CN109413578B - An indoor positioning method based on the fusion of WIFI and PDR - Google Patents
An indoor positioning method based on the fusion of WIFI and PDR Download PDFInfo
- Publication number
- CN109413578B CN109413578B CN201811083050.5A CN201811083050A CN109413578B CN 109413578 B CN109413578 B CN 109413578B CN 201811083050 A CN201811083050 A CN 201811083050A CN 109413578 B CN109413578 B CN 109413578B
- Authority
- CN
- China
- Prior art keywords
- positioning
- rssi
- pdr
- wifi
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000012937 correction Methods 0.000 claims abstract description 38
- 238000012549 training Methods 0.000 claims abstract description 25
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 57
- 238000011156 evaluation Methods 0.000 claims description 17
- 230000001133 acceleration Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000012935 Averaging Methods 0.000 claims 1
- 238000009499 grossing Methods 0.000 claims 1
- 230000035772 mutation Effects 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 claims 1
- 230000001186 cumulative effect Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/021—Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0257—Hybrid positioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/33—Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种基于WIFI与PDR融合的室内定位方法,涉及WIFI信号和行人航位推算的室内定位技术领域,解决的技术问题是提供一种测量精度高的室内定位方法,包括如下步骤:(1)建立WIFI离线指纹数据库;(2)聚类训练样本得到聚类样本和对应类别;(3)通过加权K近邻算法得到定位坐标;(4)融合PDR定位进行状态和位置的更新;(5)使用融合结果作为PDR的校正源;(6)通过评价参数获取校正因子校正PDR结果。本发明缩短了WIFI定位时间、提高了定位精度,同时具有定位精度高、软件运算量低的特点,在保证定位精度的前提下实现实时定位要求。
The invention discloses an indoor positioning method based on the fusion of WIFI and PDR, and relates to the technical field of indoor positioning of WIFI signals and pedestrian dead reckoning. The technical problem to be solved is to provide an indoor positioning method with high measurement accuracy, including the following steps: (1) Establish WIFI offline fingerprint database; (2) Cluster training samples to obtain clustered samples and corresponding categories; (3) Obtain positioning coordinates through weighted K-nearest neighbor algorithm; (4) Integrate PDR positioning to update status and position; ( 5) Use the fusion result as the correction source of the PDR; (6) Obtain the correction factor to correct the PDR result by evaluating the parameters. The invention shortens the WIFI positioning time, improves the positioning accuracy, and has the characteristics of high positioning accuracy and low software calculation amount, and realizes the real-time positioning requirement on the premise of ensuring the positioning accuracy.
Description
技术领域technical field
本发明涉及WIFI信号和行人航位推算的室内定位技术领域,尤其涉及一种基于WIFI与PDR融合的室内定位方法。The invention relates to the technical field of indoor positioning of WIFI signals and pedestrian dead reckoning, in particular to an indoor positioning method based on the fusion of WIFI and PDR.
背景技术Background technique
据统计,人的一生当中80%的时间是待在室内,但GPS却不能在室内运作。出行导航、智能制造、智能服务等行业也亟待人们开始重新审视室内位置的价值。室内定位技术作为打开室内位置服务大门的钥匙,近年也越来越被重视。目前比较成熟的室内定位包括有超声波定位、UWB定位、惯导定位、射频识别(RFID)定位、蓝牙定位、WIFI定位等技术。相较于其他室内无线定位技术,WIFI有其独特的优势,WIFI热点遍布城市各个角落和楼区,由于其普遍存在性,使得其部署成本较低,硬件易于安装,易与智能手机结合定位,且其覆盖范围广、定位精度较高、易于实现,迅速成为了室内定位技术的研究热点。According to statistics, people spend 80% of their lives indoors, but GPS cannot work indoors. Industries such as travel navigation, smart manufacturing, and smart services also urgently need people to re-examine the value of indoor locations. Indoor positioning technology, as the key to open the door of indoor location services, has been paid more and more attention in recent years. At present, the relatively mature indoor positioning includes ultrasonic positioning, UWB positioning, inertial navigation positioning, radio frequency identification (RFID) positioning, Bluetooth positioning, WIFI positioning and other technologies. Compared with other indoor wireless positioning technologies, WIFI has its unique advantages. WIFI hotspots are located in every corner and building area of the city. Due to its ubiquity, its deployment cost is low, the hardware is easy to install, and it is easy to combine with smart phones for positioning. And its wide coverage, high positioning accuracy, easy to implement, has quickly become a research hotspot of indoor positioning technology.
利用WIFI指纹进行定位过程中,由于室内环境复杂,WIFI信号易受到干扰,信号强度容易产生较大幅度的跳变,并且存在WIFI信号不能覆盖的区域,这就导致WIFI定位偏差大。因此,只利用WIFI技术进行室内定位无法满足人们的需求。During the positioning process using WIFI fingerprints, due to the complex indoor environment, the WIFI signal is susceptible to interference, the signal strength is prone to large jumps, and there are areas that the WIFI signal cannot cover, which leads to large deviations in WIFI positioning. Therefore, only using WIFI technology for indoor positioning cannot meet people's needs.
利用智能终端进行室内定位过程中,由于移动终端普遍配有陀螺仪、加速度传感器、电子罗盘等运动传感器,这使得移动终端的惯性导航技术具有较好的推广性,具有不易受环境影响、稳定性高等优势。但是,由于电子罗盘容易受到环境干扰,会导致航向角出现偏差,且步态判断误差和步长估计误差会导致行走距离误差,造成的累积误差会导致惯性系统无法长时间进行精确定位,如何有效消除累积误差成为解决问题的关键。In the process of indoor positioning using smart terminals, because mobile terminals are generally equipped with motion sensors such as gyroscopes, acceleration sensors, electronic compasses, etc., the inertial navigation technology of mobile terminals has better promotion, and is not easily affected by the environment. high advantage. However, since the electronic compass is easily disturbed by the environment, the heading angle will be deviated, and the gait judgment error and step length estimation error will lead to the walking distance error. Eliminating accumulated errors becomes the key to solving the problem.
