CN109325981B - Geometric parameter calibration method for micro-lens array type optical field camera based on focusing image points - Google Patents
Geometric parameter calibration method for micro-lens array type optical field camera based on focusing image points Download PDFInfo
- Publication number
- CN109325981B CN109325981B CN201811070094.4A CN201811070094A CN109325981B CN 109325981 B CN109325981 B CN 109325981B CN 201811070094 A CN201811070094 A CN 201811070094A CN 109325981 B CN109325981 B CN 109325981B
- Authority
- CN
- China
- Prior art keywords
- formula
- image point
- matrix
- image
- microlens array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000003287 optical effect Effects 0.000 title claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims abstract description 100
- 238000003384 imaging method Methods 0.000 claims abstract description 34
- 238000013507 mapping Methods 0.000 claims abstract description 19
- 238000010586 diagram Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000014509 gene expression Effects 0.000 claims description 11
- 230000009466 transformation Effects 0.000 claims description 8
- 238000007476 Maximum Likelihood Methods 0.000 claims description 5
- 210000001747 pupil Anatomy 0.000 claims description 5
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10052—Images from lightfield camera
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Devices (AREA)
Abstract
本发明公开了一种基于聚焦像点的微透镜阵列型光场相机几何参数标定方法,该方法包括以下步骤:S1,根据微透镜阵列型光场相机的聚焦成像光路图,得到物点与聚焦像点关于主透镜的映射关系;S2,根据微透镜阵列型光场相机的聚焦成像光路图,得到聚焦像点与探测器像点关于微透镜的映射关系;S3,根据检测得到的探测器像点,求解聚焦像点的坐标;S4,根据S3获得的聚焦像点的坐标,求解标定模型中的相机内部参数矩阵和外部参数矩;S5,通过S4获得的相机内部参数矩阵和外部参数矩阵,标定微透镜阵列型光场相机的几何参数。通过采用本发明提供的方法,进行微透镜阵列型光场相机的几何参数标定,可以为后续光场数据校准和实现计算成像提供可靠的参数。
The invention discloses a method for calibrating geometric parameters of a microlens array type light field camera based on a focused image point. The method includes the following steps: S1, according to a focused imaging optical path diagram of the microlens array type light field camera, obtain the object point and the focus The mapping relationship between the image point and the main lens; S2, according to the focusing imaging optical path diagram of the microlens array light field camera, the mapping relationship between the focusing image point and the detector image point on the microlens is obtained; S3, according to the detected detector image point, solve the coordinates of the focused image point; S4, solve the camera internal parameter matrix and external parameter moment in the calibration model according to the coordinates of the focused image point obtained in S3; S5, obtain the camera internal parameter matrix and external parameter matrix through S4, Calibrate the geometric parameters of the microlens array light field camera. By adopting the method provided by the present invention to calibrate the geometric parameters of the microlens array light field camera, reliable parameters can be provided for subsequent light field data calibration and computational imaging.
Description
技术领域technical field
本发明涉及计算机视觉与数字图像处理技术领域,尤其涉及一种基于聚焦像点的微透镜阵列型光场相机几何参数标定方法。The invention relates to the technical field of computer vision and digital image processing, in particular to a method for calibrating geometric parameters of a microlens array light field camera based on a focused image point.
背景技术Background technique
光场成像技术能够同时记录光线的空间和角度信息,能够突破常规透镜成像的局限。利用光场数据可实现数字重聚焦、景深扩展、场景深度计算和场景三维重建等计算成像技术,被广泛应用于计算机视觉和计算成像领域。Light field imaging technology can simultaneously record the spatial and angular information of light, which can break through the limitations of conventional lens imaging. Using light field data, computational imaging techniques such as digital refocusing, depth of field extension, scene depth calculation, and scene 3D reconstruction can be realized, and are widely used in the fields of computer vision and computational imaging.
光场的不同采样方式形成了获取光场数据的不同硬件系统,如微透镜阵列型光场相机、结构相机阵列型光场相机和掩膜型光场相机等。其中,微透镜阵列型光场相机通过在成像系统中加入微透镜阵列,通过主透镜的光线分束,将连续光场离散化完成光场数据采集。微透镜阵列型光场相机具有硬件结构简单、设备便携和单次曝光即可获取光场数据等优势,是目前主流的光场获取装置。微透镜阵列型光场相机的典型代表是Ng Ren等设计的光场相机(Plenoptic1.0)。该成像装置是在传统相机的焦平面处放置一个微透镜阵列,并将图像探测器置于微透镜的一倍焦距处。Georgiew等提出了聚焦型光场相机(Plenoptic2.0),成像探测器不在微透镜阵列的焦面上,减少了光线方向维度的采样,用较低的方向分辨率换取相对更高的空间分辨率,有效提高了重聚焦图像的成像分辨率。Different sampling methods of the light field form different hardware systems for acquiring light field data, such as microlens array light field cameras, structured camera array light field cameras, and mask light field cameras. Among them, the microlens array type light field camera completes the light field data collection by adding a microlens array to the imaging system and splitting the light beams of the main lens to discretize the continuous light field. The microlens array light field camera has the advantages of simple hardware structure, portable equipment, and the ability to obtain light field data in a single exposure, and is currently the mainstream light field acquisition device. A typical representative of the microlens array light field camera is the light field camera (Plenoptic 1.0) designed by Ng Ren et al. In this imaging device, a microlens array is placed at the focal plane of a conventional camera, and an image detector is placed at one focal length of the microlens. Georgiew et al. proposed a focusing light field camera (Plenoptic2.0), where the imaging detector is not on the focal plane of the microlens array, which reduces the sampling of the directional dimension of the light, and trades a lower directional resolution for a relatively higher spatial resolution , which effectively improves the imaging resolution of the refocused image.
光场成像系统的几何参数标定是光场数据校准和实现计算成像技术的重要前提。相机的几何参数的标定过程分为由物点到探测器像点的正过程建模,以及,由角点检测反演求解相机几何参数的过程。正过程建模是建立物点三维坐标与成像面上像点二维坐标的映射关系,这一映射关系由相机几何参数描述。而求解相机几何参数的过程,是利用检测到的成像面上角点坐标和物点坐标,基于正过程建模反演求解相机几何参数,对应非线性求解问题。也就是说,现有的相机的几何参数的标定方法将几何参数融合在一个模型中,检测出角点,再由角点计算微透镜阵列型光场相机的几何参数。这种相机的几何参数的标定方法的模型耦合度高,计算偏复杂。The calibration of the geometric parameters of the light field imaging system is an important prerequisite for the calibration of light field data and the realization of computational imaging technology. The calibration process of the geometric parameters of the camera is divided into the modeling of the positive process from the object point to the image point of the detector, and the process of solving the geometric parameters of the camera by the corner detection and inversion. Positive process modeling is to establish the mapping relationship between the three-dimensional coordinates of the object point and the two-dimensional coordinates of the image point on the imaging plane, and this mapping relationship is described by the camera geometric parameters. The process of solving the geometric parameters of the camera is to use the coordinates of the corner points and object points on the detected imaging surface to invert and solve the geometric parameters of the camera based on the forward process modeling, which corresponds to the nonlinear solution problem. That is to say, the existing method for calibrating the geometric parameters of the camera integrates the geometric parameters into a model, detects the corner points, and then calculates the geometric parameters of the microlens array light field camera from the corner points. This method of calibrating the geometric parameters of the camera has a high degree of model coupling, and the calculation is complicated.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于聚焦像点的微透镜阵列型光场相机几何参数标定方法来求解相机的几何参数。The purpose of the present invention is to provide a method for calibrating the geometric parameters of a microlens array light field camera based on a focused image point to solve the geometric parameters of the camera.
