CN109088835A - Underwater sound time-varying channel estimation method based on time multiple management loading - Google Patents
Underwater sound time-varying channel estimation method based on time multiple management loading Download PDFInfo
- Publication number
- CN109088835A CN109088835A CN201811197910.8A CN201811197910A CN109088835A CN 109088835 A CN109088835 A CN 109088835A CN 201811197910 A CN201811197910 A CN 201811197910A CN 109088835 A CN109088835 A CN 109088835A
- Authority
- CN
- China
- Prior art keywords
- channel estimation
- time
- matrix
- estimation method
- underwater acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 239000011159 matrix material Substances 0.000 claims abstract description 51
- 239000013598 vector Substances 0.000 claims abstract description 14
- 239000000969 carrier Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 abstract description 10
- 238000012545 processing Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 230000001934 delay Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
- H04B17/3912—Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
- H04L25/0242—Channel estimation channel estimation algorithms using matrix methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
本发明涉及基于时间多重稀疏贝叶斯学习的水声时变信道估计方法,包括以下步骤:步骤一:输入信道估计参数,包括:接收符号向量字典矩阵Φp,最大迭代次数rmax,终止门限e,噪声方差σ2;步骤二:初始化超参数矩阵Γ、迭代计数r和相关矩阵B;步骤三:采用期望最大化算法对超参数γ进行求解;步骤四:更新相关矩阵B;步骤五:迭代终止条件判断,如果r<rmax且令r=r+1,返回步骤三;如果r<rmax且则终止迭代;如果r≥rmax,则终止迭代;步骤六:输出估计参数,包括稀疏信道估计矩阵,超参数估计向量以及估计出的相关矩阵本发明与SBL方法相比,预先充分利用了水声信道之间的相关性,提高了信道估计的性能,降低了系统的误码率,在实际水声OFDM通信系统中,具有实际应用价值。
The present invention relates to an underwater acoustic time-varying channel estimation method based on time multiple sparse Bayesian learning, comprising the following steps: Step 1: Input channel estimation parameters, including: receiving symbol vectors The dictionary matrix Φ p , the maximum number of iterations r max , the termination threshold e, and the noise variance σ 2 ; Step 2: Initialize the hyperparameter matrix Γ, the iteration count r and the correlation matrix B; Step 3: Use the expectation maximization algorithm to optimize the hyperparameter γ Solve; step 4: update the correlation matrix B; step 5: judge the iteration termination condition, if r<r max and Set r=r+1, return to step 3; if r<r max and Then terminate the iteration; if r≥r max , then terminate the iteration; Step 6: Output estimated parameters, including sparse channel estimation matrix, hyperparameter estimation vector and estimated correlation matrix Compared with the SBL method, the present invention fully utilizes the correlation between underwater acoustic channels in advance, improves the performance of channel estimation, reduces the bit error rate of the system, and has practical application value in the actual underwater acoustic OFDM communication system.
Description
技术领域technical field
本发明涉及一种水声稀疏时变信道估计方法,特别是一种基于时间多重稀疏贝叶斯学习的水声稀疏时变信道估计方法,本发明属于水声通信领域。The invention relates to an underwater acoustic sparse time-varying channel estimation method, in particular to an underwater acoustic sparse time-varying channel estimation method based on time multiple sparse Bayesian learning, and the invention belongs to the field of underwater acoustic communication.
背景技术Background technique
海洋观测、海洋资源的开发利用是众多海洋国家最为关注的问题之一,水声通信技术作为海洋开发的重要技术支持近年来被提上了研究议程。正交频分复用(OFDM)技术具有抗频率选择性衰落的特性且频带利用率高,被广泛应用于水下高速通信系统当中。水声信道是最为复杂的无线信道之一,会对在其中传播的声信号造成多径传播、相位起伏等干扰,同时水声信道是一个时变、频变的衰落信道,复杂多变的水声信道导致接收端接收到的信号产生畸变。为了能准确的解调出接收信号,水声信道的估计必不可少,准确的信道估计是水声通信研究的重点。Ocean observation and the development and utilization of marine resources are one of the most concerned issues of many oceanic countries. As an important technical support for ocean development, underwater acoustic communication technology has been put on the research agenda in recent years. Orthogonal Frequency Division Multiplexing (OFDM) technology has the characteristics of anti-frequency selective fading and high frequency band utilization, and is widely used in underwater high-speed communication systems. The underwater acoustic channel is one of the most complicated wireless channels, which will cause interference such as multipath propagation and phase fluctuations to the acoustic signals propagating in it. At the same time, the underwater acoustic channel is a time-varying and frequency-varying fading channel. The acoustic channel distorts the signal received at the receiver. In order to accurately demodulate the received signal, underwater acoustic channel estimation is essential, and accurate channel estimation is the focus of underwater acoustic communication research.