中国发明CN106610292 A公开了一种混合WIFI与航迹推算(PDR)的室内定位方法,将待测目的初始位置采用WIFI定位子系统来获得,当获得待测目标的初始位置之后,系统中两套定位子系统WIFI定位子系统和PDR定位子系统将分别输出待测目标的位置。系统采用一个时间窗效用函数,将WIFI定位子系统输出的坐标,以及基于PDR的定位子系统输出的坐标进行有效的线性加权,加权之后再通过卡尔曼滤波进行处理得到混合WIFI和PDR的全局定位坐标。该方法定位没有考虑PDR融合校准,由于WIFI定位的不稳定性以及PDR定位的累计误差,因而得出的定位坐标精度还是欠精准。Chinese invention CN106610292 A discloses an indoor positioning method of hybrid WIFI and dead reckoning (PDR). The initial position of the target to be measured is obtained by using the WIFI positioning subsystem. After the initial position of the target to be measured is obtained, two sets of The positioning subsystem WIFI positioning subsystem and PDR positioning subsystem will output the position of the target to be measured respectively. The system uses a time window utility function to effectively linearly weight the coordinates output by the WIFI positioning subsystem and the coordinates output by the PDR-based positioning subsystem. coordinate. The positioning method does not consider the PDR fusion calibration. Due to the instability of WIFI positioning and the cumulative error of PDR positioning, the obtained positioning coordinate accuracy is still inaccurate.
中国发明CN107302754 A公开了一种基于WIFI与PDR的室内定位简易方法,通过设定初始位置和步长,通过加速度传感器测量的加速度对行人的运动状态进行判定,通过RSSI值进行WIFI定位方法,采集多个参考节点的RSSI值,当检测到RSSI值超过阈值时,运用改进后的算法计算出当前位置,将当前位置作为实际位置值,进行PDR定位对室内行人进行航迹推算得到位置估计。该方法PDR初始位置为自行定位,也没有考虑校准,由于WIFI定位的不稳定性以及PDR定位的累计误差,因而得出的定位坐标精度同样还是欠精准。Chinese invention CN107302754 A discloses a simple indoor positioning method based on WIFI and PDR. By setting the initial position and step length, the motion state of pedestrians is determined by the acceleration measured by the acceleration sensor, and the WIFI positioning method is carried out by the RSSI value. RSSI values of multiple reference nodes, when it is detected that the RSSI value exceeds the threshold, the improved algorithm is used to calculate the current position, and the current position is used as the actual position value, and the PDR positioning is performed to estimate the position of indoor pedestrians. In this method, the initial position of PDR is self-positioning, and calibration is not considered. Due to the instability of WIFI positioning and the cumulative error of PDR positioning, the obtained positioning coordinate accuracy is also inaccurate.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明所解决的问题是提供一种测量精度高的室内定位方法。Aiming at the deficiencies of the prior art, the problem solved by the present invention is to provide an indoor positioning method with high measurement accuracy.
为解决上述技术问题,本发明采用的技术方案是一种基于WIFI与PDR融合的室内定位方法,包括如下步骤:In order to solve the above technical problems, the technical solution adopted in the present invention is an indoor positioning method based on the fusion of WIFI and PDR, including the following steps:
(1)建立WIFI离线指纹数据库:在定位区域布置M个发射WIFI热点的AP节点,将定位区域划分为N个节点,计算各个节点的实际位置,采集N个节点中来自各个AP节点的信号强度RSSI,得到RSSI训练样本,将RSSI训练样本与其实际位置对应,建立指纹数据库I;指纹数据集I表示为:(1) Establish WIFI offline fingerprint database: arrange M AP nodes transmitting WIFI hotspots in the positioning area, divide the positioning area into N nodes, calculate the actual position of each node, and collect the signal strength from each AP node in the N nodes RSSI, obtain the RSSI training samples, correspond the RSSI training samples to their actual positions, and establish a fingerprint database I; the fingerprint data set I is expressed as:
I={(r1,o1),(r2,o2),...,(ri,oi),...,(rN,oN)} (1)I={(r 1 ,o 1 ),(r 2 ,o 2 ),...,(r i ,o i ),...,(r N ,o N )} (1)
其中,向量ri=(ri1,ri2,...,riM)∈RM表示来自M个AP的RSSI,ri1为来自第1个WIFI热点的RSSI,riM为第M个AP的RSSI,位置向量oi=(x,y)∈R2表示ri向量对应的位置,x为该位置的x轴坐标,y为该位置的y轴坐标,RSSI训练样本的RSSI向量ri和位置向量oi都是已知的,i=1,2,...N;Among them, the vector r i =(r i1 ,r i2 ,...,r iM )∈R M represents the RSSI from M APs, r i1 is the RSSI from the first WIFI hotspot, and r iM is the Mth AP RSSI, the position vector o i =(x,y)∈R 2 represents the position corresponding to the ri vector, x is the x-axis coordinate of the position, y is the y-axis coordinate of the position, and the RSSI vector r i of the RSSI training sample and the position vector o i are known, i=1,2,...N;
(2)聚类训练样本得到聚类样本和对应类别:通过K-means算法对指纹数据库I进行聚类,将指纹数据库I分为V个类{c1,c2,.cv..cV},每个类中心向量定义为{C1,C2,...CV},指纹数据库中RSSI训练样本分别划分到V个类中,得到聚类样本数据集:(2) Clustering training samples to obtain clustered samples and corresponding categories: The fingerprint database I is clustered by K-means algorithm, and the fingerprint database I is divided into V categories {c 1 , c 2 , .c v ..c V }, each class center vector is defined as {C 1 , C 2 ,...C V }, the RSSI training samples in the fingerprint database are divided into V classes respectively, and the clustering sample data set is obtained:
L={(r1,cv1),(r2,cv2),...(ri,cvi),...,(rN,cvN)} (2),L={(r 1 ,c v1 ),(r 2 ,c v2 ),...(r i ,c vi ),...,(r N ,c vN )} (2),