为实现上述目的,本发明提供一种基于聚焦像点的微透镜阵列型光场相机几何参数标定方法,所述基于聚焦像点的微透镜阵列型光场相机几何参数标定方法包括以下步骤:S1,根据微透镜阵列型光场相机的聚焦成像光路图,得到物点与聚焦像点关于主透镜的映射关系;S2,根据微透镜阵列型光场相机的聚焦成像光路图,得到聚焦像点与探测器像点关于微透镜的映射关系;S3,根据检测得到的探测器像点,求解聚焦像点的坐标;S4,根据S3获得的聚焦像点的坐标,求解标定模型中的相机内部参数矩阵和外部参数矩阵;以及S5,通过S4获得的相机内部参数矩阵和外部参数矩阵,标定微透镜阵列型光场相机的几何参数,该几何参数包括微透镜阵列与探测器平面的间距和主透镜到微透镜的距离。In order to achieve the above purpose, the present invention provides a method for calibrating geometric parameters of a microlens array light field camera based on a focused image point, and the method for calibrating geometric parameters of a microlens array light field camera based on a focused image point includes the following steps: S1 , according to the focusing imaging optical path diagram of the microlens array light field camera, the mapping relationship between the object point and the focusing image point on the main lens is obtained; S2, according to the focusing imaging optical path diagram of the microlens array light field camera, the focusing image point and the focusing image point are obtained. The mapping relationship between the detector image point and the microlens; S3, according to the detected detector image point, solve the coordinates of the focus image point; S4, according to the coordinates of the focus image point obtained in S3, solve the camera internal parameter matrix in the calibration model and external parameter matrix; and S5, the camera internal parameter matrix and external parameter matrix obtained by S4, calibrate the geometric parameters of the microlens array light field camera, the geometric parameters include the distance between the microlens array and the detector plane and the distance from the main lens to the main lens Microlens distance.
进一步地,S1中的“物点与聚焦像点关于主透镜的映射关系”表示为式(1),设定:物点表示为M,其坐标为(xw,yw,zw);聚焦像点表示为m′,其坐标为(u′,v′):Further, "the mapping relationship between the object point and the focus image point on the main lens" in S1 is expressed as formula (1), and it is set that: the object point is expressed as M, and its coordinates are (x w , y w , z w ); The focused image point is denoted as m', and its coordinates are (u', v'):
sm′=A[R t]M, (1)sm′=A[R t]M, (1)
式(1)中,s为比例因子;M=[xw,yw,zw,1]T;m′=[u′,v′,1]T;[R t]表示微透镜阵列型光场相机的外部参数矩阵,A表示微透镜阵列型光场相机的内部参数矩阵;In formula (1), s is the scale factor; M=[x w , y w , z w , 1] T ; m′=[u′, v′, 1] T ; [R t] represents the microlens array type The external parameter matrix of the light field camera, A represents the internal parameter matrix of the microlens array light field camera;
[R t[表示为如下的式(3)和式(2):[R t[ is represented by the following formulas (3) and (2):
式(2)和式(3)中,q1、q2、q3分别表示相机坐标系与世界坐标系转化过程中三个坐标轴的旋转角,tx、ty、tz表示世界坐标系的原点沿三个坐标轴平移的距离;In formula (2) and formula (3), q 1 , q 2 , and q 3 respectively represent the rotation angles of the three coordinate axes during the transformation of the camera coordinate system and the world coordinate system, and t x , ty , and t z represent the world coordinates The distance that the origin of the system is translated along the three coordinate axes;
A表示为如下的式(4):A is represented by the following formula (4):
式(4)中,dx×dy为探测器的像素尺寸,u0、v0为主透镜中心在图像坐标系下的坐标,θ为两坐标轴的不垂直性倾斜角;In formula (4), dx×dy is the pixel size of the detector, u 0 and v 0 are the coordinates of the center of the main lens in the image coordinate system, and θ is the non-perpendicular tilt angle of the two coordinate axes;
其中:相机坐标系以主透镜的中心为原点O,xc、yc轴平行于探测器平面,zc轴垂直于探测器平面;世界坐标系以标定物平面的中心为原点Ow,xw、yw轴平行于标定物平面,zw轴垂直于标定物平面;图像坐标系以探测器平面中心为原点Oc,u、v轴平行于xc、yc轴。Among them: the camera coordinate system takes the center of the main lens as the origin O, the x c and y c axes are parallel to the detector plane, and the z c axis is perpendicular to the detector plane; the world coordinate system takes the center of the calibration object plane as the origin O w , x The w and y w axes are parallel to the calibration object plane, and the z w axis is perpendicular to the calibration object plane; the image coordinate system takes the center of the detector plane as the origin O c , and the u and v axes are parallel to the x c and y c axes.
进一步地,S2中的“聚焦像点与探测器像点关于微透镜的映射关系”为式(8),设定:探测器像点包括像点m1和像点m2,像点m1在图像坐标系的坐标为(u1,v1),其对应的微透镜的中心在图像坐标系的坐标为(p1,q1);像点m2在图像坐标系的坐标为(u2,v2),其对应的微透镜中心在图像坐标系的坐标为(p2,q2);Further, the "mapping relationship between the focus image point and the detector image point with respect to the microlens" in S2 is the formula (8). It is set that the detector image point includes the image point m 1 and the image point m 2 , and the image point m 1 The coordinates in the image coordinate system are (u 1 , v 1 ), and the coordinates of the center of the corresponding microlens in the image coordinate system are (p 1 , q 1 ); the coordinates of the image point m 2 in the image coordinate system are (u 1 , q 1 ) 2 , v 2 ), the coordinates of the corresponding microlens center in the image coordinate system are (p 2 , q 2 );
sm′=sT-1m1=A[R t]M (8)sm′=sT −1 m 1 =A[R t]M (8)
式(8)中:m1表示为像点m1的坐标向量;T为像点m′与像点m1间的转换矩阵;In formula (8): m 1 represents the coordinate vector of the image point m 1 ; T is the transformation matrix between the image point m' and the image point m 1 ;
m1表示为m1=[u1,v1,1]T;m 1 is expressed as m 1 =[u 1 ,v 1 ,1] T ;
T表示为如下的式(6)和式(7):T is represented by the following equations (6) and (7):
δ=b/a=(u1-u2)/(p1-p2)-1 (7)。δ=b/a=(u 1 -u 2 )/(p 1 -p 2 )-1 (7).