本发明方法提出了基于水声OFDM通信系统的时间多重稀疏贝叶斯学习(TMSBL)水声时变信道估计方法,提高了信道估计算法的准确度,降低了系统的误码率。本发明方法首先提出了用于多块联合处理的联合信道模型,其中几个连续块的信道时延相似且信道增益表现出时间相关性,利用路径增益的时间相关系数来评估相关的强度;接着提出了基于TMSBL的信道估计器,利用连续的OFDM块之间的信道相关性来联合估计信道。通过性能仿真和处理海试数据,验证了本发明方法在水声时变信道下的有效性,同时验证了本发明方法与SBL方法相比,在强时间相关信道下实现了更好的信道估计性能和更低的误码率,在弱时间相关信道下有较好的鲁棒性。The method of the invention proposes a time-multiple sparse Bayesian learning (TMSBL) underwater acoustic time-varying channel estimation method based on the underwater acoustic OFDM communication system, which improves the accuracy of the channel estimation algorithm and reduces the bit error rate of the system. The method of the present invention first proposes a joint channel model for multi-block joint processing, wherein the channel delays of several consecutive blocks are similar and the channel gain shows time correlation, and the time correlation coefficient of the path gain is used to evaluate the correlation strength; then A channel estimator based on TMSBL is proposed, which uses the channel correlation between consecutive OFDM blocks to jointly estimate the channel. Through performance simulation and sea test data processing, the effectiveness of the method of the present invention in underwater acoustic time-varying channels is verified, and at the same time, it is verified that the method of the present invention achieves better channel estimation in strong time-correlated channels compared with the SBL method Performance and lower bit error rate, better robustness in weak time-correlated channels.
发明内容Contents of the invention
针对上述现有技术,本发明要解决的技术问题是提供一种能够提高水声OFDM系统信道估计算法准确度的基于时间多重稀疏贝叶斯学习的水声时变信道估计方法。In view of the above prior art, the technical problem to be solved by the present invention is to provide an underwater acoustic time-varying channel estimation method based on time multiple sparse Bayesian learning that can improve the accuracy of the underwater acoustic OFDM system channel estimation algorithm.
为解决上述技术问题,本发明一种基于时间多重稀疏贝叶斯学习的水声时变信道估计方法,包括以下步骤:In order to solve the above-mentioned technical problems, a kind of underwater acoustic time-varying channel estimation method based on time multiple sparse Bayesian learning of the present invention comprises the following steps:
步骤一:输入信道估计参数,包括:接收符号向量字典矩阵Φp,最大迭代次数rmax,终止门限e,噪声方差σ2;Step 1: Input channel estimation parameters, including: receive symbol vector Dictionary matrix Φ p , maximum number of iterations r max , termination threshold e, noise variance σ 2 ;
步骤二:初始化超参数矩阵Γ、迭代计数r和相关矩阵B;Step 2: Initialize hyperparameter matrix Γ, iteration count r and correlation matrix B;
步骤三:采用期望最大化算法对超参数γ进行求解;Step 3: Use the expectation maximization algorithm to solve the hyperparameter γ;
步骤四:更新相关矩阵B;Step 4: update the correlation matrix B;
步骤五:迭代终止条件判断,如果r<rmax且令r=r+1,返回步骤三;如果r<rmax且则终止迭代;如果r≥rmax,则终止迭代;Step 5: Judgment of the iteration termination condition, if r<r max and Set r=r+1, return to step 3; if r<r max and Then terminate the iteration; if r≥r max , then terminate the iteration;
步骤六:输出估计参数,包括稀疏信道估计矩阵,超参数估计向量以及估计出的相关矩阵 Step 6: Output estimated parameters, including sparse channel estimation matrix, hyperparameter estimation vector and estimated correlation matrix
本发明一种基于时间多重稀疏贝叶斯学习的水声时变信道估计方法,还包括:A kind of time-varying underwater acoustic channel estimation method based on multiple sparse Bayesian learning of the present invention also includes:
1.步骤二中初始化超参数矩阵Γ满足:Γ(0)=IL,初始化迭代计数r满足:r=0,初始化相关矩阵B满足:B=IM;其中IL为L×L的单位矩阵,IM为M×M的单位矩阵。1. In step 2, the initialization hyperparameter matrix Γ satisfies: Γ (0) = I L , the initialization iteration count r satisfies: r = 0, and the initialization correlation matrix B satisfies: B = I M ; where IL is the unit of L×L Matrix, I M is the identity matrix of M×M.
2.步骤三中期望最大化算法包括E步骤和M步骤,其中E步骤满足:2. The expectation maximization algorithm in step 3 includes E step and M step, where E step satisfies:
其中M步骤满足:Among them, the M step satisfies:
3.步骤四中更新相关矩阵B满足:3. Update the correlation matrix B in step 4 to satisfy:
4.步骤六中的稀疏信道估计矩阵超参数估计向量为γ。4. Sparse channel estimation matrix in step 6 The vector of hyperparameter estimates is γ.
5.噪声方差σ2满足:5. The noise variance σ 2 satisfies:
其中,为接收空载波。in, To receive empty carrier.
本发明有益效果:本发明的优点在于与SBL方法相比,该方法预先充分利用了水声信道之间的相关性,提高了信道估计的性能,降低了系统的误码率,在实际水声OFDM通信系统中,具有实际应用价值。Beneficial effects of the present invention: Compared with the SBL method, the present invention has the advantages of fully utilizing the correlation between underwater acoustic channels in advance, improving the performance of channel estimation, reducing the bit error rate of the system, and in actual underwater acoustic In OFDM communication system, it has practical application value.