其中,ri=(ri1,ri2,...,riM)∈RM表示M个AP的RSSI,表示其属于的V类别,cv类由p个RSSI训练样本{rv1,rv2,...,rvp}组成,对所有cv类RSSI训练样本取平均值得到cv类中心向量 Among them, r i =(r i1 ,r i2 ,...,r iM )∈R M represents the RSSI of M APs, Indicates the V category it belongs to. The c v category consists of p RSSI training samples {r v1 ,r v2 ,...,r vp }, and the average of all the c v RSSI training samples is obtained to obtain the c v class center vector
(3)通过加权K近邻算法得到定位坐标:在线获取实时RSSI样本,找出与获取的实时RSSI样本最相似的类,通过K个最近邻样本预测在线获取的实时RSSI样本的属性值,对K个RSSI训练样本对应的位置进行加权,获得其位置坐标;在线获取的实时RSSI样本记为T=((rj1,rj2,...,rjM),(x,y)),其中在线获取的实时RSSI样本r为rj=(rj1,rj2,...,rjM)∈RM,位置向量o=(x,y)表示在线获取的实时RSSI样本的位置信息,其中在线获取的RSSI向量已知,位置向量(x,y)未知;(3) Obtain the positioning coordinates through the weighted K nearest neighbor algorithm: obtain the real-time RSSI samples online, find the most similar class to the real-time RSSI samples obtained, and predict the attribute values of the real-time RSSI samples obtained online through the K nearest neighbor samples. The positions corresponding to the RSSI training samples are weighted to obtain their position coordinates; the real-time RSSI samples obtained online are recorded as T=((r j1 ,r j2 ,...,r jM ),(x,y)), where online The acquired real-time RSSI sample r is r j =(r j1 ,r j2 ,...,r jM )∈R M , and the position vector o=(x,y) represents the position information of the real-time RSSI sample acquired online, where online The obtained RSSI vector is known, and the position vector (x, y) is unknown;
首先计算r向量与V个类中心RSSI向量{C1,C2,...CV}的相似度,确定与r向量最相似的类别,r向量{rj1,rj2,...,rjM}与第i个类中心的RSSI向量的余弦相似度定义为:First, calculate the similarity between the r vector and the V class center RSSI vectors {C 1 , C 2 ,...C V }, and determine the class most similar to the r vector. The r vector {r j1 ,r j2 ,..., r jM } and the RSSI vector of the ith class center The cosine similarity of is defined as:
同理,计算r向量与其他类别中心RSSI向量的相似度,经过V次计算,得到V个余弦相似度{Sim1,Sim2,...,SimV},其中最大相似度所对应的类别cv就是与r向量最相似的类别;In the same way, calculate the similarity between the r vector and the RSSI vector of other categories. After V calculations, V cosine similarities {Sim 1 , Sim 2 ,..., Sim V } are obtained, where the category corresponding to the maximum similarity c v is the most similar category to the r vector;
确定最相似类别cv与r向量最相似的K个样本rK1,rK2,.rKi..,rKK相似度分别为SimK1,SimK2,...,SimKK,Determine the K samples r K1 , r K2 , .r Ki .., r KK that are most similar to the most similar category cv and r vector. The similarity is Sim K1 , Sim K2 ,..., Sim KK ,
(xK1,yK1),(xK2,yK2),...,(xKK,yKK)表示对应的坐标,(ri1,r12,...riM)表示选取的最相似的样本rKi对应的RSSI样本,归一化处理相似度,定义影响定位结果的权重为{wK1,wK2,...,wKK};(x K1 , y K1 ), (x K2 , y K2 ),...,(x KK ,y KK ) represent the corresponding coordinates, (r i1 ,r 12 ,...r iM ) represent the selected most similar The RSSI sample corresponding to the sample r Ki is normalized to process the similarity, and the weight that affects the positioning result is defined as {w K1 ,w K2 ,...,w KK };
加权样本坐标,得到在线获取的RSSI的位置坐标:Weight the sample coordinates to get the position coordinates of the RSSI obtained online:
x=wK1xK1+wK2xK2+...+wKKxKK (6),x=w K1 x K1 +w K2 x K2 +...+w KK x KK (6),
y=wK1yK1+wK2yK2+...+wKKyKK (7),y=w K1 y K1 +w K2 y K2 +...+w KK y KK (7),
(4)融合PDR定位进行状态和位置的更新:构建行人行走的系统模型Xk,PDR定位的初始位置坐标通过WIFI定位获得,融合WIFI定位和PDR定位得到误差阈值门限,通过加速度传感器获得行走步长,通过智能终端内置陀螺仪获取行走后的朝向角变化量,使用量测方程Zk更新状态信息和位置信息;(4) Integrate PDR positioning to update the state and position: build a pedestrian walking system model X k , the initial position coordinates of PDR positioning are obtained through WIFI positioning, the error threshold is obtained by integrating WIFI positioning and PDR positioning, and walking steps are obtained through acceleration sensor. long, obtain the heading angle change after walking through the built-in gyroscope of the smart terminal, and use the measurement equation Z k to update the state information and position information;
所述行人行走的系统模型Xk如下:The system model X k of the pedestrian walking is as follows:
其中行走的步数用k表示,行走后的位置信息用xk,yk表示,θk表示k步后的方位朝向角,Wk-1表示噪声,为步长平均值,采用步长模型匹配加速度传感器结果,设步长是60cm,为朝向角变化量;量测方程Zk如下所示:The number of walking steps is represented by k, the position information after walking is represented by x k , y k , θ k represents the azimuth and orientation angle after k steps, W k-1 represents noise, is the average value of the step length, the step length model is used to match the acceleration sensor results, and the step length is set to 60cm, is the heading angle change; the measurement equation Z k is as follows:
其中,xk,yk表示通过WIFI定位获得的定位结果;sk表示行人平均行走步长,通过加速度传感器结果获得,Δθk表示行人行走后的朝向角变化量,可以通过智能终端内置陀螺仪获取,θk表示行人行走后的朝向角;Vk表示噪声。Among them, x k , y k represent the positioning results obtained through WIFI positioning; s k represents the average walking step length of pedestrians, obtained from the results of the acceleration sensor, Δθ k represents the change in the orientation angle of the pedestrian after walking, which can be obtained through the built-in gyroscope of the smart terminal Obtain, θ k represents the orientation angle of the pedestrian after walking; V k represents the noise.