进一步地,S3具体是根据检测得到的探测器像点,并利用微透镜阵列型的聚焦成像光路图中的几何关系,求解聚焦像点的坐标;Further, S3 specifically is to solve the coordinates of the focused image point according to the detected image point of the detector, and use the geometrical relationship in the focused imaging optical path diagram of the microlens array type;
“检测得到的探测器像点”为像点m1、m2;"Detected detector image points" are image points m 1 , m 2 ;
“微透镜阵列型的聚焦成像光路图中的几何关系”表示为式(9):"The geometric relationship in the focused imaging optical path diagram of the microlens array type" is expressed as formula (9):
则根据式(8)可得式(10):Then formula (10) can be obtained according to formula (8):
首先,将像点m1、m2在图像坐标系的坐标及对应的微透镜的中心在图像坐标系的坐标代入式(7),计算得到δ值;First, substitute the coordinates of the image points m 1 and m 2 in the image coordinate system and the coordinates of the center of the corresponding microlens in the image coordinate system into formula (7), and calculate the δ value;
然后,将计算得到的δ值代入式(9),求解聚焦像点m′坐标(u′,v′)。Then, the calculated δ value is substituted into formula (9), and the coordinates (u', v') of the focus image point m' are solved.
进一步地,S4具体包括:S41,设标定模型平面在世界坐标系中zw=0,代入式(1),根据物点M与对应的聚焦像点m′坐标可得到一个3×3单应性矩阵H,为求解矩阵H的最大似然估计,迭代图像中的聚焦像点求解非线性最小二乘问题;S42,根据r1与r2的约束条件,将由矩阵H得出的r1与r2的表达式代入,再将对称矩阵B及其计算式带入得到的等式中,最后得到一个2×6矩阵V,代入三幅图像的单应性矩阵hi可求解矩阵b,进而求解矩阵A中的未知参数;S43,已求解出矩阵A,将矩阵A代入r1与r2的表达式可求解出r1、r2,并结合矩阵H可求解出矩阵[R t]中的未知参数;S44,对n幅图像进行标定,每幅图像的聚焦像点有m个,对上述求解方法求出的参数迭代优化,求解非线性最小二乘问题,以对上述步骤求出的参数进行非线性优化。Further, S4 specifically includes: S41, set the calibration model plane z w = 0 in the world coordinate system, substitute formula (1), and obtain a 3 × 3 homography according to the coordinates of the object point M and the corresponding focus image point m' property matrix H, in order to solve the maximum likelihood estimation of the matrix H, iteratively solve the nonlinear least squares problem of the focused image points in the image; S42, according to the constraints of r 1 and r 2 , compare the r 1 obtained by the matrix H with the Substitute the expression of r 2 , and then bring the symmetric matrix B and its calculation formula into the obtained equation, and finally obtain a 2 × 6 matrix V, which can be substituted into the homography matrix h i of the three images to solve the matrix b, and then Solve the unknown parameters in matrix A; S43, matrix A has been solved, substituting matrix A into the expressions of r 1 and r 2 can solve r 1 , r 2 , and combining matrix H can solve matrix [R t] The unknown parameters of the The parameters are optimized nonlinearly.
进一步地,S41具体包括:Further, S41 specifically includes:
设标定模型平面在世界坐标系中zw=0,代入(1)式,则有式(11):Set the calibration model plane z w = 0 in the world coordinate system, and substitute it into equation (1), there is equation (11):
根据物点M与对应的聚焦像点m′坐标可得到一个3×3单应性矩阵H,形式如下:According to the coordinates of the object point M and the corresponding focus image point m', a 3×3 homography matrix H can be obtained in the following form:
H=[h1 h2 h3]=λA[r1 r2 t] (12)H=[h 1 h 2 h 3 ]=λA[r 1 r 2 t] (12)
式(12)中,hi=[hi1,hi2,hi3]T,λ为任意标量;In formula (12), h i = [h i1 , h i2 , h i3 ] T , λ is an arbitrary scalar;
为求解矩阵H的最大似然估计,迭代图像中的聚焦像点求解非线性最小二乘问题:To solve the maximum likelihood estimate of the matrix H, iteratively solve the nonlinear least squares problem for the focused image points in the image:
式(13)中,m′i为同一幅图像中第i个聚焦像点的实际坐标向量,根据式(11)、式(12)由物点Mi计算得到。In formula (13), m′ i is the actual coordinate vector of the i-th focused image point in the same image, According to formula (11) and formula (12), it is calculated from the object point Mi.
进一步地,S42具体包括:Further, S42 specifically includes:
由旋转矩阵的性质可知,矩阵R中的r1与r2满足以下两个约束条件:According to the properties of the rotation matrix, r 1 and r 2 in the matrix R satisfy the following two constraints:
由式(12)可知From formula (12), it can be known that
r1=λA-1h1,r2=λA-1h2 (15)r 1 =λA -1 h 1 ,r 2 =λA -1 h 2 (15)
式(15)中,λ=1/||A-1h1||=1/||A-1h2||,将式(15)代入式(14)可得:In formula (15), λ=1/||A -1 h 1 ||=1/||A -1 h 2 ||, and substituting formula (15) into formula (14) can get:
令make
B为对称矩阵,计算可得式(18):B is a symmetric matrix, and formula (18) can be obtained by calculation:
式(18)中:In formula (18):
b=[B11,B12,B22,B13,B23,B33]T (19)b=[B 11 , B 12 , B 22 , B 13 , B 23 , B 33 ] T (19)
vij=[hi1hj1,hi1hj2+hi2hj1,hi2hj2,hi3hj1+hi1hj3,hi3hj2+hi2hj3,hi3hj3]T (20)v ij =[h i1 h j1 ,h i1 h j2 +h i2 h j1 ,h i2 h j2 ,h i3 h j1 +h i1 h j 3,h i3 h j 2+h i2 h j3 ,h i3 h j3 ] T (20)
将式(17)和式(18)代入式(16)可得式(21):Substituting equations (17) and (18) into equation (16) can obtain equation (21):
即有式(22):That is, there is formula (22):
式(22)中,V为2×6矩阵,含有6个未知参数,代入三幅图像的单应性矩阵hi可求解矩阵b,进而求解矩阵A中的未知参数:In formula (22), V is a 2 × 6 matrix, which contains 6 unknown parameters. Substitute into the homography matrix h i of the three images to solve the matrix b, and then solve the unknown parameters in the matrix A:
γ=-B12α2β/λ (26)γ=-B 12 α 2 β/λ (26)
u0=γv0/β-B13α2/λ (27)u 0 =γv 0 /β-B 13 α 2 /λ (27)
从而确定微透镜阵列型光场相机的内部参数矩阵A。Thus, the internal parameter matrix A of the microlens array type light field camera is determined.