附图说明Description of drawings
图1为本发明方法和LS信道估计方法以及SBL信道估计方法在强时间相关信道下的信噪比-均方误差性能对比图;Fig. 1 is the signal-to-noise ratio-mean square error performance comparison chart of the method of the present invention and the LS channel estimation method and the SBL channel estimation method under the strongly time-correlated channel;
图2为本发明方法和LS信道估计方法以及SBL信道估计方法在强时间相关信道下的信噪比-误码率性能对比图;Fig. 2 is the signal-to-noise ratio-bit error rate performance comparison chart of the method of the present invention and the LS channel estimation method and the SBL channel estimation method under the strongly time-correlated channel;
图3为本发明方法和LS信道估计方法以及SBL信道估计方法在弱时间相关信道下的信噪比-均方误差性能对比图;Fig. 3 is the signal-to-noise ratio-mean square error performance comparison chart of the method of the present invention and the LS channel estimation method and the SBL channel estimation method under the weak time correlation channel;
图4为本发明方法和LS信道估计方法以及SBL信道估计方法在弱时间相关信道下的信噪比-误码率性能对比图;Fig. 4 is the SNR-BER performance comparison chart of the method of the present invention and the LS channel estimation method and the SBL channel estimation method under the weak time correlation channel;
图5为本发明方法与SBL信道估计方法处理实际数据时有效噪声方差比较结果;Fig. 5 is the comparison result of the effective noise variance when the method of the present invention and the SBL channel estimation method process actual data;
图6为本发明方法与SBL信道估计方法处理实际数据时误码率性能对比图;Fig. 6 is a comparison chart of bit error rate performance when the method of the present invention and the SBL channel estimation method process actual data;
图7为处理实际数据时计算出的时间相关系数。Figure 7 shows the time correlation coefficients calculated when processing actual data.
具体实施方式Detailed ways
下面结合附图对本发明进行进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明提出用于多块联合处理的联合信道模型,在水声OFDM通信系统中,几个连续OFDM块的信道时延相似,信道增益在小于信道相干时间的时间尺度上呈现出强时间相关性。经过多普勒补偿,可以消除由相对运动引起的小的时延变化,因此可将经过多普勒补偿的信道建模成联合信道模型,利用信道相关性来联合估计信道。The present invention proposes a joint channel model for multi-block joint processing. In an underwater acoustic OFDM communication system, the channel delays of several consecutive OFDM blocks are similar, and the channel gain presents a strong time correlation on a time scale smaller than the channel coherence time . After Doppler compensation, small time delay changes caused by relative motion can be eliminated, so the Doppler compensated channel can be modeled as a joint channel model, and the channel correlation can be used to jointly estimate the channel.
本发明方法针对水声信道有时间相关性的特点,先建立了联合信道模型,接着采用TMSBL信道估计方法,利用连续的OFDM块之间的信道相关性来联合的估计信道。与稀疏贝叶斯学习(SBL)信道估计方法相比,该方法充分利用了信道之间的时间相关性,提高了信道估计的准确度。The method of the invention aims at the characteristics of time correlation of the underwater acoustic channel, first establishes a joint channel model, and then adopts the TMSBL channel estimation method to jointly estimate the channel by using the channel correlation between continuous OFDM blocks. Compared with Sparse Bayesian Learning (SBL) channel estimation method, this method makes full use of the temporal correlation between channels and improves the accuracy of channel estimation.
下面按照基本的水声OFDM通信系统模型、联合信道模型、基于TMSBL的水声稀疏时变信道估计方法以及仿真性能分析四部分详细说明:The following is a detailed description of four parts: the basic underwater acoustic OFDM communication system model, the joint channel model, the TMSBL-based underwater acoustic sparse time-varying channel estimation method, and the simulation performance analysis:
1、基本的水声OFDM通信系统模型1. Basic underwater acoustic OFDM communication system model
发明考虑一个CP-OFDM系统,假设一个OFDM块共有K个子载波,其中包含Kd个数据子载波,Kp个导频子载波,Kn个空载波,导频子载波和空载波均匀分布。那么在第k个子载波发送的符号是Xk。定义一个OFDM块周期为T,循环前缀长度为Tcp。将fc定义为中心频率,则第k个子载波频率为The invention considers a CP-OFDM system, assuming that an OFDM block has K subcarriers in total, including K d data subcarriers, K p pilot subcarriers, K n empty carriers, and the pilot subcarriers and empty carriers are evenly distributed. Then the symbol transmitted on the kth subcarrier is X k . Define an OFDM block period as T and cyclic prefix length as T cp . Define f c as the center frequency, then the frequency of the kth subcarrier is
fk=fc+k/T,k=-K/2,…,K/2-1. (0.1)f k =f c +k/T, k=-K/2,...,K/2-1. (0.1)
发送的OFDM信号可以写成The transmitted OFDM signal can be written as
其中,q(t)是脉冲整形滤波器,写为where q(t) is the pulse shaping filter, written as
对于水声稀疏时变信道模型,假定有L个路径,那么信道冲激响应可表示为For the underwater acoustic sparse time-varying channel model, assuming there are L paths, the channel impulse response can be expressed as
其中Al,τl分别表示第l个路径的幅度和时延,a代表路径的多普勒因子。假定路径增益和多普勒因子在一个OFDM块内不变,块与块之间不同;路径时延在几个连续的OFDM块内保持稳定。Among them, A l and τ l represent the amplitude and time delay of the l-th path respectively, and a represents the Doppler factor of the path. It is assumed that the path gain and Doppler factor are constant within an OFDM block, and are different between blocks; the path delay remains stable within several consecutive OFDM blocks.
经过信道接收到的OFDM信号可以写成The OFDM signal received through the channel can be written as
其中是加性噪声。in is additive noise.
将经过多普勒补偿和CP-OFDM解调的接收信号表示为The received signal after Doppler compensation and CP-OFDM demodulation is expressed as
Y=XFh+W (0.6)Y=XFh+W (0.6)
其中F为K×L阶离散傅里叶变换矩阵,X为K个发送符号组成的K×K阶对角矩阵,W为加性高斯噪声,h=[h1,h2,…,hL]T代表全部的信道。Where F is a K×L discrete Fourier transform matrix, X is a K×K diagonal matrix composed of K transmitted symbols, W is additive Gaussian noise, h=[h 1 ,h 2 ,…,h L ] T stands for all channels.
仅考虑P个导频子载波的系统模型可以写成The system model considering only P pilot subcarriers can be written as
YP=XPFPh+WP (0.7)Y P =X P F P h+W P (0.7)
其中,YP是接收导频符号,XP是Kp个发送导频组成的Kp×Kp阶对角矩阵,FP是F矩阵中对应导频所在行的矩阵,WP是导频位置的高斯噪声。Among them, Y P is the receiving pilot symbol, X P is the K p × K p order diagonal matrix composed of K p sending pilots, F P is the matrix of the row corresponding to the pilot in the F matrix, and W P is the pilot Gaussian noise at position.
2、联合信道模型2. Joint channel model
水声信道是典型的时变稀疏信道,具有少量稀疏的非零路径,这些路径的时延相似且增益在小于信道相干时间的时间尺度上表现出强时间相关性。多普勒频移导致的路径时延的时变可以通过多普勒补偿来消除。因此可以将经过多普勒补偿的信道建模为M个连续OFDM块的联合信道模型。即Underwater acoustic channels are typical time-varying sparse channels with a small number of sparse non-zero paths with similar delays and gains that exhibit strong time correlation on time scales smaller than the channel coherence time. The time variation of path delay caused by Doppler frequency shift can be eliminated by Doppler compensation. The Doppler compensated channel can thus be modeled as a joint channel model of M consecutive OFDM blocks. which is
其中hm(m∈[1,M])代表第m个块的信道向量。对于每一个hm,非零时延的位置相似且相应的增益具有时间相关性。where h m (m∈[1,M]) represents the channel vector of the mth block. For each h m , the locations of the non-zero delays are similar and the corresponding gains are time-dependent.
为了描述整体路径增益的相关性,将时间相关系数表示为To describe the correlation of the overall path gain, the temporal correlation coefficient is expressed as
系数η(m,n)描述了第m块与第n块路径增益之间的时间相关强度The coefficient η(m,n) describes the temporal correlation strength between the path gains of the mth block and the nth block
3、基于TMSBL的水声稀疏时变信道估计方法3. Underwater acoustic sparse time-varying channel estimation method based on TMSBL
将式(0.7)写为Write formula (0.7) as
其中ΦP=XPFP是一个已知的字典矩阵, 为第m块的接收信号,M取决于信道的相干时间。Wherein Φ P = X P F P is a known dictionary matrix, is the received signal of the mth block, and M depends on the coherence time of the channel.
采用TMSBL算法利用时间相关性对进行联合估计,将每个先验参量的条件概率密度函数写为Using the TMSBL algorithm to utilize the time correlation pair A joint estimate is performed, combining each The conditional probability density function of the prior parameters is written as
其中为的第i行,γi为非负超参数,代表了的行稀疏度。令Γ为一个对角矩阵,对角线上元素为γ=[γ1,γ2,…,γL]T,当γi→0时,中的元素为零。Bi是正定矩阵,描述了的相关结构(多个块之间的相关性)。in for The i-th line of , γ i is a non-negative hyperparameter, representing row sparsity. Let Γ be a diagonal matrix, and the elements on the diagonal are γ=[γ 1 ,γ 2 ,…,γ L ] T , when γ i →0, The elements in are zero. B i is a positive definite matrix that describes Correlation structure (correlations between multiple blocks).
根据可将先验参量的条件概率密度函数写为according to Can be The conditional probability density function of the prior parameters is written as
每列的后验概率密度为 The posterior probability density for each column is
协方差和均值分别为The covariance and mean are respectively
μm和分别为估计出的和Γ(r)代表第r次迭代中的更新Γ矩阵。可以采用期望最大化(EM)算法对超参数进行估计。E步骤需要根据式(3.5)和式(3.6)来计算后验参数,而M步骤通过更新规则来表示,即μ m and respectively estimated and Γ (r) represents the updated Γ matrix in the r-th iteration. Hyperparameters can be estimated using the Expectation-Maximization (EM) algorithm. The E step needs to calculate the posterior parameters according to formula (3.5) and formula (3.6), while the M step is represented by the update rule, namely
其中代表矩阵的第i行。in represent The ith row of the matrix.
B矩阵描述了所有路径的相关结构,计算方法为The B matrix describes the correlation structure of all paths and is calculated as
其中η是正标量,这种正则化形式确保估计的是正定的,可以增加估计算法的稳健性。where η is a positive scalar, this form of regularization ensures that the estimated is positive definite, which can increase the robustness of the estimation algorithm.
具体步骤如下:Specific steps are as follows:
(1)输入:接收符号向量字典矩阵Φp,最大迭代次数rmax,终止门限e,噪声方差σ2。(1) Input: receive symbol vector Dictionary matrix Φ p , maximum number of iterations r max , termination threshold e, noise variance σ 2 .
(2)初始化:超参数矩阵Γ(0)=IL,迭代计数r=0,B=IM。(2) Initialization: hyperparameter matrix Γ (0) = I L , iteration count r = 0, B = I M .
(3)E步骤:(3) Step E:
(4)M步骤:(4) Step M:
(5)更新B矩阵:(5) Update the B matrix:
(6)迭代终止判断:如果r<rmax,令r=r+1,返回步骤(3);或若则终止迭代。(6) Iteration termination judgment: if r<r max , let r=r+1, return to step (3); or if then terminate the iteration.
(7)输出:估计出的稀疏信道向量估计出的超参数矢量γ,估计出的矩阵。(7) Output: estimated sparse channel vector The estimated hyperparameter vector γ, the estimated matrix.
噪声方差σ2通过空载波求出:The noise variance σ2 is found with the empty carrier:
其中表示接收空载波符号。且η被设置为2以保证矩阵B为正。in Indicates reception of empty carrier symbols. And n is set to 2 to ensure that matrix B is positive.
4、仿真性能分析4. Simulation performance analysis
(1)MATLAB仿真:(1) MATLAB simulation:
为了验证本发明信道估计方法的性能,搭建水声OFDM系统,包含K=256个子载波,其中数据子载波Kd=200个,导频子载波Kp=32个,空载波Kn=24个,带宽B=1.5kHz,中心频率fc=2.25kHz,采样率fs=12kHz,信号长度T=171ms,循环前缀Tcp=10ms,一帧信号含有4个OFDM块。水声稀疏时变信道模型采用随机生成的10个路径,时延间隔服从均值0.5ms的指数分布,假设每个OFDM块的多普勒因子随机变化,范围为[-vp/c,vp/c],其中相对速度vp=1.5m/s且水中声速c=1500m/s,路径幅度随着路径时延服从瑞利分布。采用QPSK调制,1/2非二进制LDPC编码。In order to verify the performance of the channel estimation method of the present invention, an underwater acoustic OFDM system is built, including K=256 subcarriers, wherein data subcarriers K d =200, pilot subcarriers K p =32, and empty carriers K n =24 , bandwidth B=1.5kHz, center frequency fc =2.25kHz, sampling rate fs =12kHz, signal length T=171ms, cyclic prefix Tcp =10ms, one frame signal contains 4 OFDM blocks. The underwater acoustic sparse time-varying channel model uses 10 randomly generated paths, and the delay interval obeys an exponential distribution with a mean value of 0.5ms. It is assumed that the Doppler factor of each OFDM block changes randomly, and the range is [-v p /c,v p /c], where the relative velocity v p =1.5m/s and the speed of sound in water c=1500m/s, the path amplitude follows the Rayleigh distribution with the path delay. Using QPSK modulation, 1/2 non-binary LDPC encoding.
仿真中将LS信道估计方法、SBL信道估计方法和本发明信道估计方法作对比。In the simulation, the LS channel estimation method, the SBL channel estimation method and the channel estimation method of the present invention are compared.
首先验证强时间相关信道下三种信道估计算法的性能对比,将不同块的时间相关系数设置在0.7~0.99之间。First, verify the performance comparison of the three channel estimation algorithms under the strong time correlation channel, and set the time correlation coefficients of different blocks between 0.7 and 0.99.
图1为本发明方法与LS信道估计方法及SBL信道估计方法在强时间相关信道下的信噪比-均方误差性能对比图。从仿真中可以看出,考虑了时间相关性的TMSBL信道估计方法的均方误差(MSE)性能最好,优于SBL信道估计方法的性能约2dB,而LS信道估计方法的MSE性能最差。FIG. 1 is a comparison chart of SNR-mean square error performance between the method of the present invention and the LS channel estimation method and the SBL channel estimation method under a strongly time-correlated channel. It can be seen from the simulation that the mean square error (MSE) performance of the TMSBL channel estimation method considering the time correlation is the best, which is about 2dB better than that of the SBL channel estimation method, while the MSE performance of the LS channel estimation method is the worst.
图2为本发明方法和LS信道估计方法以及SBL信道估计方法在强时间相关信道下的信噪比-误码率性能对比图。可以看出,LS信道估计方法的误码率(BER)性能最差,SBL信道估计方法的BER性能比TMSBL信道估计方法的性能差,且TMSBL信道估计算法的性能更加接近CSI方式。这说明在强时间相关信道下,TMSBL信道估计算法的性能优于SBL算法的性能,联合估计的优势体现了出来。Fig. 2 is a comparison chart of SNR-BER performance between the method of the present invention and the LS channel estimation method and the SBL channel estimation method under a strongly time-correlated channel. It can be seen that the bit error rate (BER) performance of the LS channel estimation method is the worst, the BER performance of the SBL channel estimation method is worse than that of the TMSBL channel estimation method, and the performance of the TMSBL channel estimation algorithm is closer to the CSI method. This shows that under strong time-correlated channels, the performance of TMSBL channel estimation algorithm is better than that of SBL algorithm, and the advantages of joint estimation are reflected.
接着验证弱时间相关信道下三种信道估计算法的性能对比,将时间相关系数设置在0.1~0.3之间。Then verify the performance comparison of the three channel estimation algorithms under the weak time correlation channel, and set the time correlation coefficient between 0.1 and 0.3.
图3和图4为本发明方法和LS信道估计方法以及SBL信道估计方法在弱时间相关信道下的信噪比-均方误差性能对比图以及信噪比-误码率性能对比图。从仿真中可以看出,在弱时间相关信道下,LS信道估计方法的估计性能仍是最差,TMSBL信道估计算法的性能与SBL算法的性能十分接近。这说明在弱时间相关信道中,TMSBL算法的优势不能得到体现,但仍然保持了较好的鲁棒性。Fig. 3 and Fig. 4 are SNR-mean square error performance comparison diagrams and SNR-BER performance comparison diagrams of the method of the present invention, the LS channel estimation method and the SBL channel estimation method under a weakly time-correlated channel. It can be seen from the simulation that under the weak time-correlated channel, the estimation performance of the LS channel estimation method is still the worst, and the performance of the TMSBL channel estimation algorithm is very close to that of the SBL algorithm. This shows that in the weak time-correlated channel, the advantages of TMSBL algorithm can not be reflected, but still maintain good robustness.
(2)处理海试数据:(2) Processing sea trial data:
采用2014年于中国南海得到的实验数据对算法进行进一步的验证。接发换能器相距约5km,发射换能器深度为27m,接收换能器深度为30m。The algorithm is further verified by using the experimental data obtained in the South China Sea in 2014. The sending and receiving transducers are about 5km apart, the depth of the transmitting transducer is 27m, and the depth of the receiving transducer is 30m.
一个OFDM符号包含K=681个子载波,其中数据子载波Kd=571个,导频子载波Kp=86个,空载波Kn=24个,带宽B=4kHz,中心频率fc=8kHz,采样率fs=48kHz,信号长度T=170ms,循环前缀Tcp=20ms,一帧信号含有8个OFDM块。采用QPSK调制,卷积码编码。连续发送12帧OFDM符号,每一帧之间的时间间隔为2s。每帧信号之前设置LFM信号以进行同步。One OFDM symbol contains K=681 subcarriers, wherein data subcarriers K d =571, pilot subcarriers K p =86, empty carriers K n =24, bandwidth B=4kHz, center frequency fc =8kHz, Sampling rate f s =48kHz, signal length T=170ms, cyclic prefix Tcp =20ms, one frame signal contains 8 OFDM blocks. It adopts QPSK modulation and convolution code encoding. Continuously send 12 frames of OFDM symbols, and the time interval between each frame is 2s. Set the LFM signal before each frame signal for synchronization.
引入有效噪声方差来评估信道估计的性能,定义如下The effective noise variance is introduced to evaluate the performance of channel estimation, which is defined as follows
其中,是通过估计的稀疏信道的傅里叶变换得到。该值包括了信道估计的误差,环境噪声以及残余的多普勒频移。in, is obtained by the Fourier transform of the estimated sparse channel. This value includes channel estimation error, ambient noise and residual Doppler shift.
图5为本发明方法与SBL信道估计方法的有效噪声方差比较结果。由图可知,在处理实际数据时,TMSBL信道估计方法的有效噪声方差低于SBL算法的有效噪声方差。Fig. 5 is a comparison result of effective noise variance between the method of the present invention and the SBL channel estimation method. It can be seen from the figure that when dealing with actual data, the effective noise variance of the TMSBL channel estimation method is lower than that of the SBL algorithm.
图6为本发明方法与SBL信道估计方法的BER性能对比图。可以看出,在处理实际数据时TMSBL算法的误码率仍低于SBL算法,尤其在第2、11、12帧信号中,TMSBL信道估计算法的优势更加明显,而在第6帧、第9帧信号中,TMSBL算法的性能与SBL算法的性能近似。FIG. 6 is a comparison chart of BER performance between the method of the present invention and the SBL channel estimation method. It can be seen that the bit error rate of the TMSBL algorithm is still lower than that of the SBL algorithm when processing actual data, especially in the 2nd, 11th, and 12th frame signals, the advantages of the TMSBL channel estimation algorithm are more obvious, while in the 6th and 9th frame signals In the frame signal, the performance of the TMSBL algorithm is similar to that of the SBL algorithm.
图7为计算出的时间相关系数,分别计算一帧信号中的8个块,计算η(1,m),m∈[1,4]和η(5,n),n∈[5,8],可以看出在第2、11、12帧信号中,时间相关系数大部分时间都大于0.5,因此可以认为它们为强时间相关信道,可以充分利用信道的时间相关性;而第6帧、第9帧信号的时间相关系数在块之间快速下降,被认为是弱时间相关信道。这也与图6的结果一致,验证了TMSBL算法在强时间相关信道下的优势,且在弱时间相关信道下具有较好的鲁棒性。Figure 7 shows the calculated time correlation coefficients, respectively calculate 8 blocks in a frame signal, calculate η(1,m), m∈[1,4] and η(5,n), n∈[5,8 ], it can be seen that in the 2nd, 11th, and 12th frame signals, the time correlation coefficients are greater than 0.5 most of the time, so they can be considered as strong time-correlated channels, and the time correlation of the channel can be fully utilized; while the 6th frame, The time correlation coefficient of the 9th frame signal drops rapidly between blocks, which is considered as a weakly time-correlated channel. This is also consistent with the results in Figure 6, which verifies the advantages of the TMSBL algorithm in strong time-correlated channels, and has better robustness in weak time-correlated channels.
本发明具体实施方式还包括,包括以下步骤:The specific embodiment of the present invention also includes the following steps:
(1)输入信道估计参数,包括:接收符号向量,字典矩阵,最大迭代次数,终止门限,噪声方差。(1) Input channel estimation parameters, including: received symbol vector, dictionary matrix, maximum number of iterations, termination threshold, and noise variance.
(2)初始化,包括:超参数矩阵初始化,迭代计数初始化,相关矩阵初始化。(2) Initialization, including: hyperparameter matrix initialization, iteration count initialization, correlation matrix initialization.
(3)采用EM算法对超参数进行求解。(3) Use EM algorithm to solve hyperparameters.
(4)更新相关矩阵。(4) Update the correlation matrix.
(5)迭代终止条件判断,若满足条件则终止迭代;若不满足返回步骤(3)。(5) Judgment of the iteration termination condition, if the condition is met, the iteration is terminated; if not, return to step (3).
(6)输出估计参数,包括稀疏信道向量估计集合,超参数估计集合以及估计出的相关矩阵。(6) Output estimated parameters, including sparse channel vector estimation set, hyperparameter estimation set and estimated correlation matrix.
本发明利用水声信道的时间相关性,将信道建模为联合信道模型,采用基于TMSBL的信道估计器对信号进行多块联合处理,采用期望最大化(EM)算法对超参数进行求解,实现对水声时变稀疏信道的估计,提高信道估计的准确度,降低了系统的误码率。The present invention uses the time correlation of the underwater acoustic channel to model the channel as a joint channel model, uses a channel estimator based on TMSBL to perform multi-block joint processing on the signal, and uses the expectation maximization (EM) algorithm to solve the hyperparameters, realizing The estimation of underwater acoustic time-varying sparse channel improves the accuracy of channel estimation and reduces the bit error rate of the system.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811197910.8A CN109088835A (en) | 2018-10-15 | 2018-10-15 | Underwater sound time-varying channel estimation method based on time multiple management loading |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811197910.8A CN109088835A (en) | 2018-10-15 | 2018-10-15 | Underwater sound time-varying channel estimation method based on time multiple management loading |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109088835A true CN109088835A (en) | 2018-12-25 |
Family
ID=64843551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811197910.8A Pending CN109088835A (en) | 2018-10-15 | 2018-10-15 | Underwater sound time-varying channel estimation method based on time multiple management loading |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109088835A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617850A (en) * | 2019-01-07 | 2019-04-12 | 南京邮电大学 | OFDM sparse channel estimation method based on adaptive compressed sensing |
CN110082761A (en) * | 2019-05-31 | 2019-08-02 | 电子科技大学 | Distributed external illuminators-based radar imaging method |
CN110380994A (en) * | 2019-05-13 | 2019-10-25 | 上海海事大学 | Quick Bayesian matching tracks marine condition of sparse channel estimation method |
CN111131108A (en) * | 2019-12-30 | 2020-05-08 | 哈尔滨工程大学 | A non-cooperative underwater acoustic OFDM subcarrier modulation method identification method |
CN111147407A (en) * | 2019-12-31 | 2020-05-12 | 哈尔滨哈船海洋信息技术有限公司 | TMSBL underwater acoustic OFDM time-varying channel estimation method based on channel prediction |
CN111245751A (en) * | 2020-01-10 | 2020-06-05 | 北京星河亮点技术股份有限公司 | Partition matrix iteration method and system for sparse Bayesian learning channel estimation |
CN112737702A (en) * | 2020-12-18 | 2021-04-30 | 哈尔滨工程大学 | MIMO underwater acoustic channel estimation method under sparse interference background |
CN113242191A (en) * | 2021-05-07 | 2021-08-10 | 苏州桑泰海洋仪器研发有限责任公司 | Improved time sequence multiple sparse Bayesian learning underwater acoustic channel estimation method |
CN113872895A (en) * | 2021-10-21 | 2021-12-31 | 武汉中科海讯电子科技有限公司 | Underwater channel estimation method based on multi-task Bayes compressed sensing |
CN115118556A (en) * | 2022-06-21 | 2022-09-27 | 厦门大学 | Sparse channel estimation method, device and medium for OFDM underwater acoustic communication system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103095639A (en) * | 2013-01-15 | 2013-05-08 | 哈尔滨工程大学 | Orthogonal frequency division multiplexing (OFDM) underwater acoustic communication parallel iterative inter-carrier interference (ICI) elimination method |
EP3297236A1 (en) * | 2016-09-15 | 2018-03-21 | Mitsubishi Electric R & D Centre Europe B.V. | Efficient sparse channel estimation based on compressed sensing |
CN108337199A (en) * | 2018-01-17 | 2018-07-27 | 江苏大学 | A kind of Downlink channel estimation method of the extensive MIMO communication system based on management loading |
-
2018
- 2018-10-15 CN CN201811197910.8A patent/CN109088835A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103095639A (en) * | 2013-01-15 | 2013-05-08 | 哈尔滨工程大学 | Orthogonal frequency division multiplexing (OFDM) underwater acoustic communication parallel iterative inter-carrier interference (ICI) elimination method |
EP3297236A1 (en) * | 2016-09-15 | 2018-03-21 | Mitsubishi Electric R & D Centre Europe B.V. | Efficient sparse channel estimation based on compressed sensing |
CN108337199A (en) * | 2018-01-17 | 2018-07-27 | 江苏大学 | A kind of Downlink channel estimation method of the extensive MIMO communication system based on management loading |
Non-Patent Citations (1)
Title |
---|
GANG QIAO.ETC: ""Sparse Bayesian Learning for Channel Estimation in Time-Varying Underwater Acoustic OFDM Communication"", 《IEEE ACCESS( VOLUME: 6 )》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617850A (en) * | 2019-01-07 | 2019-04-12 | 南京邮电大学 | OFDM sparse channel estimation method based on adaptive compressed sensing |
CN110380994B (en) * | 2019-05-13 | 2021-09-07 | 上海海事大学 | Fast Bayesian Matching Pursuit for Maritime Sparse Channel Estimation |
CN110380994A (en) * | 2019-05-13 | 2019-10-25 | 上海海事大学 | Quick Bayesian matching tracks marine condition of sparse channel estimation method |
CN110082761A (en) * | 2019-05-31 | 2019-08-02 | 电子科技大学 | Distributed external illuminators-based radar imaging method |
CN111131108A (en) * | 2019-12-30 | 2020-05-08 | 哈尔滨工程大学 | A non-cooperative underwater acoustic OFDM subcarrier modulation method identification method |
CN111131108B (en) * | 2019-12-30 | 2022-05-20 | 哈尔滨工程大学 | A non-cooperative underwater acoustic OFDM subcarrier modulation method identification method |
CN111147407A (en) * | 2019-12-31 | 2020-05-12 | 哈尔滨哈船海洋信息技术有限公司 | TMSBL underwater acoustic OFDM time-varying channel estimation method based on channel prediction |
CN111147407B (en) * | 2019-12-31 | 2022-09-09 | 哈尔滨哈船海洋信息技术有限公司 | TMSBL underwater acoustic OFDM time-varying channel estimation method based on channel prediction |
CN111245751A (en) * | 2020-01-10 | 2020-06-05 | 北京星河亮点技术股份有限公司 | Partition matrix iteration method and system for sparse Bayesian learning channel estimation |
CN111245751B (en) * | 2020-01-10 | 2022-10-04 | 北京星河亮点技术股份有限公司 | Partition matrix iteration method and system for sparse Bayesian learning channel estimation |
CN112737702A (en) * | 2020-12-18 | 2021-04-30 | 哈尔滨工程大学 | MIMO underwater acoustic channel estimation method under sparse interference background |
CN112737702B (en) * | 2020-12-18 | 2022-05-17 | 哈尔滨工程大学 | MIMO underwater acoustic channel estimation method under sparse interference background |
CN113242191A (en) * | 2021-05-07 | 2021-08-10 | 苏州桑泰海洋仪器研发有限责任公司 | Improved time sequence multiple sparse Bayesian learning underwater acoustic channel estimation method |
CN113872895A (en) * | 2021-10-21 | 2021-12-31 | 武汉中科海讯电子科技有限公司 | Underwater channel estimation method based on multi-task Bayes compressed sensing |
CN113872895B (en) * | 2021-10-21 | 2023-12-12 | 武汉中科海讯电子科技有限公司 | Underwater channel estimation method based on multitasking Bayes compressed sensing |
CN115118556A (en) * | 2022-06-21 | 2022-09-27 | 厦门大学 | Sparse channel estimation method, device and medium for OFDM underwater acoustic communication system |
CN115118556B (en) * | 2022-06-21 | 2023-10-17 | 厦门大学 | Sparse channel estimation method, device and medium for OFDM (orthogonal frequency division multiplexing) underwater acoustic communication system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109088835A (en) | Underwater sound time-varying channel estimation method based on time multiple management loading | |
CN109194596A (en) | A kind of underwater sound OFDM time-varying channel estimation method based on management loading | |
CN111147407B (en) | TMSBL underwater acoustic OFDM time-varying channel estimation method based on channel prediction | |
CN105227512B (en) | A kind of impulsive noise method of estimation in OFDM underwater sound communication systems | |
US9608738B2 (en) | System and method for broadband doppler compensation | |
CN109039960A (en) | A kind of underwater sound condition of sparse channel estimation variable step degree of rarefication Adaptive matching method for tracing | |
CN108900443B (en) | A Method for Eliminating Interference of Underwater Acoustic Channel in Underwater Acoustic Communication | |
US10904050B1 (en) | Data processing for automatic modulation classification of wireless signals | |
CN103491046B (en) | The doppler spread processing method of underwater sound high speed ofdm communication | |
CN105490974A (en) | Doppler estimation method of MIMO-OFDM hydroacoustic communication system | |
CN113242191B (en) | Improved time sequence multiple sparse Bayesian learning underwater acoustic channel estimation method | |
CN113055317A (en) | Orthogonal matching tracking channel estimation method for underwater sound OFDM system | |
CN108848043A (en) | The compressed sensing based sparse time-varying channel estimation method of the low complex degree underwater sound | |
CN112511469B (en) | Sparse underwater acoustic channel estimation method based on deep learning | |
CN116016055B (en) | Self-adaptive underwater acoustic channel equalization method based on vector approximation message transmission | |
Riedl et al. | Must-read: Multichannel sample-by-sample turbo resampling equalization and decoding | |
CN111726309B (en) | Channel estimation method and estimation device for mobile orthogonal frequency division multiplexing system | |
CN111291511B (en) | Soft Kalman filtering iteration time-varying channel estimation method based on historical information | |
Ishijima et al. | Sparse Channel Estimation with Global Optimum Solution for Orthogonal Signal Division Multiplexing in Underwater Acoustic Communication | |
Zhang et al. | A low complexity OMP sparse channel estimation algorithm in OFDM system | |
CN115037386A (en) | A bionic communication signal simulation test method | |
CN108924073B (en) | A Fast Adaptive Doppler Estimation Method Based on Pseudorandom Sequence Synchronization | |
CN116915555B (en) | An underwater acoustic channel estimation method and device based on self-supervised learning | |
CN111431823A (en) | Sub-path underwater acoustic channel tracking method | |
Gao et al. | Underwater acoustic channel estimation based on sparsity-aware deep neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181225 |