(5)使用融合结果作为PDR的校正源;(5) use the fusion result as the correction source of PDR;
设定PDR偏差阈值门限εpdr,如果偏差超过设定的门限值,校正定位结果,得到WIFI和PDR融合定位结果,使用WIFI和PDR融合结果作为PDR的校正源,参见公式(9);Set the PDR deviation threshold threshold ε pdr , if the deviation exceeds the set threshold, correct the positioning result to obtain the fusion positioning result of WIFI and PDR, and use the fusion result of WIFI and PDR as the correction source of PDR, see formula (9);
(6)通过评价参数获取校正因子校正PDR结果;(6) Obtain the correction factor to correct the PDR result by evaluating the parameters;
使用间隔时间段即在[0,T]时间内的数据来获取评价参数,评价参数见公式(13)、公式(14),通过评价参数获取校正因子,校正因子见公式(15),对PDR结果进行校正,具体过程如下:Use the data in the interval time period, that is, in the [0, T] time, to obtain the evaluation parameters. The evaluation parameters are shown in formula (13) and formula (14), and the correction factor is obtained through the evaluation parameters. The correction factor is shown in formula (15). The results are corrected, and the specific process is as follows:
表示通过融合定位后的定位结果,表示PDR单独定位结果,PDR单独定位结果由下式获得 Indicates the positioning result after fusion positioning, Represents the PDR single positioning result, and the PDR single positioning result is obtained by the following formula
y2=y1+S12 cos θ1 (10),y 2 =y 1 +S 12 cos θ 1 (10),
x2=x1+S12 sin θ1 (11),x 2 =x 1 +S 12 sin θ 1 (11),
(x1,x2)为PDR初始位置,(x2,y2)为PDR定位坐标,位移S由步长模型匹配加速度传感器获得,选取为行人步长60cm,方向角θ通过传感器及陀螺仪获得,(x 1 , x 2 ) is the initial position of the PDR, (x 2 , y 2 ) is the PDR positioning coordinate, the displacement S is obtained by matching the acceleration sensor with the step size model, and the pedestrian step size is 60cm, and the direction angle θ is passed through the sensor and gyroscope. get,
其定位结果差为:The positioning result difference is:
设在[0,K]时间内,累积误差表示为:Set in [0,K] time, the cumulative error is expressed as:
使用该特征作为PDR定位的校正因子,其校正原则如下:Using this feature as a correction factor for PDR positioning, the correction principles are as follows:
若累计误差Cx和Cy绝对值∈[0,σ1],定位误差可忽略,无需校正;If the absolute values of accumulated errors C x and C y ∈ [0,σ 1 ], the positioning error can be ignored and no correction is required;
若累计误差Cx和Cy绝对值∈[σ1,σ2],满足误差评价要求,校正定位结果;If the absolute values of cumulative errors C x and C y ∈ [σ 1 ,σ 2 ], the error evaluation requirements are met, and the positioning results are corrected;
若累计误差Cx和Cy绝对值∈[σ2,∞],不满足误差评价要求,WIFI定位误差大,重新进行融合定位,If the absolute values of cumulative errors C x and C y ∈ [σ 2 ,∞], the error evaluation requirements are not met, and the WIFI positioning error is large, and the fusion positioning is performed again.
由于PDR定位结果存在累积误差问题,会导致校正信息不对应,矫正能力过弱,通过设置校正比例因子α来代表当前时间的误差和前一段时间的误差的比例关系,[0,K]表示时间段,CN=αCk表示比例关系,通过下式平滑M时间段内的校正过程,解决定位结果突变问题:Due to the cumulative error problem in the PDR positioning results, the correction information will not correspond, and the correction ability is too weak. The correction scale factor α is set to represent the proportional relationship between the error of the current time and the error of the previous period, [0, K] represents the time segment, C N =αC k represents the proportional relationship, and the correction process in the M time segment is smoothed by the following formula to solve the problem of sudden change in the positioning result:
式中,j∈[1,M]。In the formula, j∈[1,M].
与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:
将K-means算法与K近邻法相结合,缩短了WIFI定位时间,提高了定位精度。利用WIFI定位结果与PDR融合定位,使用校正因子对系统的定位因子进行校正。具有定位精度高、软件运算量低的特点,在保证定位精度的前提下实现实时要求。The K-means algorithm is combined with the K-nearest neighbor method, which shortens the WIFI positioning time and improves the positioning accuracy. Using the WIFI positioning result and PDR fusion positioning, use the correction factor to correct the positioning factor of the system. It has the characteristics of high positioning accuracy and low software calculation amount, and realizes real-time requirements under the premise of ensuring positioning accuracy.