进一步地,S43具体包括:Further, S43 specifically includes:
将S42求解出矩阵A代入式(15)可求解出r1、r2,具体计算表达式为式(29):Substitute the matrix A obtained from S42 into formula (15) to obtain r 1 and r 2 , and the specific calculation expression is formula (29):
r3=r1×r2 (29)r 3 =r 1 ×r 2 (29)
由式(12)可得式(30):Formula (30) can be obtained from formula (12):
t=λA-1h3 (30)。t=λA -1 h 3 (30).
进一步地,S44具体包括:Further, S44 specifically includes:
对n幅图像进行标定,每幅图像的聚焦像点有m个,对上述求解方法求出的参数进行迭代优化,求解非线性最小二乘问题:The n images are calibrated, each image has m focus points, and the parameters obtained by the above solution method are iteratively optimized to solve the nonlinear least squares problem:
式(31)中,m′ij为第i幅图像第j个角点的聚焦像点坐标,根据式(8)由第i幅图像的第j个物点坐标向量Mj及Ai,Ri,ti计算得到,A和[R t]的初始值由S41到S43计算得到。In formula (31), m′ ij is the focus point coordinate of the jth corner of the ith image, According to formula (8), the jth object point coordinate vector M j and A i , R i , t i of the ith image are calculated, and the initial values of A and [R t] are calculated from S41 to S43.
进一步地,S5具体包括:Further, S5 specifically includes:
主透镜光瞳直径D与微透镜图像的直径d满足下式:The pupil diameter D of the main lens and the diameter d of the microlens image satisfy the following formula:
D/L=d/b (32)D/L=d/b (32)
由式(7)可得式(33):Formula (33) can be obtained from formula (7):
a=b/δ (33)a=b/δ (33)
将式(32)和式(33)代入式(4)中的α=(L-a)/(dx),可求得式(34)和式(35):Substituting equations (32) and (33) into α=(L-a)/(dx) in equation (4), equations (34) and (35) can be obtained:
L=a+αdx (34)L=a+αdx (34)
b=αδddx/(δD-d) (35)b=αδddx/(δD-d) (35)
式(34)和式(35)中,参数α、δ成为已知参数。In equations (34) and (35), the parameters α and δ are known parameters.
本发明提供的方法将模型分成两个共轭关系,检测出角点,由角点根据第二共轭关系得到聚焦像点,再由第二共轭关系计算微透镜阵列型光场相机的几何参数,这种方法模型耦合度低,计算简便。The method provided by the invention divides the model into two conjugate relationships, detects the corner points, obtains the focused image point from the corner points according to the second conjugate relationship, and then calculates the geometry of the microlens array type light field camera based on the second conjugate relationship. parameters, this method has low model coupling and is easy to calculate.
附图说明Description of drawings
图1是本发明提供的基于聚焦像点的微透镜阵列型光场相机几何参数标定方法的流程图;1 is a flowchart of a method for calibrating geometric parameters of a focused image point-based microlens array light field camera provided by the present invention;
图2是本发明提供的微透镜阵列型的聚焦成像光路图;Fig. 2 is the light path diagram of focusing imaging of the microlens array type provided by the present invention;
图3是本发明中的图像坐标系、相机坐标系以及世界坐标系之间对应关系示意图。FIG. 3 is a schematic diagram of the correspondence between the image coordinate system, the camera coordinate system and the world coordinate system in the present invention.
具体实施方式Detailed ways
在附图中,使用相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面结合附图对本发明的实施例进行详细说明。In the drawings, the same or similar reference numerals are used to denote the same or similar elements or elements having the same or similar functions. The embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
如图1所示,本实施例提供的基于聚焦像点的微透镜阵列型光场相机几何参数标定方法包括以下步骤:As shown in FIG. 1 , the method for calibrating geometric parameters of a microlens array light field camera based on a focused image point provided in this embodiment includes the following steps:
S1,根据微透镜阵列型光场相机的聚焦成像光路图,得到物点与聚焦像点关于主透镜的映射关系,亦即下文提及的“第一共轭关系”。S1 , according to the focused imaging optical path diagram of the microlens array light field camera, the mapping relationship between the object point and the focused image point on the main lens is obtained, that is, the "first conjugate relationship" mentioned below.
S2,根据微透镜阵列型光场相机的聚焦成像光路图,得到聚焦像点与探测器像点关于微透镜的映射关系,亦即下文提及的“第二共轭关系”。S2, according to the focused imaging optical path diagram of the microlens array light field camera, the mapping relationship between the focused image point and the detector image point with respect to the microlens is obtained, that is, the "second conjugate relationship" mentioned below.
S3,根据检测得到的探测器像点,利用逆转换矩阵或几何关系求解聚焦像点的坐标。S3, according to the detected image point of the detector, use an inverse transformation matrix or a geometric relationship to find the coordinates of the focused image point.
S4,根据S3获得的聚焦像点的坐标,采用迭代算法求解标定模型中的相机内部参数矩阵和外部参数矩阵。文中的“相机内部参数矩阵”指的是微透镜阵列型光场相机的内部参数,“相机外部参数矩阵”指的是微透镜阵列型光场相机的外部参数。S4, according to the coordinates of the focused image point obtained in S3, an iterative algorithm is used to solve the camera internal parameter matrix and external parameter matrix in the calibration model. The "camera internal parameter matrix" in the text refers to the internal parameters of the microlens array light field camera, and the "camera external parameter matrix" refers to the external parameters of the microlens array light field camera.
S5,通过S4获得的相机内部参数矩阵和外部参数矩阵,标定微透镜阵列型光场相机的几何参数,该几何参数微透镜阵列与探测器平面的间距b和主透镜到微透镜的距离L。S5, through the camera internal parameter matrix and external parameter matrix obtained in S4, the geometric parameters of the microlens array light field camera are calibrated, the geometric parameters are the distance b between the microlens array and the detector plane and the distance L from the main lens to the microlens.
下面分别就本发明的五个步骤进行详细阐述。The five steps of the present invention will be described in detail below.
在一个实施例中,S1中,微透镜阵列型光场相机通过在传统相机内的探测器前放置微透镜阵列,获取场景的光场信息。In one embodiment, in S1, the microlens array type light field camera acquires the light field information of the scene by placing a microlens array in front of a detector in a conventional camera.
微透镜阵列型光场相机的光路图如图2所示。如图2所示,微透镜阵列由多个阵列式布置的微透镜组成的结构,例如图2中示出的微透镜阵列中的部分微透镜,即第一微透镜l1、第二微透镜l2、第三微透镜l3、第四微透镜l4。The light path diagram of the microlens array type light field camera is shown in Figure 2. As shown in FIG. 2 , the microlens array is a structure composed of a plurality of microlenses arranged in an array, for example, some of the microlenses in the microlens array shown in FIG. 2 , namely the first microlens l1 and the second microlens l2 , a third microlens l3, and a fourth microlens l4.
图2中,从左至右的顺序依次为:像点m′所在的虚直线P1示意的是聚焦成像点所在的平面(下文均简称为“聚焦成像面”)。聚焦像点m1和聚焦像点m2所在的实直线P2示意的是探测器所在的平面(下文均简称为“探测器面”)。第一微透镜l1、第二微透镜l2、第三微透镜l3、第四微透镜l4同时所在的实直线P3示意的是微透镜阵列所在的平面(下文均简称为“微透镜阵列面”)。主透镜lm所在的实直线P3示意的是主透镜平面。物点M所在的虚直线P4示意的是物点所在的平面(下文均简称为“物平面”)。In FIG. 2, the order from left to right is: the dotted straight line P1 where the image point m' is located indicates the plane where the focused imaging point is located (hereinafter referred to as "focusing imaging plane"). The solid straight line P2 where the focused image point m 1 and the focused image point m 2 are located indicates the plane where the detector is located (hereinafter referred to as "detector plane"). The solid line P3 where the
其中:微透镜阵列面与探测器面的间距为b,也可以说是:微透镜阵列与探测器平面的间距b,亦即上文的S5中提及的本发明待标定的几何参数之一。主透镜平面到微透镜阵列面的间距为L,也可以说是:主透镜到微透镜的距离L,亦即上文的S5中提及的本发明待标定的几何参数之二。Wherein: the distance between the microlens array surface and the detector surface is b, which can also be said to be: the distance b between the microlens array and the detector plane, that is, one of the geometric parameters to be calibrated in the present invention mentioned in S5 above . The distance between the main lens plane and the microlens array surface is L, which can also be said to be the distance L from the main lens to the microlens, which is the second geometric parameter to be calibrated in the present invention mentioned in S5 above.
聚焦成像面到微透镜阵列面的距离为a,微透镜的焦距为f,由透镜成像公式可知1/a+1/b=1/f。图2中对应b<f的情况,此时a<0,物点经主透镜形成的像点在微透镜阵列的另一侧,为虚像。The distance from the focusing imaging surface to the microlens array surface is a, the focal length of the microlens is f, and it can be known from the lens imaging formula that 1/a+1/b=1/f. Figure 2 corresponds to the case of b<f, at this time a<0, the image point formed by the object point through the main lens is on the other side of the microlens array, which is a virtual image.
聚焦成像面到主透镜平面的距离为bL,物平面到主透镜平面的距离为aL。A为光阑,主透镜的光瞳直径为D,微透镜图像的直径为d。The distance from the focusing imaging plane to the main lens plane is b L , and the distance from the object plane to the main lens plane is a L . A is the diaphragm, the pupil diameter of the main lens is D, and the diameter of the microlens image is d.
S1中,针对上述微透镜阵列型的微透镜阵列排列方式,考虑焦距相同的微透镜阵列,给出由物点生成像点的正问题建模。正问题建模包括建立物点与聚焦像点关于主透镜的映射关系,以及聚焦像点与探测器像点关于微透镜的映射关系。In S1, for the microlens array arrangement of the above-mentioned microlens array type, considering the microlens arrays with the same focal length, the modeling of the positive problem of generating an image point from an object point is given. Positive problem modeling includes establishing the mapping relationship between the object point and the focus image point on the main lens, and the mapping relationship between the focus image point and the detector image point on the microlens.
图2所示的微透镜阵列型聚焦成像过程,该过程存在两个共轭关系,即物点M与聚焦像点m′关于主透镜平面共轭、像点m′与探测器上的两个聚焦像点m1,m2关于微透镜阵列面共轭,分别对应上文提及的“第一共轭关系”和“第二共轭关系”。The microlens array type focusing imaging process shown in FIG. 2 has two conjugate relationships, that is, the object point M and the focused image point m' are conjugate with respect to the main lens plane, and the image point m' and the two on the detector are conjugated. The focusing image points m 1 , m 2 are conjugate with respect to the microlens array surface, respectively corresponding to the “first conjugate relationship” and “second conjugate relationship” mentioned above.
S1中的“物点与聚焦像点关于主透镜的映射关系”具体为:The "mapping relationship between the object point and the focus image point on the main lens" in S1 is specifically:
对于物点M与聚焦像点m′关于主透镜的映射关系,由第一共轭关系描述。物点M经主透镜形成像点m′的过程,可通过世界坐标系、相机坐标系和图像坐标系之间的坐标转换关系来描述。The mapping relationship between the object point M and the focused image point m' on the main lens is described by the first conjugate relationship. The process that the object point M forms the image point m' through the main lens can be described by the coordinate transformation relationship between the world coordinate system, the camera coordinate system and the image coordinate system.
如图3所示,设定:三维相机坐标系以主透镜的中心为原点O,xc、yc轴平行于探测器平面,zc轴垂直于探测器平面。二维图像坐标系以探测器平面中心为原点Oc,u、v轴平行于xc、yc轴。三维世界坐标系以标定物平面的中心为原点Ow,xw、yw轴平行于标定物平面,zw轴垂直于标定物平面。三维相机坐标系的单位为pixel,二维图像坐标系的单位为mm,三维世界坐标系的单位为mm。物点M的坐标为(xw,yw,zw),像点m′的坐标为(u′,v′),u′对应为图2中示意出的u′。As shown in Figure 3, it is set that the three-dimensional camera coordinate system takes the center of the main lens as the origin O, the x c and y c axes are parallel to the detector plane, and the z c axis is perpendicular to the detector plane. The two-dimensional image coordinate system takes the center of the detector plane as the origin O c , and the u and v axes are parallel to the x c and y c axes. The three-dimensional world coordinate system takes the center of the calibration object plane as the origin O w , the x w and y w axes are parallel to the calibration object plane, and the z w axis is perpendicular to the calibration object plane. The unit of the 3D camera coordinate system is pixel, the unit of the 2D image coordinate system is mm, and the unit of the 3D world coordinate system is mm. The coordinates of the object point M are (x w , y w , z w ), the coordinates of the image point m' are (u', v'), and u' corresponds to u' shown in FIG. 2 .
将物点M转换到二维图像坐标系下的像点m′的过程,可表示为式(1):The process of converting the object point M to the image point m' in the two-dimensional image coordinate system can be expressed as formula (1):
sm′=A[R t]M (1)sm′=A[R t]M (1)
式(1)中:In formula (1):
s为比例因子;s is the scale factor;
M可表示为M=[xw,yw,zw,1]T;M can be expressed as M=[x w , y w , z w , 1] T ;
m′可表示为m′=[u′,v′,1]T;m' can be expressed as m'=[u',v',1] T ;
[R t]表示微透镜阵列型光场相机的外部参数矩阵;[R t] represents the external parameter matrix of the microlens array light field camera;
A表示微透镜阵列型光场相机的内部参数矩阵。A represents the internal parameter matrix of the microlens array type light field camera.
相机的外部参数矩阵[R t]描述了世界坐标系与相机坐标系之间的转换关系,该转换关系可表示为式(2)和式(3):The camera's external parameter matrix [R t] describes the transformation relationship between the world coordinate system and the camera coordinate system, which can be expressed as equations (2) and (3):
式(2)和式(3)中,q1、q2、q3表示相机坐标系与世界坐标系转化过程中三个坐标轴的旋转角;tx、ty、tz表示原点Ow分别沿三个坐标轴平移的距离。In equations (2) and (3), q 1 , q 2 , and q 3 represent the rotation angles of the three coordinate axes in the process of transforming the camera coordinate system and the world coordinate system; t x , ty , and t z represent the origin O w The distance to translate along the three coordinate axes respectively.
相机的内部参数矩阵A可表示为式(4),式(4)描述了相机坐标系与图像坐标系之间的转换关系:The camera's internal parameter matrix A can be expressed as equation (4), which describes the conversion relationship between the camera coordinate system and the image coordinate system:
式(4)中:dx×dy为探测器的像素尺寸;u0、v0为主透镜的中心在图像坐标系下的坐标,θ为相机坐标系与世界坐标系的不垂直性倾斜角。In formula (4): dx×dy is the pixel size of the detector; u 0 , v 0 are the coordinates of the center of the main lens in the image coordinate system, and θ is the non-perpendicular inclination angle between the camera coordinate system and the world coordinate system.
在一个实施例中,S2中,设定:像点m1在图像坐标系的坐标为(u1,v1),其对应的微透镜的中心在图像坐标系的坐标为(p1,q1),u1、p1对应为图2中示意出的u1、p1;像点m2在图像坐标系的坐标为(u2,v2),其对应的微透镜中心在图像坐标系的坐标为(p2,q2),u2、p2对应为图2中示意出的u2、p2。由图3中微透镜在针孔模型下的几何关系可得,主透镜聚焦形成的像点m′与探测器上像点m1的坐标转换关系为式(5):In one embodiment, in S2, it is set that the coordinates of the image point m 1 in the image coordinate system are (u 1 , v 1 ), and the coordinates of the center of the corresponding microlens in the image coordinate system are (p 1 , q 1 ), u 1 , p 1 correspond to u 1 , p 1 shown in FIG. 2 ; the coordinates of the image point m 2 in the image coordinate system are (u 2 , v 2 ), and the corresponding microlens center is in the image coordinates The coordinates of the system are (p 2 , q 2 ), and u 2 and p 2 correspond to u 2 and p 2 shown in FIG. 2 . From the geometric relationship of the microlens under the pinhole model in Figure 3, the coordinate conversion relationship between the image point m' formed by the focusing of the main lens and the image point m 1 on the detector is equation (5):
m1=Tm′ (5)m 1 =Tm' (5)
式(5)中:In formula (5):
m1=[u1,v1,1]T为像点m1的坐标向量;m 1 =[u 1 ,v 1 ,1] T is the coordinate vector of the image point m 1 ;
T为像点m′与像点m1间的转换矩阵,其具体可表示为如下的式(6)和式(7):T is the transformation matrix between the image point m' and the image point m 1 , which can be specifically expressed as the following formulas (6) and (7):
δ=b/a=(u1-u2)/(p1-p2)-1 (7)δ=b/a=(u 1 -u 2 )/(p 1 -p 2 )-1 (7)
将式(1)代入式(5),可得物点M与探测器上聚焦像点m1的坐标转换关系为式(8):Substituting Equation (1) into Equation (5), the coordinate conversion relationship between the object point M and the focused image point m 1 on the detector can be obtained as Equation (8):
sm′=sT-1m1=A[R t]M (8)sm′=sT −1 m 1 =A[R t]M (8)
在一个实施例中,S3中,首先利用在探测器面上检测到的像点进行归组,将同一个物点对应的探测器像点作为一组,每组探测器像点根据T-1或几何关系得到聚焦像点坐标。In one embodiment, in S3, firstly, the image points detected on the detector surface are used for grouping, and the detector image points corresponding to the same object point are taken as a group, and each group of detector image points is based on T -1 Or geometric relationship to get focus image point coordinates.
根据微透镜阵列型的聚焦成像光路图中的几何关系可的式(9):Formula (9) can be obtained according to the geometric relationship in the focused imaging optical path diagram of the microlens array type:
即式(8)中That is, in formula (8)
在对应同一物点的探测器像点中选取两个像点,将像点坐标及像点对应的微透镜中心坐标代入式(1)计算δ值,进而求解式(9)中的聚焦像点的坐标(u′,v′)。Two image points are selected from the detector image points corresponding to the same object point, and the coordinates of the image points and the center coordinates of the microlens corresponding to the image points are substituted into the formula (1) to calculate the δ value, and then the focused image point in the formula (9) is solved. the coordinates (u', v').
在一个实施例中,S4中,为了求解式(8)中的微透镜阵列型光场相机内部参数矩阵A和外部参数矩阵[R t],利用S3得到的聚焦像点坐标,借鉴张正友标定法并采用迭代算法求解,其具体方法包括:In one embodiment, in S4, in order to solve the internal parameter matrix A and the external parameter matrix [R t] of the microlens array type light field camera in Equation (8), the focused image point coordinates obtained in S3 are used, and the calibration method of Zhang Zhengyou is used for reference. It is solved by an iterative algorithm, and its specific methods include:
S41,设标定模型平面在世界坐标系中zw=0,代入式(1)。根据物点M与对应的聚焦像点m′坐标可得到一个3×3单应性矩阵H,为求解矩阵H的最大似然估计,迭代图像中的聚焦像点求解非线性最小二乘问题。S41 , set the calibration model plane z w =0 in the world coordinate system, and substitute into formula (1). A 3 × 3 homography matrix H can be obtained according to the coordinates of the object point M and the corresponding focus image point m'. In order to solve the maximum likelihood estimation of the matrix H, the focus image points in the iterative image are solved to solve the nonlinear least squares problem.
S42,根据r1与r2的约束条件,将由矩阵H得出的r1与r2的表达式代入,再将对称矩阵B及其计算式带入得到的等式中,最后得到一个2×6矩阵V,代入三幅图像的单应性矩阵hi可求解矩阵b,进而求解矩阵A中的未知参数。S42, according to the constraints of r 1 and r 2 , substitute the expressions of r 1 and r 2 obtained from the matrix H into the obtained equation, and then bring the symmetric matrix B and its calculation formula into the obtained equation, and finally obtain a 2× 6 Matrix V , which can be substituted into the homography matrix hi of the three images to solve the matrix b, and then solve the unknown parameters in the matrix A.
S43,已求解出矩阵A,将其代入r1与r2的表达式可求解出r1、r2,并结合矩阵H可求解出矩阵[R t]中的未知参数。S43, the matrix A has been solved. Substituting it into the expressions of r 1 and r 2 can solve r 1 and r 2 , and combining with the matrix H, the unknown parameters in the matrix [R t] can be solved.
S44,对n幅图像进行标定,每幅图像的聚焦像点有m个,对上述求解方法求出的参数迭代优化,求解非线性最小二乘问题,以对上述步骤求出的参数进行非线性优化。S44 , calibrate the n images, each image has m focus points, iteratively optimize the parameters obtained by the above solution method, and solve the nonlinear least squares problem, so as to perform the nonlinear least squares problem on the parameters obtained by the above steps. optimization.
在一个实施例中,S41中的“代入式(1)”具体如式(11):In one embodiment, "substituting into formula (1)" in S41 is specifically as formula (11):
S41中的“3×3单应性矩阵H”具体如式(12):The "3 × 3 homography matrix H" in S41 is specifically as formula (12):
H=[h1 h2 h3]=λA[r1 r2 t] (12)H=[h 1 h 2 h 3 ]=λA[r 1 r 2 t] (12)
S41中的“迭代图像中的聚焦像点求解非线性最小二乘问题”具体如式(13):In S41 "iteratively solve the non-linear least squares problem with the focused image points in the image" as shown in formula (13):
式(13)中的m′i为同一幅图像中第i个聚焦像点的实际坐标向量,可以根据式(11)、式(12)由物点Mi计算得到。m′ i in formula (13) is the actual coordinate vector of the i-th focused image point in the same image, It can be calculated from the object point Mi according to formula (11) and formula (12).
在一个实施例中,S42中的“r1与r2的约束条件”具体如式(14):In one embodiment, the "constraints of r 1 and r 2 " in S42 are specifically as in formula (14):
S42中的“将由H得出的r1与r2的表达式代入”具体如式(15):The "substitute the expressions of r 1 and r 2 obtained from H into" in S42 is specifically as formula (15):
r1=λA-1h1,r2=λA-1h2 (15)r 1 =λA -1 h 1 ,r 2 =λA -1 h 2 (15)
式(15)中,λ=1/||A-1h1||=1/||A-1h2||。In formula (15), λ=1/||A −1 h 1 ||=1/||A −1 h 2 ||.
将式(15)代入式(14)后,可得式(16):After substituting Equation (15) into Equation (14), Equation (16) can be obtained:
S42中的“将对称矩阵B及其计算式带入得到的等式中”具体如式(17):"Bring the symmetric matrix B and its calculation formula into the obtained equation" in S42 is specifically as formula (17):
令make
B为对称矩阵,计算可得式(18):B is a symmetric matrix, and formula (18) can be obtained by calculation:
式(18)中:In formula (18):
b=[B11,B12,B22,B13,B23,B33]T (19)b=[B 11 , B 12 , B 22 , B 13 , B 23 , B 33 ] T (19)
vij=[hi1hj1,hi1hj2+hi2hj1,hi2hj2,hi3hj1+hi1hj3,hi3hj2+hi2hj3,hi3hj3]T (20)v ij =[h i1 h j1 ,h i1 h j2 +h i2 h j1 ,h i2 h j2 ,h i3 h j1 +h i1 h j3 ,h i3 h j2 +h i2 h j3 ,h i3 h j3 ] T (20)
S42中的“得到一个2×6矩阵V”具体是将式(17)和式(18)代入式(16),得到式(21):"Obtaining a 2 × 6 matrix V" in S42 is to substitute formula (17) and formula (18) into formula (16) to obtain formula (21):
即有式(22):That is, there is formula (22):
式(22)中,V为2×6矩阵,含有6个未知参数。In formula (22), V is a 2×6 matrix, which contains 6 unknown parameters.
S42中的“求解矩阵A中的未知参数”具体包括:"Solving the unknown parameters in matrix A" in S42 specifically includes:
将V代入三幅图像的单应性矩阵hi可求解矩阵b,进而得到:Substituting V into the homography matrix hi of the three images can solve the matrix b, and then get:
γ=-B12α2β/λ (26)γ=-B 12 α 2 β/λ (26)
u0=γv0/β-B13α2/λ (27)u 0 =γv 0 /β-B 13 α 2 /λ (27)
从而确定微透镜阵列型光场相机的内部参数矩阵A。Thus, the internal parameter matrix A of the microlens array type light field camera is determined.
在一个实施例中,S43中的“代入r1与r2的表达式可求解出r1、r2,并结合H可求解出矩阵[R t]中的未知参数”具体包括:In one embodiment, "substituting the expressions of r 1 and r 2 into the expressions of r 1 and r 2 can solve r 1 and r 2 , and combining with H can solve the unknown parameters in the matrix [R t]" specifically includes:
将矩阵A代入式(15)可求解出r1、r2:Substituting matrix A into equation (15) can solve r 1 , r 2 :
r3=r1×r2 (29)r 3 =r 1 ×r 2 (29)
由式(12)可得式(30):Formula (30) can be obtained from formula (12):
t=λA-1h3 (30)t=λA -1 h 3 (30)
在一个实施例中,S44中的“非线性最小二乘问题”具体如式(31):In one embodiment, the "nonlinear least squares problem" in S44 is specifically as formula (31):
式(31)中:In formula (31):
m′ij为第i幅图像第j个角点的聚焦像点坐标;m' ij is the focus image point coordinate of the jth corner of the ith image;
根据式(8)由第i幅图像的第j个物点坐标向量Mj及Ai,Ri,ti计算得到; According to formula (8), it is calculated from the j-th object point coordinate vector M j and A i , R i , t i of the i-th image;
A和[R t]的初始值由S41到S43计算得到。The initial values of A and [R t] are calculated from S41 to S43.
在一个实施例中,S5中,求得微透镜阵列型光场相机的内外参数矩阵后,由于参数α、δ成为已知参数,则求解微透镜阵列面与探测器面的间距b和主透镜面到微透镜阵列面的距离L具体如下:In one embodiment, in S5, after obtaining the internal and external parameter matrix of the microlens array type light field camera, since the parameters α and δ become known parameters, the distance b between the microlens array surface and the detector surface and the main lens are calculated. The distance L from the surface to the microlens array surface is as follows:
由图2中相似三角形关系可知,主透镜光瞳直径与微透镜图像的直径满足下式(32):It can be seen from the similar triangular relationship in Figure 2 that the pupil diameter of the main lens and the diameter of the microlens image satisfy the following formula (32):
D/L=d/b (32)D/L=d/b (32)
其中,D为主透镜光瞳直径,d为微透镜图像的直径。由式(7)可得式(33):Among them, D is the pupil diameter of the main lens, and d is the diameter of the microlens image. Formula (33) can be obtained from formula (7):
a=b/δ (33)a=b/δ (33)
将式(32)和式(33)代入式(4)中的α=(L-a)/(dx),可求得式(34)和式(35):Substituting equations (32) and (33) into α=(L-a)/(dx) in equation (4), equations (34) and (35) can be obtained:
L=a+αdx (34)L=a+αdx (34)
b=αδddx/(δD-d) (35)b=αδddx/(δD-d) (35)
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。本领域的普通技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be pointed out that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them. It should be understood by those of ordinary skill in the art that the technical solutions described in the foregoing embodiments can be modified, or some of the technical features thereof can be equivalently replaced; these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the various aspects of the present invention. The spirit and scope of the technical solutions of the embodiments.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811070094.4A CN109325981B (en) | 2018-09-13 | 2018-09-13 | Geometric parameter calibration method for micro-lens array type optical field camera based on focusing image points |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811070094.4A CN109325981B (en) | 2018-09-13 | 2018-09-13 | Geometric parameter calibration method for micro-lens array type optical field camera based on focusing image points |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109325981A CN109325981A (en) | 2019-02-12 |
CN109325981B true CN109325981B (en) | 2020-10-02 |
Family
ID=65265312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811070094.4A Active CN109325981B (en) | 2018-09-13 | 2018-09-13 | Geometric parameter calibration method for micro-lens array type optical field camera based on focusing image points |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109325981B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110009693B (en) * | 2019-04-01 | 2020-12-11 | 清华大学深圳研究生院 | Rapid blind calibration method of light field camera |
CN111710001B (en) * | 2020-05-26 | 2023-04-07 | 东南大学 | Object image mapping relation calibration method and device under multi-medium condition |
CN111862237B (en) * | 2020-07-22 | 2024-01-05 | 复旦大学 | Camera calibration method for optical surface shape measurement and device for realizing method |
CN112927296A (en) * | 2021-02-03 | 2021-06-08 | 上海橙捷健康科技有限公司 | Method and system for calibrating and calibrating spatial relative position |
CN113115017B (en) * | 2021-03-05 | 2022-03-18 | 上海炬佑智能科技有限公司 | 3D imaging module parameter inspection method and 3D imaging device |
CN114299153B (en) * | 2021-11-15 | 2024-09-13 | 华能国际电力股份有限公司上海石洞口第二电厂 | Camera array synchronous calibration method and system for oversized power equipment |
CN115150607B (en) * | 2022-06-21 | 2024-07-05 | 北京理工大学 | Focusing type plenoptic camera parameter design method based on multi-focal length microlens array |
CN116152357B (en) * | 2023-04-04 | 2023-07-28 | 国科天成科技股份有限公司 | Parameter calibration system and method for infinity focusing camera |
CN118397107B (en) * | 2024-06-14 | 2024-10-25 | 北京崭珀科技有限公司 | Calibration method and system for micro lens array |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104764588A (en) * | 2015-03-31 | 2015-07-08 | 中国科学院西安光学精密机械研究所 | Single-pulse laser dynamic focal spot position measuring device and measuring method |
CN105488810A (en) * | 2016-01-20 | 2016-04-13 | 东南大学 | Focused light field camera internal and external parameter calibration method |
GB2540922A (en) * | 2015-01-25 | 2017-02-08 | Vicente Blasco Claret Jorge | Aberration corrected full resolution virtual image real world |
CN107610182A (en) * | 2017-09-22 | 2018-01-19 | 哈尔滨工业大学 | A kind of scaling method at light-field camera microlens array center |
CN108426585A (en) * | 2018-03-12 | 2018-08-21 | 哈尔滨工业大学 | A kind of geometric calibration method of light-field camera |
-
2018
- 2018-09-13 CN CN201811070094.4A patent/CN109325981B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2540922A (en) * | 2015-01-25 | 2017-02-08 | Vicente Blasco Claret Jorge | Aberration corrected full resolution virtual image real world |
CN104764588A (en) * | 2015-03-31 | 2015-07-08 | 中国科学院西安光学精密机械研究所 | Single-pulse laser dynamic focal spot position measuring device and measuring method |
CN105488810A (en) * | 2016-01-20 | 2016-04-13 | 东南大学 | Focused light field camera internal and external parameter calibration method |
CN107610182A (en) * | 2017-09-22 | 2018-01-19 | 哈尔滨工业大学 | A kind of scaling method at light-field camera microlens array center |
CN108426585A (en) * | 2018-03-12 | 2018-08-21 | 哈尔滨工业大学 | A kind of geometric calibration method of light-field camera |
Non-Patent Citations (2)
Title |
---|
Microlens array calibration method for a light field camera;Piotr Suliga ,Tomasz Wrona;《2018 19th International Carpathian Control Conference (ICCC)》;20180628;全文 * |
光场相机成像模型及参数标定方法综述;张春萍,王庆;《中国激光》;20160630;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109325981A (en) | 2019-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109325981B (en) | Geometric parameter calibration method for micro-lens array type optical field camera based on focusing image points | |
CN109272570B (en) | Space point three-dimensional coordinate solving method based on stereoscopic vision mathematical model | |
TWI555379B (en) | An image calibrating, composing and depth rebuilding method of a panoramic fish-eye camera and a system thereof | |
CN110889829B (en) | A monocular distance measurement method based on fisheye lens | |
CN104155765B (en) | Method and apparatus for correcting three-dimensional images in a tiled integrated imaging display | |
CN102810205B (en) | The scaling method of a kind of shooting or photographic means | |
CN110874854B (en) | Camera binocular photogrammetry method based on small baseline condition | |
CN111340888B (en) | Light field camera calibration method and system without white image | |
CN104075688A (en) | Distance measurement method of binocular stereoscopic gazing monitoring system | |
CN111709985A (en) | A method of underwater target ranging based on binocular vision | |
CN111192235A (en) | An Image Measurement Method Based on Monocular Vision Model and Perspective Transformation | |
CN110889873A (en) | A target positioning method, device, electronic device and storage medium | |
CN114359405A (en) | Calibration method of off-axis Samm 3D line laser camera | |
CN103473758A (en) | Secondary calibration method of binocular stereo vision system | |
WO2022100668A1 (en) | Temperature measurement method, apparatus, and system, storage medium, and program product | |
CN107454377A (en) | A kind of algorithm and system that three-dimensional imaging is carried out using camera | |
CN112258586A (en) | Calibration method for stereoscopic vision model parameters of single plane mirror | |
CN116519257A (en) | Three-dimensional flow field testing method and system based on double-view background schlieren of single-light-field camera | |
CN114092647A (en) | A 3D reconstruction system and method based on panoramic binocular stereo vision | |
CN112950727A (en) | Large-view-field multi-target simultaneous ranging method based on bionic curved compound eye | |
WO2020244273A1 (en) | Dual camera three-dimensional stereoscopic imaging system and processing method | |
CN111815709B (en) | A 3D Reconstruction Method Based on Ordinary Digital Camera | |
CN115797460B (en) | A Method for Underwater Two-Target Targeting | |
CN116777973A (en) | Binocular stereo vision ranging method and system for heterogeneous images based on deep learning | |
CN109712200A (en) | A kind of binocular localization method and system based on the principle of least square and side length reckoning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |