培,依靠基质中有机肥和功能微生物持续供应养分,依靠生防菌控制病虫害,保持青椒有机品质,消费者需隔日进行水分喷施。
对比例1
重复实施例1的过程,区别在于,没有将基质置于土壤中,而是直接将基质混合后置于苗钵中进行种子点播以及培养,并且喷水如下进行:一天喷1次,一次喷30min。发现,如果一天只喷一次,植物的叶子在会出现稍微的萎蔫现象。
分析原因可能在于,由于直接于苗钵中进行培养,因此,水分流失较实施例1多,如果按照实施例1所述方式进行喷水,则很容易萎蔫。
90天后将得到的番茄带根系包裹基质一起从穴孔内取出,得到所述自生长有机番茄,番茄的产量高出普通种植不到20%,可见,其产量虽然较常规培养有提高,但是,还是低于实施例1的产量。
以上结合具体实施方式和范例性实例对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。