附图说明Description of drawings
图1为本发明的方法流程图;Fig. 1 is the method flow chart of the present invention;
图2WIFI定位融合PDR定位的融合结构图。Figure 2. The fusion structure diagram of WIFI positioning and PDR positioning.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式作进一步的说明,但不是对本发明的限定。The specific embodiments of the present invention are further described below with reference to the accompanying drawings, but the present invention is not limited.
图1示出了一种基于WIFI与PDR融合的室内定位方法,包括如下步骤:Figure 1 shows an indoor positioning method based on the fusion of WIFI and PDR, including the following steps:
(1)建立WIFI离线指纹数据库:在定位区域布置M个发射WIFI热点的AP节点,将定位区域划分为N个节点,计算各个节点的实际位置,采集N个节点中来自各个AP节点的信号强度RSSI,得到RSSI训练样本,将RSSI训练样本与其实际位置对应,建立指纹数据库I;指纹数据集I表示为:(1) Establish a WIFI offline fingerprint database: arrange M AP nodes transmitting WIFI hotspots in the positioning area, divide the positioning area into N nodes, calculate the actual position of each node, and collect the signal strength from each AP node in the N nodes RSSI, obtain the RSSI training samples, correspond the RSSI training samples to their actual positions, and establish a fingerprint database I; the fingerprint data set I is expressed as:
I={(r1,o1),(r2,o2),...,(ri,oi),...,(rN,oN)} (1),I={(r 1 ,o 1 ),(r 2 ,o 2 ),...,(r i ,o i ),...,(r N ,o N )} (1),
其中,向量ri=(ri1,ri2,...,riM)∈RM表示来自M个AP的RSSI,ri1为来自第1个WIFI热点的RSSI,riM为第M个AP的RSSI,位置向量oi=(x,y)∈R2表示ri向量对应的位置,x为该位置的x轴坐标,y为该位置的y轴坐标,RSSI训练样本的RSSI向量ri和位置向量oi都是已知的,i=1,2,...N;Among them, the vector r i =(r i1 ,r i2 ,...,r iM )∈R M represents the RSSI from M APs, r i1 is the RSSI from the first WIFI hotspot, and r iM is the Mth AP RSSI, the position vector o i =(x,y)∈R 2 represents the position corresponding to the ri vector, x is the x-axis coordinate of the position, y is the y-axis coordinate of the position, and the RSSI vector r i of the RSSI training sample and the position vector o i are known, i=1,2,...N;
(2)聚类训练样本得到聚类样本和对应类别:通过K-means算法对指纹数据库I进行聚类,将指纹数据库I分为V个类{c1,c2,.cv..cV},每个类中心向量定义为{C1,C2,...CV},指纹数据库中RSSI训练样本分别划分到V个类中,得到聚类样本数据集:(2) Clustering training samples to obtain clustered samples and corresponding categories: The fingerprint database I is clustered by K-means algorithm, and the fingerprint database I is divided into V categories {c 1 , c 2 , .c v ..c V }, each class center vector is defined as {C 1 , C 2 ,...C V }, the RSSI training samples in the fingerprint database are divided into V classes respectively, and the clustering sample data set is obtained:
L={(r1,cv1),(r2,cv2),...(ri,cvi),...,(rN,cvN)} (2),L={(r 1 ,c v1 ),(r 2 ,c v2 ),...(r i ,c vi ),...,(r N ,c vN )} (2),
其中,ri=(ri1,ri2,...,riM)∈RM表示M个AP的RSSI,表示其属于的V类别,cv类由p个RSSI训练样本{rv1,rv2,...,rvp}组成,对所有cv类RSSI训练样本取平均值得到cv类中心向量 Among them, r i =(r i1 ,r i2 ,...,r iM )∈R M represents the RSSI of M APs, Indicates the V category it belongs to. The c v category consists of p RSSI training samples {r v1 ,r v2 ,...,r vp }, and the average of all the c v RSSI training samples is obtained to obtain the c v class center vector
(3)通过加权K近邻算法得到定位坐标:在线获取实时RSSI样本,找出与获取的实时RSSI样本最相似的类,通过K个最近邻样本预测在线获取的实时RSSI样本的属性值,对K个最近邻训练样本对应的位置进行加权,获得其位置坐标;线获取的实时RSSI样本记为T=((rj1,rj2,...,rjM),(x,y)),其中在线获取的实时RSSI样本r由rj=(rj1,rj2,...,rjM)∈RM表示,表示在线接收的M个AP的RSSI,位置向量o=(x,y)表示在线获取的实时RSSI样本的位置信息,其中在线获取的RSSI向量已知,位置向量(x,y)未知,(3) Obtain the positioning coordinates through the weighted K nearest neighbor algorithm: obtain the real-time RSSI samples online, find the most similar class to the real-time RSSI samples obtained, and predict the attribute values of the real-time RSSI samples obtained online through the K nearest neighbor samples. The positions corresponding to the nearest neighbor training samples are weighted to obtain their position coordinates; the real-time RSSI samples obtained by the line are recorded as T=((r j1 ,r j2 ,...,r jM ),(x,y)), where The real-time RSSI sample r obtained online is represented by r j =(r j1 ,r j2 ,...,r jM )∈R M , which represents the RSSI of M APs received online, and the position vector o=(x,y) represents The location information of the real-time RSSI samples obtained online, where the RSSI vector obtained online is known and the position vector (x, y) is unknown,
首先计算r向量与V个类中心RSSI向量{C1,C2,...CV}的相似度,确定与r向量最相似的类别,r向量{rj1,rj2,...,rjM}与第i个类中心的RSSI向量的余弦相似度定义为:First, calculate the similarity between the r vector and the V class center RSSI vectors {C 1 , C 2 ,...C V }, and determine the class most similar to the r vector. The r vector {r j1 ,r j2 ,..., r jM } and the RSSI vector of the ith class center The cosine similarity of is defined as:
同理,计算r向量与其他类别中心RSSI向量的相似度,经过V次计算,得到V个余弦相似度{Sim1,Sim2,...,SimV},其中最大相似度所对应的类别cv就是与r向量最相似的类别;In the same way, calculate the similarity between the r vector and the RSSI vector of other categories. After V calculations, V cosine similarities {Sim 1 , Sim 2 ,..., Sim V } are obtained, where the category corresponding to the maximum similarity c v is the most similar category to the r vector;
确定最相似类别cv与r向量最相似的K个样本rK1,rK2,..rKi.,rKK相似度分别为SimK1,SimK2,...,SimKK,Determine the K samples r K1 , r K2 , .. r Ki ., r KK that are most similar to the most similar category cv and r vector. The similarity is Sim K1 , Sim K2 ,..., Sim KK ,
(xK1,yK1),(xK2,yK2),...,(xKK,yKK)表示对应的坐标,(ri1,r12,...riM)表示选取的最相似的样本rKi对应的RSSI样本,归一化处理相似度,定义影响定位结果的权重为{wK1,wK2,...,wKK};(x K1 , y K1 ), (x K2 , y K2 ),...,(x KK ,y KK ) represent the corresponding coordinates, (r i1 ,r 12 ,...r iM ) represent the selected most similar The RSSI sample corresponding to the sample r Ki is normalized to process the similarity, and the weight that affects the positioning result is defined as {w K1 ,w K2 ,...,w KK };
加权样本坐标,得到在线获取的RSSI的位置坐标:Weight the sample coordinates to get the position coordinates of the RSSI obtained online:
x=wK1xK1+wK2xK2+...+wKKxKK (6),x=w K1 x K1 +w K2 x K2 +...+w KK x KK (6),
y=wK1yK1+wK2yK2+...+wKKyKK (7),y=w K1 y K1 +w K2 y K2 +...+w KK y KK (7),
(4)融合PDR定位进行状态和位置的更新:构建行人行走的系统模型Xk,PDR定位的初始位置坐标通过WIFI定位获得,融合WIFI定位和PDR定位得到误差阈值门限,通过加速度传感器获得行走步长,通过智能终端内置陀螺仪获取行走后的朝向角变化量,使用量测方程Zk更新状态信息和位置信息,所述行人行走的系统模型如下:(4) Integrate PDR positioning to update the state and position: build a pedestrian walking system model X k , the initial position coordinates of PDR positioning are obtained through WIFI positioning, the error threshold is obtained by integrating WIFI positioning and PDR positioning, and walking steps are obtained through acceleration sensor. Long, through the built-in gyroscope of the intelligent terminal to obtain the change of the orientation angle after walking, and use the measurement equation Z k to update the state information and position information, the system model of the pedestrian walking is as follows:
其中行走的步数用k表示,行走后的位置信息用xk,yk表示,θk表示k步后的方位朝向角,Wk-1表示噪声,为步长平均值,通过加速度传感器获得,为朝向角变化量,量测方程Zk如下所示:The number of walking steps is represented by k, the position information after walking is represented by x k , y k , θ k represents the azimuth and orientation angle after k steps, W k-1 represents noise, is the average value of the step size, obtained by the acceleration sensor, is the heading angle change, the measurement equation Z k is as follows:
其中,xk,yk表示通过WIFI定位获得的定位结果;sk表示行人平均行走步长,通过加速度传感器获得,Δθk表示行人行走后的朝向角变化量,通过智能终端内置陀螺仪获取,θk表示行人行走后的朝向角;Vk表示噪声;Among them, x k , y k represent the positioning results obtained by WIFI positioning; s k represents the average walking step length of pedestrians, obtained by the acceleration sensor, Δθ k represents the change in the orientation angle of the pedestrian after walking, obtained by the built-in gyroscope of the smart terminal, θ k represents the orientation angle of the pedestrian after walking; V k represents the noise;
(5)使用融合结果作为PDR的校正源:设定PDR偏差阈值门限εpdr,如果偏差超过设定的门限值,校正定位结果,得到WIFI和PDR融合定位结果,使用WIFI和PDR融合结果作为PDR的校正源,参见公式(9);(5) Use the fusion result as the PDR correction source: set the PDR deviation threshold ε pdr , if the deviation exceeds the set threshold, correct the positioning result to obtain the WIFI and PDR fusion positioning results, use the WIFI and PDR fusion results as Correction source of PDR, see formula (9);
(6)通过评价参数获取校正因子校正PDR结果:使用间隔时间段即在[0,T]时间内的数据来获取评价参数,评价参数见公式(13)、(14),通过评价参数获取校正因子校正因子见公式(15),对PDR结果进行校正;具体过程如下:(6) Obtain the correction factor through the evaluation parameters to correct the PDR results: use the data in the interval time period, that is, in the [0, T] time, to obtain the evaluation parameters. The evaluation parameters are shown in formulas (13) and (14). The factor correction factor is shown in formula (15) to correct the PDR results; the specific process is as follows:
表示通过融合定位后的定位结果,表示PDR单独定位结果,PDR单独定位由下式获得, Indicates the positioning result after fusion positioning, Indicates the result of PDR single positioning, PDR single positioning is obtained by the following formula,
y2=y1+S12 cos θ1 (10),y 2 =y 1 +S 12 cos θ 1 (10),
x2=x1+S12 sin θ1 (11),x 2 =x 1 +S 12 sin θ 1 (11),
(x1,x2)为PDR初始位置,(x2,y2)为PDR定位坐标,位移S由步长模型匹配加速度传感器获得,选取为行人步长60cm,方向角θ通过传感器及陀螺仪获得,(x 1 , x 2 ) is the initial position of the PDR, (x 2 , y 2 ) is the PDR positioning coordinate, the displacement S is obtained by matching the acceleration sensor with the step size model, and the pedestrian step size is 60cm, and the direction angle θ is passed through the sensor and gyroscope. get,
其定位结果差为:The positioning result difference is:
设在[0,K]时间内,累积误差表示为:Set in [0,K] time, the cumulative error is expressed as:
使用该特征作为PDR定位的校正因子,其校正原则如下:Using this feature as a correction factor for PDR positioning, the correction principles are as follows:
若累计误差Cx和Cy绝对值∈[0,σ1],定位误差可忽略,无需校正;If the absolute values of accumulated errors C x and C y ∈ [0,σ 1 ], the positioning error can be ignored and no correction is required;
若累计误差Cx和Cy绝对值∈[σ1,σ2],满足误差评价要求,校正定位结果;If the absolute values of cumulative errors C x and C y ∈ [σ 1 ,σ 2 ], the error evaluation requirements are met, and the positioning results are corrected;
若累计误差Cx和Cy绝对值∈[σ2,∞],不满足误差评价要求,WIFI定位误差大,重新进行融合定位;If the absolute values of the accumulated errors C x and C y ∈ [σ 2 ,∞], the error evaluation requirements are not met, and the WIFI positioning error is large, and the fusion positioning is performed again;
由于PDR定位结果存在累积误差等问题,会导致校正信息不对应,矫正能力过弱,通过设置校正比例因子α来代表当前时间的误差和前一段时间的误差的比例关系,[0,K]表示时间段,CN=αCk表示比例关系,通过下式平滑M时间段内的校正过程,解决定位结果突变问题:Due to problems such as accumulated errors in the PDR positioning results, the correction information will not correspond, and the correction ability is too weak. By setting the correction scale factor α to represent the proportional relationship between the error of the current time and the error of the previous period, [0, K] means Time period, C N = αC k represents the proportional relationship, and the correction process in the M time period is smoothed by the following formula to solve the problem of sudden changes in the positioning results:
式中,j∈[1,M]。In the formula, j∈[1,M].
图2示出了WIFI定位融合PDR定位的融合结构,通过WIFI定位获得PDR定位的初始位置坐标,融合WIFI定位和PDR定位得到误差阈值门限;使用WIFI和PDR融合结果作为PDR的校正源,设定PDR偏差阈值门限,如果偏差超过设定的门限值,校正定位结果;使用间隔时间段的数据来获取评价参数,通过评价参数获取校正因子,对PDR结果进行校正。Figure 2 shows the fusion structure of WIFI positioning and PDR positioning. The initial position coordinates of PDR positioning are obtained through WIFI positioning, and the error threshold is obtained by merging WIFI positioning and PDR positioning. The fusion result of WIFI and PDR is used as the correction source of PDR. PDR deviation threshold threshold, if the deviation exceeds the set threshold, correct the positioning result; use the data of the interval time period to obtain the evaluation parameters, obtain the correction factor through the evaluation parameters, and correct the PDR results.
与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:
将K-means算法与K近邻法相结合,缩短了WIFI定位时间,提高了定位精度。利用WIFI定位结果与PDR融合定位,使用校正因子对系统的定位因子进行校正。具有定位精度高、软件运算量低的特点,在保证定位精度的前提下实现实时要求。The K-means algorithm is combined with the K-nearest neighbor method, which shortens the WIFI positioning time and improves the positioning accuracy. Using the WIFI positioning result and PDR fusion positioning, use the correction factor to correct the positioning factor of the system. It has the characteristics of high positioning accuracy and low software calculation amount, and realizes real-time requirements under the premise of ensuring positioning accuracy.
以上结合附图对本发明的实施方式做出了详细说明,但本发明不局限于所描述的实施方式。对于本领域技术人员而言,在不脱离本发明的原理和精神的情况下,对这些实施方式进行各种变化、修改、替换和变型仍落入本发明的保护范围内。The embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to the described embodiments. For those skilled in the art, without departing from the principle and spirit of the present invention, various changes, modifications, substitutions and alterations to these embodiments still fall within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811083050.5A CN109413578B (en) | 2018-11-02 | 2018-11-02 | An indoor positioning method based on the fusion of WIFI and PDR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811083050.5A CN109413578B (en) | 2018-11-02 | 2018-11-02 | An indoor positioning method based on the fusion of WIFI and PDR |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109413578A CN109413578A (en) | 2019-03-01 |
CN109413578B true CN109413578B (en) | 2020-10-23 |
Family
ID=65464918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811083050.5A Active CN109413578B (en) | 2018-11-02 | 2018-11-02 | An indoor positioning method based on the fusion of WIFI and PDR |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109413578B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109982263A (en) * | 2019-04-04 | 2019-07-05 | 中国矿业大学 | A kind of WiFi fingerprint base update method based on inertia measurement tracing point |
CN110231592A (en) * | 2019-04-11 | 2019-09-13 | 深圳市城市交通规划设计研究中心有限公司 | Indoor orientation method, device, computer readable storage medium and terminal device |
CN110187308B (en) * | 2019-06-20 | 2023-06-16 | 华南师范大学 | Indoor positioning method, device, equipment and medium based on signal fingerprint library |
CN110320495A (en) * | 2019-08-01 | 2019-10-11 | 桂林电子科技大学 | A kind of indoor orientation method based on Wi-Fi, bluetooth and PDR fusion positioning |
CN110557829B (en) * | 2019-09-17 | 2020-12-11 | 北京东方国信科技股份有限公司 | Positioning method and positioning device for fusing fingerprint database |
CN111970633A (en) * | 2020-08-24 | 2020-11-20 | 桂林电子科技大学 | Indoor positioning method based on WiFi, Bluetooth and pedestrian dead reckoning fusion |
CN112637762A (en) * | 2020-12-11 | 2021-04-09 | 武汉科技大学 | Indoor fusion positioning method based on improved PDR algorithm |
CN113645561A (en) * | 2021-06-30 | 2021-11-12 | 南京邮电大学 | Self-adaptive switching positioning method based on indoor area division |
CN114353787B (en) * | 2021-12-06 | 2024-05-10 | 理大产学研基地(深圳)有限公司 | Multisource fusion positioning method |
CN114554389B (en) * | 2021-12-29 | 2023-06-20 | 重庆邮电大学 | A Pedestrian Navigation and Positioning System Fusion Method |
CN114501312A (en) * | 2022-02-17 | 2022-05-13 | 北京工业大学 | An indoor positioning method and system integrating WIFI and PDR positioning technology |
CN114743378A (en) * | 2022-05-16 | 2022-07-12 | 青岛理工大学 | Method and system for monitoring traffic flow in a tunnel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105588566A (en) * | 2016-01-08 | 2016-05-18 | 重庆邮电大学 | Indoor positioning system and method based on Bluetooth and MEMS (Micro-Electro-Mechanical Systems) fusion |
CN107426687A (en) * | 2017-04-28 | 2017-12-01 | 重庆邮电大学 | The method for adaptive kalman filtering of positioning is merged in towards WiFi/PDR rooms |
CN108303672A (en) * | 2017-12-26 | 2018-07-20 | 武汉创驰蓝天信息科技有限公司 | WLAN indoor positionings error correcting method based on location fingerprint and system |
CN108632761A (en) * | 2018-04-20 | 2018-10-09 | 西安交通大学 | A kind of indoor orientation method based on particle filter algorithm |
-
2018
- 2018-11-02 CN CN201811083050.5A patent/CN109413578B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105588566A (en) * | 2016-01-08 | 2016-05-18 | 重庆邮电大学 | Indoor positioning system and method based on Bluetooth and MEMS (Micro-Electro-Mechanical Systems) fusion |
CN107426687A (en) * | 2017-04-28 | 2017-12-01 | 重庆邮电大学 | The method for adaptive kalman filtering of positioning is merged in towards WiFi/PDR rooms |
CN108303672A (en) * | 2017-12-26 | 2018-07-20 | 武汉创驰蓝天信息科技有限公司 | WLAN indoor positionings error correcting method based on location fingerprint and system |
CN108632761A (en) * | 2018-04-20 | 2018-10-09 | 西安交通大学 | A kind of indoor orientation method based on particle filter algorithm |
Non-Patent Citations (1)
Title |
---|
WiFi-PDR室内组合定位的无迹卡尔曼滤波算法;陈国良,张言哲,汪云甲,孟晓林;《测绘学报》;20151231;第44卷;第1-8页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109413578A (en) | 2019-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109413578B (en) | An indoor positioning method based on the fusion of WIFI and PDR | |
CN110602647B (en) | Indoor fusion localization method based on extended Kalman filter and particle filter | |
CN109298389B (en) | Indoor pedestrian combination pose estimation method based on multi-particle swarm optimization | |
CN111491367B (en) | An indoor positioning method based on crowd-sensing and multi-fusion technology | |
CN106412839B (en) | Based on secondary partition and the matched indoor positioning of fingerprint gradient and tracking | |
Zhou et al. | Activity sequence-based indoor pedestrian localization using smartphones | |
CN110958575B (en) | A positioning method and system based on WiFi fusion prediction | |
CN104180805B (en) | Indoor Pedestrian Location and Tracking Method Based on Smartphone | |
WO2019136918A1 (en) | Indoor positioning method, server and positioning system | |
CN110320495A (en) | A kind of indoor orientation method based on Wi-Fi, bluetooth and PDR fusion positioning | |
CN107396321B (en) | Unsupervised indoor localization method based on mobile phone sensor and iBeacon | |
CN111829516B (en) | Autonomous pedestrian positioning method based on smart phone | |
CN109164411B (en) | A Person Location Method Based on Multi-data Fusion | |
CN111970633A (en) | Indoor positioning method based on WiFi, Bluetooth and pedestrian dead reckoning fusion | |
CN105589064A (en) | Rapid establishing and dynamic updating system and method for WLAN position fingerprint database | |
CN108534779A (en) | One kind is corrected based on track and the improved indoor positioning map constructing method of fingerprint | |
CN111901749A (en) | High-precision three-dimensional indoor positioning method based on multi-source fusion | |
CN105043380A (en) | Indoor navigation method based on a micro electro mechanical system, WiFi (Wireless Fidelity) positioning and magnetic field matching | |
CN108151747A (en) | A kind of indoor locating system and localization method merged using acoustical signal with inertial navigation | |
CN108632761A (en) | A kind of indoor orientation method based on particle filter algorithm | |
CN109211229A (en) | A kind of personnel's indoor orientation method based on mobile phone sensor and WiFi feature | |
CN107339992A (en) | A kind of method of the semantic mark of the indoor positioning and terrestrial reference of Behavior-based control | |
CN107576330A (en) | A kind of localization method of the indoor dynamic sensing strategy based on WLAN fingerprints | |
CN110300385A (en) | A kind of indoor orientation method based on adaptive particle filter | |
CN113566820B (en) | Fused pedestrian positioning method based on position fingerprint and PDR algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |