CN109070209B - Active metal powder in-flight heat treatment process - Google Patents
Active metal powder in-flight heat treatment process Download PDFInfo
- Publication number
- CN109070209B CN109070209B CN201780028601.5A CN201780028601A CN109070209B CN 109070209 B CN109070209 B CN 109070209B CN 201780028601 A CN201780028601 A CN 201780028601A CN 109070209 B CN109070209 B CN 109070209B
- Authority
- CN
- China
- Prior art keywords
- metal powder
- less
- particle size
- astm
- size distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims abstract description 361
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 359
- 239000002184 metal Substances 0.000 title claims abstract description 359
- 238000000034 method Methods 0.000 title claims abstract description 190
- 230000008569 process Effects 0.000 title claims abstract description 174
- 238000010438 heat treatment Methods 0.000 title claims abstract description 49
- 239000000654 additive Substances 0.000 claims abstract description 162
- 230000000996 additive effect Effects 0.000 claims abstract description 159
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims description 247
- 239000007789 gas Substances 0.000 claims description 225
- 238000009826 distribution Methods 0.000 claims description 185
- 239000000203 mixture Substances 0.000 claims description 43
- 238000007669 thermal treatment Methods 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- 238000007873 sieving Methods 0.000 claims description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 239000000460 chlorine Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- 229910001093 Zr alloy Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims 1
- 229910052734 helium Inorganic materials 0.000 claims 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 55
- 238000000889 atomisation Methods 0.000 description 46
- 125000004429 atom Chemical group 0.000 description 23
- 238000012360 testing method Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000012530 fluid Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000002923 metal particle Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 5
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000009689 gas atomisation Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- -1 CO Chemical compound 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Nanotechnology (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
Abstract
提供了活性金属粉末飞行热处理工艺。例如,这种工艺包含提供活性金属粉末;以及在进行所述飞行热处理工艺时,使所述活性金属粉末与至少一种添加剂气体接触,从而获得原始活性金属粉末。
A reactive metal powder in-flight heat treatment process is provided. For example, such a process includes providing active metal powder; and contacting the active metal powder with at least one additive gas while performing the in-flight heat treatment process, thereby obtaining a pristine active metal powder.
Description
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本申请要求于2016年4月11日提交的美国临时申请号62/320,874的优先权。该文件通过引用整体并入。This application claims priority to US Provisional Application No. 62/320,874, filed April 11, 2016. This document is incorporated by reference in its entirety.
技术领域technical field
本公开涉及球形粉末如活性金属粉末的生产领域。更特别地,本公开涉及通过具有改善流动性来制备活性金属粉末的方法和设备。The present disclosure relates to the field of production of spherical powders such as reactive metal powders. More particularly, the present disclosure relates to methods and apparatus for producing reactive metal powders by having improved flow properties.
背景技术Background technique
通常,高质量活性金属粉末的所需特征将是高球形度、密度、纯度、流动性和少量气体截留孔隙的组合。细粉末可用于诸如3D打印、粉末喷射成型、热等静压和涂层的应用。这种细粉末用于航空航天、生物医学和工业领域的应用。In general, the desired characteristics of high quality active metal powders will be a combination of high sphericity, density, purity, flowability and a small amount of gas entrapment pores. Fine powders can be used in applications such as 3D printing, powder jet molding, hot isostatic pressing and coating. This fine powder is used in aerospace, biomedical and industrial applications.
具有不良流动性的粉末可能倾向于形成具有较低密度和较高表面积的聚集体。当用于需要细活性金属粉末的应用中时,这些聚集体可能是有害的。此外,具有不良流动性的活性粉末会导致管道堵塞和/或粘在雾化设备的雾化室壁上或输送管壁上。此外,当将粉末分离成不同尺寸分布时,聚集体形式的粉末更难以筛分。因为较高的表面积转化为较高的反应性,以聚集体形式操纵粉末也增加了安全风险。Powders with poor flow properties may tend to form aggregates with lower density and higher surface area. These aggregates can be detrimental when used in applications requiring fine reactive metal powders. In addition, active powders with poor flow properties can cause pipe blockages and/or stick to the walls of the atomizing chamber of the atomizing device or to the walls of the delivery pipe. Furthermore, powders in aggregate form are more difficult to sieve when separating powders into different size distributions. Manipulating powders in aggregate form also increases safety risks because higher surface area translates into higher reactivity.
相反,出于各种原因,期望具有改善流动性的金属粉末。例如,它们可以作为添加剂制造和涂层更容易地用于粉末冶金工艺中。On the contrary, metal powders with improved flow properties are desired for various reasons. For example, they can be more easily used in powder metallurgy processes as additive manufacturing and coatings.
发明内容SUMMARY OF THE INVENTION
因此,非常希望提供一种装置、系统或方法,其至少部分地解决与静电灵敏度相关的活性金属粉末的不良流动性。高流动性粉末通常以较高的表观密度转化,并且可以更容易地扩散以产生均匀的粉末层。Accordingly, it would be highly desirable to provide an apparatus, system or method that addresses, at least in part, the poor flow properties of reactive metal powders associated with electrostatic sensitivity. High-flow powders generally convert at higher apparent densities and can diffuse more easily to produce a uniform powder layer.
根据一个方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to one aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;以及provide reactive metal powders; and
在进行所述飞行热处理工艺时,使所述活性金属粉末与至少一种添加剂气体接触。During the in-flight heat treatment process, the active metal powder is contacted with at least one additive gas.
根据另一方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to another aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;以及provide reactive metal powders; and
在进行所述飞行热处理工艺时,使所述活性金属粉末与至少一种添加剂气体接触,从而获得原始活性金属粉末,该原始活性金属粉末包含:During the in-flight heat treatment process, the active metal powder is contacted with at least one additive gas, thereby obtaining a pristine active metal powder, the pristine active metal powder comprising:
根据ASTM B213测量的具有小于40秒流动性的约10至约53μm的粒度分布;A particle size distribution of about 10 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约10至约45μm的粒度分布;A particle size distribution of about 10 to about 45 μm having a flowability of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约15至约45μm的粒度分布;A particle size distribution of about 15 to about 45 μm with a flow of less than 40 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约15至约53μm的粒度分布;A particle size distribution of about 15 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约25至约45μm的粒度分布;A particle size distribution of about 25 to about 45 μm having a flowability of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约25至约53μm的粒度分布;A particle size distribution of about 25 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约75μm的粒度分布;A particle size distribution of about 45 to about 75 μm having a flow of less than 28 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约106μm的粒度分布;A particle size distribution of about 45 to about 106 μm with a flow of less than 28 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约150μm的粒度分布;和/或A particle size distribution of from about 45 to about 150 μm, measured in accordance with ASTM B213, having a flowability of less than 28 seconds; and/or
根据ASTM B213测量的具有小于28秒流动性的约45至约180μm的粒度分布。Particle size distribution of about 45 to about 180 μm with less than 28 seconds flow as measured according to ASTM B213.
根据另一方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to another aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;以及provide reactive metal powders; and
在进行所述飞行热处理工艺时,使所述活性金属粉末与至少一种添加剂气体接触,从而获得原始活性金属粉末,该原始活性金属粉末包含:During the in-flight heat treatment process, the active metal powder is contacted with at least one additive gas, thereby obtaining a pristine active metal powder, the pristine active metal powder comprising:
根据ASTM B213测量的具有小于30秒流动性的约10至约53μm的粒度分布;A particle size distribution of about 10 to about 53 μm having a flowability of less than 30 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于30秒流动性的约10至约45μm的粒度分布;A particle size distribution of about 10 to about 45 μm having a flowability of less than 30 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于30秒流动性的约15至约45μm的粒度分布;A particle size distribution of about 15 to about 45 μm with a flow of less than 30 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于30秒流动性的约15至约53μm的粒度分布;A particle size distribution of about 15 to about 53 μm with flowability of less than 30 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于30秒流动性的约25至约45μm的粒度分布;和/或A particle size distribution of from about 25 to about 45 μm, measured in accordance with ASTM B213, having a flowability of less than 30 seconds; and/or
根据ASTM B213测量的具有小于30秒流动性的约25至约53μm的粒度分布。Particle size distribution of about 25 to about 53 μm with flowability of less than 30 seconds as measured according to ASTM B213.
根据另一方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to another aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;Provide active metal powder;
将飞行热处理工艺气体和至少一种添加剂气体混合在一起以获得飞行热处理工艺气体混合物;mixing together an in-flight thermal treatment process gas and at least one additive gas to obtain an in-flight thermal treatment process gas mixture;
在进行所述飞行热处理工艺时,使所述活性金属粉末与所述混合物接触。During the in-flight heat treatment process, the active metal powder is brought into contact with the mixture.
根据另一方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to another aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;Provide active metal powder;
将飞行热处理工艺气体和至少一种添加剂气体混合在一起以获得飞行热处理工艺气体混合物;mixing together an in-flight thermal treatment process gas and at least one additive gas to obtain an in-flight thermal treatment process gas mixture;
在进行所述飞行热处理工艺时,使所述活性金属粉末与所述混合物接触,从而获得原始活性金属粉末,该原始活性金属粉末包含:During the in-flight heat treatment process, the active metal powder is brought into contact with the mixture, thereby obtaining a pristine active metal powder, the pristine active metal powder comprising:
根据ASTM B213测量的具有小于40秒流动性的约10至约53μm的粒度分布;A particle size distribution of about 10 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约10至约45μm的粒度分布;A particle size distribution of about 10 to about 45 μm having a flowability of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约15至约45μm的粒度分布;A particle size distribution of about 15 to about 45 μm with a flow of less than 40 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约15至约53μm的粒度分布;A particle size distribution of about 15 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约25至约45μm的粒度分布;A particle size distribution of about 25 to about 45 μm having a flowability of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约25至约53μm的粒度分布;A particle size distribution of about 25 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约75μm的粒度分布;A particle size distribution of about 45 to about 75 μm having a flow of less than 28 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约106μm的粒度分布;A particle size distribution of about 45 to about 106 μm with a flow of less than 28 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约150μm的粒度分布;和/或A particle size distribution of from about 45 to about 150 μm, measured in accordance with ASTM B213, having a flowability of less than 28 seconds; and/or
根据ASTM B213测量的具有小于28秒流动性的约45至约180μm的粒度分布。Particle size distribution of about 45 to about 180 μm with less than 28 seconds flow as measured according to ASTM B213.
根据另一方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to another aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;Provide active metal powder;
将飞行热处理工艺气体和至少一种添加剂气体混合在一起以获得飞行热处理工艺气体混合物;mixing together an in-flight thermal treatment process gas and at least one additive gas to obtain an in-flight thermal treatment process gas mixture;
在进行所述飞行热处理工艺时,使所述活性金属粉末与所述混合物接触,从而获得原始活性金属粉末,该原始活性金属粉末包含:During the in-flight heat treatment process, the active metal powder is brought into contact with the mixture, thereby obtaining a pristine active metal powder, the pristine active metal powder comprising:
根据ASTM B213测量的具有小于30秒流动性的约10至约53μm的粒度分布;A particle size distribution of about 10 to about 53 μm having a flowability of less than 30 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于30秒流动性的约10至约45μm的粒度分布;A particle size distribution of about 10 to about 45 μm having a flowability of less than 30 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于30秒流动性的约15至约45μm的粒度分布;A particle size distribution of about 15 to about 45 μm with a flow of less than 30 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于30秒流动性的约15至约53μm的粒度分布;A particle size distribution of about 15 to about 53 μm with flowability of less than 30 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于30秒流动性的约25至约45μm的粒度分布;和/或A particle size distribution of from about 25 to about 45 μm, measured in accordance with ASTM B213, having a flowability of less than 30 seconds; and/or
根据ASTM B213测量的具有小于30秒流动性的约25至约53μm的粒度分布。Particle size distribution of about 25 to about 53 μm with flowability of less than 30 seconds as measured according to ASTM B213.
根据另一方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to another aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;以及provide reactive metal powders; and
在足以产生原始活性金属粉末的条件下,在进行所述飞行热处理工艺时,使所述活性金属粉末与至少一种添加剂气体接触,所述原始活性金属粉末具有小于1000ppm的来自添加剂气体的每种电负性原子和/或分子的添加含量。The active metal powder is contacted with at least one additive gas while performing the in-flight heat treatment process under conditions sufficient to produce a pristine active metal powder having less than 1000 ppm of each from the additive gas The added content of electronegative atoms and/or molecules.
根据另一方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to another aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;Provide active metal powder;
将飞行热处理工艺气体和至少一种添加剂气体混合在一起以获得飞行热处理工艺气体混合物;mixing together an in-flight thermal treatment process gas and at least one additive gas to obtain an in-flight thermal treatment process gas mixture;
在足以产生原始活性金属粉末的条件下,在进行所述飞行热处理工艺时,使所述活性金属粉末源与所述飞行热处理工艺气体混合物接触,所述原始活性金属粉末具有小于1000ppm的来自添加剂气体的电负性原子和/或分子的添加含量。The active metal powder source is contacted with the in-flight heat treatment process gas mixture while conducting the in-flight heat treatment process under conditions sufficient to produce pristine active metal powder having less than 1000 ppm from additive gas The added content of electronegative atoms and/or molecules.
根据另一方面,本发明提供了一种活性金属粉末飞行热处理工艺,其包括:According to another aspect, the present invention provides an in-flight heat treatment process for active metal powder, comprising:
提供活性金属粉末;Provide active metal powder;
将飞行热处理工艺气体和至少一种添加剂气体混合在一起以获得飞行热处理工艺气体混合物;mixing together an in-flight thermal treatment process gas and at least one additive gas to obtain an in-flight thermal treatment process gas mixture;
在进行所述飞行热处理工艺时,使所述活性金属粉末与所述飞行热处理工艺气体混合物接触,从而获得原始金属粉末;During the in-flight heat treatment process, contacting the active metal powder with the in-flight heat treatment process gas mixture to obtain pristine metal powder;
任选地筛分所述原始活性金属粉末以获得具有预定粒度的粉末;以及optionally sieving the virgin reactive metal powder to obtain a powder having a predetermined particle size; and
任选地使具有所述预定粒度的所述粉末与水接触。The powder having the predetermined particle size is optionally contacted with water.
本公开涉及能够生产表现出高流动性的活性金属粉末的方法、工艺、系统和设备。对于各种粒度分布(包括细粒度分布)可以观察到这种效果,其在没有所述处理的情况下甚至不会在霍尔流量计中流动。目前方法的一个优点是不会在粉末中添加外来颗粒。它仅仅是导致改善的表面处理。The present disclosure relates to methods, processes, systems and apparatus capable of producing reactive metal powders that exhibit high flow properties. This effect can be observed for various particle size distributions, including fine particle size distributions, which would not even flow in a Hall flowmeter without the treatment. One advantage of the current method is that no foreign particles are added to the powder. It simply results in an improved finish.
观察到本公开中描述的各种技术有助于降低粉末的静电敏感性,这导致改善的粉末流动性。The various techniques described in this disclosure were observed to help reduce the electrostatic sensitivity of powders, which resulted in improved powder flow.
附图说明Description of drawings
以下附图表示非限制性示例,其中:The following figures represent non-limiting examples, in which:
图1是使用等离子炬和轴向粉末喷射的飞行热处理工艺的横截面图;Figure 1 is a cross-sectional view of an in-flight heat treatment process using a plasma torch and axial powder injection;
图2是使用等离子炬和径向粉末喷射的飞行热处理工艺的横截面图;Figure 2 is a cross-sectional view of an in-flight heat treatment process using a plasma torch and radial powder injection;
图3是使用等离子炬、径向粉末喷射和下游添加剂气体喷射的飞行热处理工艺的横截面图;3 is a cross-sectional view of an in-flight thermal treatment process using a plasma torch, radial powder injection, and downstream additive gas injection;
图4是使用与炉子相结合的气体加热器和轴向粉末喷射的飞行热处理工艺的横截面图;Figure 4 is a cross-sectional view of an in-flight heat treatment process using a gas heater combined with a furnace and axial powder injection;
图5是示例性雾化系统的横截面图;5 is a cross-sectional view of an exemplary atomization system;
图6是根据雾化工艺形成的活性金属粉末颗粒的示意图,其中,加热的金属源不与添加剂气体接触;6 is a schematic diagram of reactive metal powder particles formed according to an atomization process, wherein the heated metal source is not in contact with the additive gas;
图7是根据雾化工艺形成的活性金属粉末颗粒的示意图,其中,加热的金属源与添加剂气体接触;7 is a schematic diagram of reactive metal powder particles formed according to an atomization process, wherein a heated metal source is contacted with an additive gas;
图8示出了具有半径R的颗粒和各自具有半径r的由相同质量的材料形成的多个颗粒的示意图;8 shows a schematic diagram of a particle having radius R and a plurality of particles each having radius r formed from the same mass of material;
图9示出了从各种测试中获得的颗粒的TOF-SIMS特征;Figure 9 shows TOF-SIMS characteristics of particles obtained from various tests;
图10是根据雾化工艺形成的一批金属粉末的照片,该工艺不包括与添加剂气体接触的步骤;和Figure 10 is a photograph of a batch of metal powder formed according to an atomization process that does not include a step of contacting an additive gas; and
图11是根据雾化工艺形成的一批金属粉末的照片,其中,金属源已与添加剂气体接触。Figure 11 is a photograph of a batch of metal powders formed according to an atomization process, wherein the metal source has been contacted with the additive gas.
具体实施方式Detailed ways
以非限制性方式呈现以下示例。The following examples are presented in a non-limiting manner.
除非内容另有明确规定,当与权利要求和/或说明书中的术语“包含”结合使用时,词语“一个”或“一种”可以意指“一个”,但是它也与“一个或多个”,“至少一个”和“一个或多于一个”的含义一致。类似地,除非内容另有明确规定,词语“另一个”可以意指至少第两个或更多。Unless the content clearly dictates otherwise, when used in conjunction with the term "comprising" in the claims and/or specification, the word "a" or "an" may mean "an", but it is also used in conjunction with "one or more" ", "at least one" and "one or more than one" have the same meaning. Similarly, unless the content clearly dictates otherwise, the word "another" may mean at least a second or more.
如在本说明书和权利要求中所使用的,词语“包含”(以及任何形式的包含,例如“包含”和“包含”),“具有”(以及任何形式的具有,例如“具有”和“具有”),“包括”(以及任何形式的包括,例如“包括”和“包括”)或“含有”(以及任何形式的含有,例如“含有”和“含有”),是包括性的或开放式的,不排除其它未列举的要素或工艺步骤。As used in this specification and in the claims, the words "comprising" (and any form of including, such as "comprising" and "comprising"), "having" (and any form of having, such as "having" and "having" "), "includes" (and any form of including, such as "includes" and "includes"), or "contains" (and any form of containment, such as "contains" and "comprising"), is inclusive or open-ended does not exclude other unrecited elements or process steps.
当提及用于制备金属粉末的方法、设备或系统时,本文所用的表述“雾化区”是指其中将材料雾化成材料液滴的区域。本领域技术人员将理解,雾化区的尺寸将根据各种参数而变化,例如雾化装置的温度、雾化装置的速度、雾化装置中的材料、雾化装置的功率、进入雾化区前材料的温度、材料的性质、材料的尺寸、材料的电阻率等。The expression "atomization zone" as used herein when referring to a method, apparatus or system for producing a metal powder refers to the area in which the material is atomized into droplets of the material. Those skilled in the art will understand that the size of the atomization zone will vary depending on various parameters, such as the temperature of the atomization device, the speed of the atomization device, the material in the atomization device, the power of the atomization device, the entry into the atomization zone The temperature of the front material, the properties of the material, the size of the material, the resistivity of the material, etc.
本文所用的表述“雾化器的加热区”是指粉末足够热以与添加剂气体的电负性原子反应以产生耗尽层的区域,如本公开中所讨论。The expression "heated zone of the atomizer" as used herein refers to the region of the powder that is hot enough to react with the electronegative atoms of the additive gas to create a depletion layer, as discussed in this disclosure.
表述“金属粉末具有X-Yμm粒度分布”意味着其具有小于5重量%的高于Yμm尺寸的颗粒,后者值根据ASTM B214标准测量。它还意味着其具有小于6重量%的低于Xμm尺寸(d6≥Xμm)的颗粒,后者值根据ASTM B822标准测量。The expression "metal powder has an X-Y μm particle size distribution” means that it has less than 5% by weight of particles above Y μm size, the latter value being measured according to the ASTM B214 standard. It also means that it has less than 6% by weight of particles below Xμm size (d6≧Xμm), the latter value being measured according to the ASTM B822 standard.
表述“具有15-45μm粒度的金属粉末”意味着其具有小于5重量%的高于45μm(根据ASTM B214标准测量)和小于6重量%的低于15μm(根据ASTM B822标准测量)的颗粒。The expression "metal powder having a particle size of 15-45 μm" means that it has less than 5% by weight of particles above 45 μm (measured according to ASTM B214 standard) and less than 6% by weight of particles below 15 μm (measured according to ASTM B822 standard).
本文所用的表述“气体与金属比”是指在雾化区中提供的每单位时间的注入气体的质量(kg/s)与金属源的质量进料速率(kg/s)的比。The expression "gas to metal ratio" as used herein refers to the ratio of the mass of injected gas per unit time (kg/s) provided in the atomization zone to the mass feed rate of the metal source (kg/s).
本文所用的表述“活性金属粉末”是指通过使用紧密耦合喷嘴的传统气体雾化工艺无法有效制备的金属粉末。例如,这种活性金属粉末可以是包含选自钛、钛合金、锆、锆合金、镁、镁合金、铝和铝合金中的至少一种的粉末。The expression "active metal powder" as used herein refers to metal powders that cannot be efficiently prepared by conventional gas atomization processes using tightly coupled nozzles. For example, the active metal powder may be a powder containing at least one selected from the group consisting of titanium, titanium alloys, zirconium, zirconium alloys, magnesium, magnesium alloys, aluminum, and aluminum alloys.
本文所用的表述“原始活性金属粉末”是指直接从雾化工艺获得的活性金属粉末,无需任何后处理步骤,例如筛分或分级技术。The expression "raw active metal powder" as used herein refers to the active metal powder obtained directly from the atomization process without any post-processing steps, such as sieving or classification techniques.
本文所用的表述“飞行热处理工艺”是指有效改性金属粉末的金属颗粒表面的化学组成和改善金属粉末的流动性的工艺。例如,这种飞行热处理工艺可以是雾化工艺、球化工艺、飞行炉子加热工艺或飞行等离子体加热工艺。The expression "in-flight heat treatment process" as used herein refers to a process that effectively modifies the chemical composition of the metal particle surface of the metal powder and improves the fluidity of the metal powder. For example, this in-flight heat treatment process may be an atomization process, a spheroidization process, an in-flight furnace heating process or an in-flight plasma heating process.
观察到具有细粒度的活性金属粉末(例如在106μm以下的尺寸分布内)具有更大的表面积和更强的表面相互作用。这些导致比较粗粉末更差的流动性行为。粉末的流动性取决于各种因素中的一个或多个,例如颗粒形状、粒度分布、表面光滑度、湿度水平、卫星含量和静电的存在。因此,粉末的流动性是由粉末颗粒上的粘附力和重力之间的平衡产生的复杂宏观特征。Active metal powders with fine particle size (eg, within the size distribution below 106 μm) were observed to have larger surface areas and stronger surface interactions. These result in poorer flow behavior than coarse powders. The flowability of powders depends on one or more of various factors, such as particle shape, particle size distribution, surface smoothness, moisture level, satellite content, and the presence of static electricity. Therefore, the flowability of powders is a complex macroscopic feature created by the balance between adhesion and gravity on powder particles.
例如,粒度分布可以是:For example, the particle size distribution can be:
根据ASTM B213测量的具有小于40秒流动性的约10至约53μm的粒度分布;A particle size distribution of about 10 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约10至约45μm的粒度分布;A particle size distribution of about 10 to about 45 μm having a flowability of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约15至约45μm的粒度分布;A particle size distribution of about 15 to about 45 μm with a flow of less than 40 seconds as measured in accordance with ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约15至约53μm的粒度分布;A particle size distribution of about 15 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约25至约45μm的粒度分布;A particle size distribution of about 25 to about 45 μm having a flowability of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于40秒流动性的约25至约53μm的粒度分布;A particle size distribution of about 25 to about 53 μm having a flow of less than 40 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约75μm的粒度分布;A particle size distribution of about 45 to about 75 μm having a flow of less than 28 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约106μm的粒度分布;A particle size distribution of about 45 to about 106 μm with a flow of less than 28 seconds as measured according to ASTM B213;
根据ASTM B213测量的具有小于28秒流动性的约45至约150μm的粒度分布;和/或A particle size distribution of from about 45 to about 150 μm, measured in accordance with ASTM B213, having a flowability of less than 28 seconds; and/or
根据ASTM B213测量的具有小于28秒流动性的约45至约180μm的粒度分布。Particle size distribution of about 45 to about 180 μm with less than 28 seconds flow as measured according to ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于36秒流动性的约10至约53μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 10 to about 53 μm with a flowability of less than 36 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于32秒流动性的约10至约53μm的粒度分布。For example, the particle size distribution may be a particle size distribution of about 10 to about 53 μm with a flowability of less than 32 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于30秒流动性的约10至约53μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 10 to about 53 μm with a flowability of less than 30 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于28秒流动性的约10至约53μm的粒度分布。For example, the particle size distribution may be a particle size distribution of about 10 to about 53 μm with a flow of less than 28 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于36秒流动性的约10至约45μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 10 to about 45 μm with a flowability of less than 36 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于32秒流动性的约10至约45μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 10 to about 45 μm having a flowability of less than 32 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于30秒流动性的约10至约45μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 10 to about 45 μm with a flowability of less than 30 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于28秒流动性的约10至约45μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 10 to about 45 μm with a flowability of less than 28 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于36秒流动性的约15至约45μm的粒度分布。For example, the particle size distribution may be a particle size distribution of about 15 to about 45 μm having a flowability of less than 36 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于32秒流动性的约15至约45μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 15 to about 45 μm with a flowability of less than 32 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于30秒流动性的约15至约45μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 15 to about 45 μm with a flowability of less than 30 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于28秒流动性的约15至约45μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 15 to about 45 μm with a flow of less than 28 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于36秒流动性的约15至约53μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 15 to about 53 μm with a flow of less than 36 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于32秒流动性的约15至约53μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 15 to about 53 μm with a flowability of less than 32 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于30秒流动性的约15至约53μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 15 to about 53 μm with a flowability of less than 30 seconds as measured in accordance with ASTM B213.
例如,粒度分布可以是根据ASTM B213测量的具有小于28秒流动性的约15至约53μm的粒度分布。For example, the particle size distribution can be a particle size distribution of about 15 to about 53 μm with a flow of less than 28 seconds as measured in accordance with ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于36秒流动性的约25至约45μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 25 to about 45 μm with a flow of less than 36 seconds as measured according to ASTM B213.
例如,原始活性金属粉末所包含的原始活性金属粉末包含根据ASTM B213测量的具有小于32秒流动性的约25至约45μm的粒度分布。For example, the virgin reactive metal powders comprise virgin reactive metal powders comprising a particle size distribution of about 25 to about 45 μm having a flowability of less than 32 seconds as measured in accordance with ASTM B213.
例如,原始活性金属粉末所包含的原始活性金属粉末包含根据ASTM B213测量的具有小于30秒流动性的约25至约45μm的粒度分布。For example, the virgin reactive metal powders comprise virgin reactive metal powders comprising a particle size distribution of about 25 to about 45 μm having a flowability of less than 30 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于25秒流动性的约25至约45μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 25 to about 45 μm with flowability of less than 25 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于36秒流动性的约25至约53μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of about 25 to about 53 μm with a flowability of less than 36 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于32秒流动性的约25至约53μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of about 25 to about 53 μm with a flowability of less than 32 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于30秒流动性的约25至约53μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of from about 25 to about 53 μm, measured according to ASTM B213, with a flowability of less than 30 seconds.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于25秒流动性的约25至约53μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of about 25 to about 53 μm with flowability of less than 25 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于26秒流动性的约45至约75μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 45 to about 75 μm with a flow of less than 26 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于25秒流动性的约45至约75μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 45 to about 75 μm with flowability of less than 25 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于24秒流动性的约45至约75μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of about 45 to about 75 μm with a flowability of less than 24 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于23秒流动性的约45至约75μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of about 45 to about 75 μm with a flow of less than 23 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于26秒流动性的约45至约106μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 45 to about 106 μm with flowability of less than 26 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于25秒流动性的约45至约106μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 45 to about 106 μm with flowability of less than 25 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于24秒流动性的约45至约106μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of from about 45 to about 106 μm, measured according to ASTM B213, with a flowability of less than 24 seconds.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于23秒流动性的约45至约106μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of about 45 to about 106 μm with flowability of less than 23 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于26秒流动性的约45至约150μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 45 to about 150 μm with a flow of less than 26 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于25秒流动性的约45至约150μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of from about 45 to about 150 μm, measured according to ASTM B213, with a flowability of less than 25 seconds.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于24秒流动性的约45至约150μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of about 45 to about 150 μm with flowability of less than 24 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于23秒流动性的约45至约150μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 45 to about 150 μm with a flow of less than 23 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于26秒流动性的约45至约180μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of from about 45 to about 180 μm, measured according to ASTM B213, with a flowability of less than 26 seconds.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于25秒流动性的约45至约180μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 45 to about 180 μm with flowability of less than 25 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于24秒流动性的约45至约180μm的粒度分布。For example, the virgin reactive metal powder contains a particle size distribution of about 45 to about 180 μm with flowability of less than 24 seconds as measured according to ASTM B213.
例如,原始活性金属粉末包含根据ASTM B213测量的具有小于23秒流动性的约45至约180μm的粒度分布。For example, the virgin reactive metal powder comprises a particle size distribution of about 45 to about 180 μm with a flow of less than 23 seconds as measured according to ASTM B213.
本领域技术人员将理解,例如,如果50g粉末经历流动性处理(即如本公开中所述的飞行热处理工艺)以达到2.50g/cm3的表观密度(作为Ti-6Al-4V)以及在测试ASTM B213中霍尔流量为30秒,由于这些材料的堆积密度不同,具有类似处理的1.50g/cm3的表观密度(作为Al)的粉末将在18秒内流动并且具有类似处理的3.21g/cm3的表观密度(作为Zr)的粉末将在39秒内流动。Those skilled in the art will appreciate that, for example, if 50 g of powder is subjected to a flowability treatment (ie, an on-the-fly heat treatment process as described in this disclosure) to achieve an apparent density of 2.50 g/ cm3 (as Ti-6Al-4V) and at Testing ASTM B213 Hall flow at 30 seconds, due to the different bulk densities of these materials, a powder with a similarly treated apparent density (as Al) of 1.50 g/cm will flow in 18 seconds and have a similarly treated 3.21 A powder of apparent density (as Zr) of g/ cm3 will flow in 39 seconds.
例如,在反应器的反应区中将金属源与所述至少一种添加剂气体接触。For example, the metal source is contacted with the at least one additive gas in the reaction zone of the reactor.
例如,在反应器的热区中将金属源与所述至少一种添加剂气体接触。For example, the metal source is contacted with the at least one additive gas in a hot zone of the reactor.
例如,在雾化器的雾化区中将金属源与所述至少一种添加剂气体接触。For example, the metal source is contacted with the at least one additive gas in the atomization zone of the atomizer.
例如,在雾化器的加热区中将金属源与所述至少一种添加剂气体接触。For example, the metal source is contacted with the at least one additive gas in a heated zone of the atomizer.
例如,将金属源与所述至少一种添加剂气体接触并基本上同时将其与雾化气体接触。For example, the metal source is contacted with the at least one additive gas substantially simultaneously with the atomizing gas.
例如,雾化气体是惰性气体。For example, the atomizing gas is an inert gas.
例如,在与加热的金属源接触之前将雾化气体和添加剂气体混合在一起。For example, the atomizing gas and additive gas are mixed together prior to contact with the heated metal source.
例如,与添加剂气体的接触导致在原始金属颗粒的表面上形成第一层和第二层,所述第一层包含所述金属的原子与所述添加剂气体的原子和/或分子,所述第一层是比天然氧化物层更深和更厚的耗尽层,所述第二层是天然氧化物层。For example, contact with the additive gas results in the formation of a first layer and a second layer on the surface of the original metal particles, the first layer comprising atoms of the metal and atoms and/or molecules of the additive gas, the first layer One layer is a depletion layer that is deeper and thicker than the native oxide layer, and the second layer is the native oxide layer.
例如,第一层具有基本上正电荷,且第二层具有基本上负电荷,并且其中,第一层和第二层具有基本上中性的组合电荷。For example, the first layer has a substantially positive charge and the second layer has a substantially negative charge, and wherein the first layer and the second layer have a substantially neutral combined charge.
例如,该工艺还包括:For example, the process also includes:
筛分原始活性金属粉末以通过粒度分布分离原始活性金属粉末。The raw active metal powder is sieved to separate the raw active metal powder by particle size distribution.
例如,该工艺还包括:For example, the process also includes:
在筛分后,在水中将分离的原始材料粉末分别搅拌。After sieving, the separated raw material powders were stirred separately in water.
例如,水是蒸馏水或软化水。For example, the water is distilled or demineralized water.
例如,在已搅拌后,在干燥的筛分金属粉末上测量活性金属粉末的流动性。For example, the flowability of the active metal powder is measured on the dry sieved metal powder after it has been stirred.
例如,活性金属粉末具有小于1000ppm的来自添加剂气体的每种电负性原子和/或分子的添加含量。For example, the active metal powder has an added content of each electronegative atom and/or molecule from the additive gas of less than 1000 ppm.
例如,活性金属粉末具有小于500ppm的来自添加剂气体的每种所述电负性原子和/或分子的添加含量。For example, the active metal powder has an added content of each of said electronegative atoms and/or molecules from the additive gas of less than 500 ppm.
例如,活性金属粉末具有小于250ppm的来自添加剂气体的每种所述电负性原子和/或分子的添加含量。For example, the active metal powder has an added content of each of said electronegative atoms and/or molecules from the additive gas of less than 250 ppm.
例如,活性金属粉末具有小于200ppm的来自添加剂气体的每种所述电负性原子和/或分子的添加含量。For example, the active metal powder has an added content of each of said electronegative atoms and/or molecules from the additive gas of less than 200 ppm.
例如,活性金属粉末具有小于150ppm的来自添加剂气体的每种所述电负性原子和/或分子的添加含量。For example, the active metal powder has an added content of each of said electronegative atoms and/or molecules from the additive gas of less than 150 ppm.
例如,活性金属粉末具有小于100ppm的来自添加剂气体的每种所述电负性原子和/或分子的添加含量。For example, the active metal powder has an added content of each of said electronegative atoms and/or molecules from the additive gas of less than 100 ppm.
例如,预定的粒度包含约10-53μm的任何粒度分布,例如10-45μm、15-45μm、10-53μm、15-53μm和/或25-45μm。For example, the predetermined particle size comprises any particle size distribution of about 10-53 μm, such as 10-45 μm, 15-45 μm, 10-53 μm, 15-53 μm and/or 25-45 μm.
例如,至少一种添加剂气体是含氧气体。For example, the at least one additive gas is an oxygen-containing gas.
例如,至少一种添加剂气体是选自O2、CO2、CO、NO2、空气、水蒸气及其混合物的含氧气体。For example, the at least one additive gas is an oxygen-containing gas selected from the group consisting of O2 , CO2 , CO , NO2, air, water vapor, and mixtures thereof.
例如,至少一种添加剂气体是含卤素气体。For example, the at least one additive gas is a halogen-containing gas.
例如,卤素是F、Cl、Br或I。For example, halogen is F, Cl, Br or I.
例如,至少一种添加剂气体是含氢气体。For example, the at least one additive gas is a hydrogen-containing gas.
例如,至少一种添加剂气体是含硫气体。For example, the at least one additive gas is a sulfur-containing gas.
例如,至少一种添加剂气体是含氮气体。For example, the at least one additive gas is a nitrogen-containing gas.
例如,至少一种添加剂气体选自O2、H2O、CO、CO2、NO2、N2、NO3、Cl2、SO2、SO3及其混合物。For example, the at least one additive gas is selected from the group consisting of O2 , H2O , CO , CO2 , NO2, N2 , NO3 , Cl2 , SO2 , SO3 , and mixtures thereof.
例如,活性金属粉末包含钛、锆、镁和铝中的至少一种。For example, the active metal powder contains at least one of titanium, zirconium, magnesium, and aluminum.
例如,活性金属粉末是包含选自钛、钛合金、锆、锆合金、镁、镁合金、铝和铝合金中的至少一种的金属粉末。For example, the active metal powder is a metal powder containing at least one selected from the group consisting of titanium, titanium alloys, zirconium, zirconium alloys, magnesium, magnesium alloys, aluminum, and aluminum alloys.
例如,活性金属粉末包含钛。For example, the active metal powder contains titanium.
例如,活性金属粉末包括钛合金。For example, active metal powders include titanium alloys.
例如,活性金属粉末包含锆。For example, the active metal powder contains zirconium.
例如,活性金属粉末包含锆合金。For example, the active metal powder includes a zirconium alloy.
例如,活性金属粉末是包含选自钛和钛合金之一中的至少一个成员的金属粉末。For example, the active metal powder is a metal powder containing at least one member selected from one of titanium and titanium alloys.
例如,借助于至少一个等离子炬进行该工艺。For example, the process is carried out by means of at least one plasma torch.
例如,借助于至少一个等离子炬进行该工艺。For example, the process is carried out by means of at least one plasma torch.
例如,至少一个等离子炬是射频(RF)等离子炬。For example, at least one plasma torch is a radio frequency (RF) plasma torch.
例如,至少一个等离子炬是直流(DC)等离子炬。For example, at least one plasma torch is a direct current (DC) plasma torch.
例如,至少一个等离子炬是微波(MW)等离子炬。For example, at least one plasma torch is a microwave (MW) plasma torch.
参考图1,其中示出了飞行热处理装置10的横截面,其使用等离子炬12加热待处理粉末18并通过等离子体16中的注入探针14轴向注入。将热处理气体20与添加剂气体22混合以在反应区24中进行化学反应。然后将处理过的粉末输送到粉末收集器26并在收集桶32中回收。Referring to FIG. 1 , there is shown a cross-section of a flying
参考图2,其中示出了飞行热处理装置10的横截面,其使用等离子炬12加热待处理粉末18并通过等离子体16尾部中的注入探针14径向注入。将热处理气体20与添加剂气体22混合以在反应区24中进行化学反应。然后将处理过的粉末输送到粉末收集器26并在收集桶32中回收。Referring to FIG. 2 , there is shown a cross-section of a flying
参考图3,其中示出了飞行热处理装置10的横截面,其使用等离子炬12加热待处理粉末18并通过等离子体16尾部中的注入探针14径向注入。将热处理气体20分别注入添加剂气体22以在反应区24中进行化学反应。然后将处理过的粉末输送到粉末收集器26并在收集桶32中回收。Referring to FIG. 3 , there is shown a cross-section of a flying
参考图4,其中示出了飞行热处理装置10的横截面,其使用气体加热器28加热待处理粉末18并在进入炉子30前通过注入探针14轴向注入。将热处理气体20与添加剂气体22混合以在反应区24中进行化学反应。然后将处理过的粉末输送到粉末收集器26并在收集桶32中回收。Referring to FIG. 4 , there is shown a cross-section of the in-flight
现在参考图5,其中示出了雾化系统102'的示例横截面。雾化系统102'包括容器118,其接收来自上游系统的金属源126的进料。例如,金属源126的进料作为熔融流提供,但它也可以作为金属棒或金属丝提供。可以根据各种技术加热金属源。Referring now to FIG. 5, an example cross-section of atomization system 102' is shown. The atomization system 102' includes a
通过出口124将加热的金属源126进料到雾化区132,雾化区132立即与来自雾化源140的雾化流体接触。通过雾化流体接触加热的金属源126导致形成原始活性金属粉末164,然后,由雾化区132排出原始活性金属粉末164。例如,雾化流体可以是雾化气体。例如,雾化气体可以是惰性气体。Heated metal source 126 is fed through
例如,惰性气体可选自Ar和/或He。For example, the inert gas may be selected from Ar and/or He.
应当理解的是,当雾化系统102'具有雾化等离子炬140时,本文所述的用于形成具有改善流动性的活性金属粉末的方法和设备可以应用于其它类型的球形粉末生产系统,例如渣壳熔化气体雾化工艺、电极感应熔化气体雾化工艺(EIGA工艺)、等离子体旋转电极工艺、等离子体(RF、DC、MW)球化工艺等。It should be understood that when atomizing system 102' has
根据所示的示例,等离子体源140包括至少一个等离子炬。至少一个等离子炬140的至少一个离散喷嘴148以金属源进料为中心。例如,喷嘴148的横截面可以朝向金属源进料逐渐变细,以便聚焦与金属源进料接触的等离子体。如本文其它地方所述,喷嘴148可以定位成使得等离子体射流的顶点接触来自容器118的金属源进料。通过来自至少一个等离子体源140的等离子体接触金属源进料导致金属源被雾化。According to the illustrated example, the
在提供多个等离子炬的情况下,炬的喷嘴是等离子炬的离散喷嘴148,该喷嘴从容器118朝向金属源。例如,离散喷嘴148定位成使得从其输出的等离子体射流的顶点与来自容器118的金属源接触。Where multiple plasma torches are provided, the nozzle of the torch is the
根据制备球形粉末的各种示例性实施方式,在进行雾化工艺时,将加热的金属源与至少一种添加剂气体接触。According to various exemplary embodiments of preparing spherical powders, a heated metal source is contacted with at least one additive gas during the atomization process.
添加剂气体可以是包含电负性原子或分子的任何气体。添加剂气体可包括氟、氯、碘、溴化物、氢基、氮基和碳基化合物。The additive gas can be any gas containing electronegative atoms or molecules. The additive gas may include fluorine, chlorine, iodine, bromide, hydrogen-based, nitrogen-based, and carbon-based compounds.
添加剂气体可以是含氧气体。本文所用的表述“含氧气体”是指含有至少一个氧原子的气体。例如,这种气体可以是O2、CO2、CO、NO2、空气、水蒸气、臭氧等。The additive gas may be an oxygen-containing gas. The expression "oxygen-containing gas" as used herein refers to a gas containing at least one oxygen atom. For example, such a gas may be O2 , CO2 , CO , NO2, air, water vapor, ozone, and the like.
根据各种示例性实施方式,在雾化器的雾化区132内将添加剂气体与加热的金属源126接触。该雾化区132是雾化器的高热区。因此,在雾化区132内将加热的金属源126与雾化气体接触并基本上同时与添加剂气体接触。According to various exemplary embodiments, the additive gas is contacted with the heated metal source 126 within the
只要金属颗粒足够热以使电负性原子和/或分子在表面层中扩散数十纳米,就可以发生由加热的金属源雾化产生的金属颗粒与添加剂气体之间的反应。The reaction between the metal particles produced by atomization of the heated metal source and the additive gas can occur as long as the metal particles are hot enough to diffuse electronegative atoms and/or molecules within tens of nanometers in the surface layer.
应当理解的是,根据本文所述的各种示例性实施方式,除了加热的金属源与雾化流体的接触之外,在雾化工艺期间添加剂气体与加热的金属源接触。It should be understood that, in accordance with various exemplary embodiments described herein, in addition to the contact of the heated metal source with the atomizing fluid, the additive gas is contacted with the heated metal source during the atomization process.
还应当理解的是,根据现有的雾化工艺,一些添加剂气体可以固有地被引入到雾化流体中,例如通过污染、潜在杂质或泄漏。例如,引入的添加剂气体可包括空气或氧气。It should also be appreciated that some additive gases may be inherently introduced into the atomization fluid, eg, through contamination, potential impurities, or leakage, according to existing atomization processes. For example, the additive gas introduced may include air or oxygen.
然而,根据本文所述的用于生产球形粉末的各种示例性实施方式,除了在雾化工艺期间可固有引入的任何添加剂气体之外,故意提供用于接触加热的金属源的添加剂气体。However, according to various exemplary embodiments for producing spherical powders described herein, additive gas for contacting the heated metal source is intentionally provided in addition to any additive gas that may be inherently introduced during the atomization process.
根据各种示例性实施方式,第一组喷嘴将雾化流体投射到雾化区132中以接触加热的金属源126,并且第二组喷嘴将添加剂气体注入雾化区132以接触加热的金属源126。另一种替代方式是第二组喷嘴可以在注入雾化区132之前将相容流体中的添加剂气体与雾化流体混合。例如,雾化流体和添加剂气体基本上同时或稍后与加热的金属源126接触。例如,可以混合添加剂气体以稀释这种添加剂气体并避免过大的局部浓度,这可能导致不利或不希望的反应。According to various exemplary embodiments, a first set of nozzles project atomizing fluid into
根据各种替代示例性实施方式,雾化流体是雾化气体,其与至少一种添加剂气体混合以形成雾化混合物。例如,在与加热的金属源接触之前将雾化气体和添加剂气体混合在一起。可以在与加热的金属源接触的上游的气体储罐或管道内将雾化气体和添加剂气体混合在一起。例如,可以将添加剂气体注入雾化气体罐中。注入的添加剂气体是固有地存在于雾化气体中的任何添加剂气体的补充。According to various alternative exemplary embodiments, the atomizing fluid is an atomizing gas that is mixed with at least one additive gas to form an atomizing mixture. For example, the atomizing gas and additive gas are mixed together prior to contact with the heated metal source. The atomizing gas and additive gas may be mixed together in a gas storage tank or pipe upstream in contact with the heated metal source. For example, additive gas can be injected into the atomizing gas canister. The injected additive gas is in addition to any additive gas inherently present in the atomizing gas.
可以基于由雾化工艺形成的活性金属粉末的所需最终性质来控制与加热的金属源接触的添加剂气体的量。The amount of additive gas contacted with the heated metal source can be controlled based on the desired final properties of the active metal powder formed by the atomization process.
例如,含在形成的活性金属粉末中的添加剂气体可以被视为金属粉末的污染物。因此,控制与加热的金属源接触的添加剂气体的量,使得活性金属粉末中含的添加剂气体的原子和/或分子的量保持在一定限度内。For example, additive gases contained in the formed reactive metal powder may be considered as contaminants of the metal powder. Thus, the amount of additive gas in contact with the heated metal source is controlled such that the atomic and/or molecular amount of additive gas contained in the active metal powder is kept within certain limits.
例如,可以通过适当的标准来规定活性金属粉末中的化学组成限制,例如表1的AMS 4998、ASTM F3001、ASTM F2924、ASTM B348、ASTM B350和表3的ASTM B550中的组成。因此,基于添加剂气体的组成和组成添加剂气体的一种或多种原子和/或分子的标准规定的一种或多种限制来控制与加热的金属源接触的添加剂气体的量。For example, chemical composition limits in reactive metal powders can be specified by appropriate standards, such as those in Table 1 AMS 4998, ASTM F3001, ASTM F2924, ASTM B348, ASTM B350, and Table 3 ASTM B550. Accordingly, the amount of additive gas contacted with the heated metal source is controlled based on the composition of the additive gas and one or more limits specified by the standard of one or more atoms and/or molecules that make up the additive gas.
例如,在添加剂气体含有氧并且待形成的活性金属粉末是钛合金粉末的情况下,控制与加热的金属源接触的添加剂气体的量,使得形成的活性金属粉末中的氧量为根据AMS 4998标准低于1800ppm,根据ASTM F3001低于1300ppm。For example, where the additive gas contains oxygen and the active metal powder to be formed is a titanium alloy powder, the amount of additive gas in contact with the heated metal source is controlled such that the amount of oxygen in the active metal powder formed is in accordance with the AMS 4998 standard Below 1800 ppm, below 1300 ppm according to ASTM F3001.
例如,在添加剂气体含有碳并且待形成的活性金属粉末是钛合金粉末的情况下,控制与加热的金属源接触的添加剂气体的量,使得形成的活性金属粉末中的碳量为根据AMS 4998标准低于1000ppm,根据ASTM F3001低于800ppm。For example, where the additive gas contains carbon and the active metal powder to be formed is a titanium alloy powder, the amount of additive gas in contact with the heated metal source is controlled such that the amount of carbon in the active metal powder formed is in accordance with the AMS 4998 standard Below 1000 ppm and below 800 ppm according to ASTM F3001.
例如,在添加剂气体含有氢并且待形成的活性金属粉末是钛合金粉末的情况下,控制与加热的金属源接触的添加剂气体的量,使得形成的活性金属粉末中的氢量为根据AMS 4998和ASTM F3001标准低于120ppm。For example, where the additive gas contains hydrogen and the active metal powder to be formed is a titanium alloy powder, the amount of additive gas in contact with the heated metal source is controlled such that the amount of hydrogen in the active metal powder formed is in accordance with AMS 4998 and ASTM F3001 standard is below 120ppm.
例如,在添加剂气体含有氮并且待形成的活性金属粉末是钛合金粉末的情况下,控制与加热的金属源接触的添加剂气体的量,使得形成的活性金属粉末中的氮量为根据AMS 4998标准低于400ppm,根据ASTM F3001低于500ppm。For example, in the case where the additive gas contains nitrogen and the active metal powder to be formed is a titanium alloy powder, the amount of additive gas in contact with the heated metal source is controlled such that the amount of nitrogen in the active metal powder formed is in accordance with the AMS 4998 standard Below 400 ppm and below 500 ppm according to ASTM F3001.
例如,在添加剂气体含有氯并且待形成的活性金属粉末是钛金属粉末的情况下,控制与加热的金属源接触的添加剂气体的量,使得形成的活性金属粉末中的氯量为根据ASTM F3001标准低于1000ppm。For example, where the additive gas contains chlorine and the active metal powder to be formed is titanium metal powder, the amount of additive gas in contact with the heated metal source is controlled such that the amount of chlorine in the active metal powder formed is in accordance with ASTM F3001 standard Below 1000ppm.
例如,在形成雾化混合物时可以通过控制注入雾化气体中的添加剂气体的量来控制与加热的金属源接触的添加剂气体的量。例如,可以控制注入的添加剂气体的量,以在所形成的雾化混合物中实现雾化气体与添加剂气体比的一个或多个所需范围。For example, the amount of additive gas in contact with the heated metal source can be controlled by controlling the amount of additive gas injected into the atomizing gas when forming the atomizing mixture. For example, the amount of additive gas injected can be controlled to achieve one or more desired ranges of atomizing gas to additive gas ratios in the resulting atomizing mixture.
对于在不添加添加剂气体的情况下形成的活性金属粉末,观察到具有各种不同粒度分布且经过筛分和共混步骤的活性金属粉末并不总是充分流动以允许在霍尔流量计中测量它们的流动性(参见ASTM B213的图5)。例如,根据ASTM B213,落在10-53μm之间的粒度分布内的活性金属粉末不在霍尔流量计中流动。For reactive metal powders formed without the addition of additive gases, it was observed that reactive metal powders with various particle size distributions that had undergone the sieving and blending steps did not always flow sufficiently to allow measurement in a Hall flowmeter their flowability (see Figure 5 of ASTM B213). For example, according to ASTM B213, reactive metal powders falling within a particle size distribution between 10-53 μm do not flow in a Hall flowmeter.
不受理论束缚,导致活性金属粉末流动性不良的一个重要因素是其对静电的敏感性。筛分、共混和操作步骤可能导致活性金属粉末的颗粒彼此碰撞,从而增加静电水平。这种静电进一步在颗粒之间产生内聚力,这导致活性金属粉末流动不良。Without being bound by theory, an important factor in the poor flowability of active metal powders is their susceptibility to static electricity. The sieving, blending and manipulation steps can cause particles of the active metal powder to collide with each other, thereby increasing the level of static electricity. This static electricity further creates cohesion between the particles, which results in poor flow of the active metal powder.
进一步收集通过使加热的金属源与雾化气体和添加剂气体接触而雾化加热的金属源而形成的原始活性金属粉末。收集的原始活性金属粉末含有各种尺寸的金属颗粒的混合物。进一步筛分原始活性金属粉末,以便将原始活性金属粉末分离成不同的尺寸分布,例如10-45μm、15-45μm、10-53μm、15-53μm和/或25-45μm。The original active metal powder formed by atomizing the heated metal source by contacting the heated metal source with the atomizing gas and the additive gas is further collected. The collected raw active metal powder contains a mixture of metal particles of various sizes. The raw active metal powder is further sieved to separate the raw active metal powder into different size distributions, eg 10-45 μm, 15-45 μm, 10-53 μm, 15-53 μm and/or 25-45 μm.
在筛分后,将金属粉末的每种粒度分布在蒸馏水或软化水中分别搅拌。搅拌可有助于去除积聚在金属粉末颗粒表面上的静电荷。After sieving, each particle size distribution of the metal powder was stirred separately in distilled or demineralized water. Agitation can help remove static charges that build up on the surface of the metal powder particles.
在筛分后,将金属粉末的每种粒度分布分别保持干燥。After sieving, each particle size distribution of the metal powder was kept dry separately.
观察到根据本文所述的各种示例性雾化方法形成的活性金属粉末(其中加热的金属源与添加剂气体接触)显示出比不用添加剂气体接触的雾化方法形成的活性金属粉末显著更高的流动性。大多可在具有尺寸分布为10-45μm、15-45μm、10-53μm、15-53μm和/或25-45μm或类似的粒度分布的金属粉末中筛分根据不同方法形成的金属粉末之间的流动性差异。然而,应当理解的是,当根据包括加热的金属源与添加剂气体接触的方法形成时,其它尺寸分布的金属粉末也可以表现出轻微的流动性增加。It was observed that the active metal powders formed according to the various exemplary atomization methods described herein, wherein the heated metal source was contacted with the additive gas, exhibited significantly higher fluidity. Flow between metal powders formed according to different methods can be sieved mostly in metal powders having a size distribution of 10-45 μm, 15-45 μm, 10-53 μm, 15-53 μm and/or 25-45 μm or similar particle size distribution sexual differences. It should be understood, however, that metal powders of other size distributions may also exhibit a slight increase in fluidity when formed according to a method comprising contacting a heated metal source with an additive gas.
众所周知,一旦暴露于空气,钛就形成天然表面氧化物层。该层通常为约3-5nm并且基本上由钛氧化物组成(S.Axelsson,2012,第37页)。天然氧化物可充当钝化层并降低反应性。该天然层与水蒸气(亲水性)具有强亲和力并且在表面具有羟基(Tanaka等人,2008,第1页;Lu等人,2000,第1页)。It is known that titanium forms a native surface oxide layer upon exposure to air. This layer is typically about 3-5 nm and consists essentially of titanium oxide (S. Axelsson, 2012, p. 37). Natural oxides can act as passivation layers and reduce reactivity. This native layer has a strong affinity for water vapor (hydrophilic) and has hydroxyl groups on the surface (Tanaka et al., 2008, p. 1; Lu et al., 2000, p. 1).
不受理论束缚,在雾化期间将加热的金属源与添加剂气体接触时,添加剂气体的原子和/或分子在形成这些颗粒时与活性金属粉末的颗粒反应。因此,在活性金属颗粒的颗粒外表面上形成由加热的金属与添加剂气体的化合物形成并且通过厚度耗尽的第一层。该层在表面中更厚且更深并且位于天然氧化物层下方。例如,耗尽层中加热的金属与添加剂气体的化合物是金属氧化物、氮化物、碳化物或卤化物。由于添加剂气体的原子通过表面层的厚度耗尽,因此它与金属形成非化学计量的化合物。这种化合物使该第一层具有基本上正电荷。Without being bound by theory, when the heated metal source is contacted with the additive gas during atomization, the atoms and/or molecules of the additive gas react with the particles of the active metal powder in forming these particles. Thus, a first layer formed of the heated metal and additive gas compound and depleted through the thickness is formed on the particle outer surface of the active metal particles. This layer is thicker and deeper in the surface and lies below the native oxide layer. For example, the heated metal and additive gas compound in the depletion layer is a metal oxide, nitride, carbide or halide. As the atoms of the additive gas are depleted through the thickness of the surface layer, it forms non-stoichiometric compounds with the metal. This compound imparts a substantially positive charge to the first layer.
仅可以在高温下形成该第一层,因为电负性原子和/或分子需要具有足够的能量以比在天然氧化物层中更多地扩散到表面层中。This first layer can only be formed at high temperatures because the electronegative atoms and/or molecules need to have sufficient energy to diffuse into the surface layer more than in the native oxide layer.
在活性金属粉末的颗粒表面上进一步形成作为天然氧化物层的第二层。在表面形成的羟基使第二层具有基本上负电荷。A second layer as a natural oxide layer is further formed on the particle surfaces of the active metal powder. The hydroxyl groups formed at the surface give the second layer a substantially negative charge.
具有基本上正电荷的第一层和具有基本上负电荷的第二层一起形成双电层。双层的组合电荷具有基本上中性电荷(即净电荷趋于零)。活性金属粉末颗粒表面上的这种中性电荷可有助于改善根据本文所述的示例性方法和装置形成的活性金属粉末的流动性。例如,虽然颗粒上的净电荷(例如根据传统雾化方法形成的颗粒)将有利于颗粒的极化并增加与其它颗粒的相互作用,但弱带电颗粒将与其它颗粒几乎没有电相互作用。这种减少的相互作用可以导致优异的流动性。The first layer having a substantially positive charge and the second layer having a substantially negative charge together form an electric double layer. The combined charge of the bilayer has a substantially neutral charge (ie, the net charge tends to zero). This neutral charge on the surfaces of the active metal powder particles can help improve the flow properties of the active metal powders formed according to the exemplary methods and apparatus described herein. For example, while a net charge on a particle (eg, formed according to conventional atomization methods) will favor particle polarization and increase interaction with other particles, weakly charged particles will have little electrical interaction with other particles. This reduced interaction can result in excellent flow.
图6示出了根据雾化工艺形成的活性金属粉末的颗粒100的示意图,其中,加热的金属源16不与添加剂气体接触。形成的颗粒100通常包括颗粒体108(例如Ti-6Al-4V颗粒)和表面天然氧化物层116。表面天然氧化物层116具有通常的负电荷,这使得形成的颗粒100具有净非零电荷(即对于颗粒108,Q净≠0)。这种负电荷提供了更大的极化能力。颗粒108还在表面116处包含羟基。6 shows a schematic diagram of
图7示出了根据本文所述的示例性雾化方法形成的活性金属粉末的颗粒140的示意图,其中,加热的金属源16与添加剂气体接触。在颗粒体156的外表面上形成第一层148(或层1)(例如Ti-6Al-4V颗粒)。它是由加热的金属与通过厚度耗尽的电负性原子和/或分子的复合产生的。在颗粒体156的表面上进一步形成作为天然氧化物层的第二层164(或层2)。如本文其它地方所述,第一层148和第二层164具有基本上中性的组合电荷,从而使形成的颗粒140具有基本上净零电荷(Q净≈0)和较低的极化能力。7 shows a schematic diagram of
根据来自添加剂气体的电负性原子和/或分子成为所形成的原始金属粉末的颗粒上的表面添加剂的理论,可以控制用雾化气体注入以形成雾化混合物的添加剂气体的量。因为它随着具有预定粒度分布的金属粉末的生产率准线性变化。形成层1所需的添加剂气体的量与金属颗粒的总表面积相关,这取决于生产速率和粒度分布(参见图8)。添加剂气体的浓度和金属颗粒的热条件将决定层1的耗尽层深度。The amount of additive gas injected with the atomizing gas to form the atomized mixture can be controlled according to the theory that electronegative atoms and/or molecules from the additive gas become surface additives on the particles of the original metal powder formed. Because it varies quasi-linearly with the productivity of the metal powder with a predetermined particle size distribution. The amount of additive gas required to form
进一步根据来自添加剂气体的电负性原子和/或分子成为所形成的原始金属粉末的颗粒上的表面添加剂的理论,可以控制用雾化气体注入以形成雾化混合物的添加剂气体的量。因为它随着如图8所示形成的金属粉末颗粒的总面积而变化。Further based on the theory that electronegative atoms and/or molecules from the additive gas become surface additives on the particles of the original metal powder formed, the amount of additive gas injected with the atomizing gas to form the atomized mixture can be controlled. Because it varies with the total area of the metal powder particles formed as shown in FIG. 8 .
进一步根据来自添加剂气体的电负性原子和/或分子成为所形成的原始金属粉末的颗粒上的表面添加剂的理论,可以控制用雾化气体注入以形成雾化混合物的添加剂气体的量。因为它随着所形成的原始金属粉末颗粒表面的温度而变化。活化能E的这种化学反应的反应速率通常遵循与温度T的Arhenius关系:Further based on the theory that electronegative atoms and/or molecules from the additive gas become surface additives on the particles of the original metal powder formed, the amount of additive gas injected with the atomizing gas to form the atomized mixture can be controlled. Because it varies with the temperature of the surface of the original metal powder particles formed. The reaction rate of this chemical reaction with activation energy E generally follows an Arhenius relationship with temperature T:
因此,在高温下注入添加剂气体更有效,并且需要更少的添加剂气体浓度以产生理想的耗尽深度并形成层1。Therefore, injecting the additive gas at high temperature is more efficient and requires less additive gas concentration to produce the desired depletion depth and
图8示出了颗粒180的示意图,该颗粒180在颗粒188的表面处具有半径R和耗尽深度δ。颗粒的总表面积是S1=4πR2。FIG. 8 shows a schematic diagram of a
图8进一步示出了具有与颗粒180的质量相同的总质量的多个相同尺寸的颗粒(n个颗粒)200的示意图。颗粒200的尺寸小于颗粒180但是它们的总表面积大于颗粒180,每个颗粒200具有半径r并且颗粒的总数为n=R3/r3。颗粒200的组合表面积是它随着颗粒半径的减小而线性增加。FIG. 8 further shows a schematic diagram of a plurality of particles of the same size (n particles) 200 having the same total mass as the mass of
因此,添加的表面添加剂的量是总表面积的函数,因为待处理的体积是总表面积与耗尽深度的乘积。Therefore, the amount of surface additive added is a function of the total surface area, since the volume to be treated is the product of the total surface area and the depletion depth.
例如,所获得的金属粉末可具有小于约100、150、200、300、500、1000或1500ppm的电负性原子和/或分子(例如包含在用于生产粉末的添加剂气体中的电负性原子和/或分子元素)。For example, the resulting metal powder may have less than about 100, 150, 200, 300, 500, 1000, or 1500 ppm of electronegative atoms and/or molecules (eg, electronegative atoms contained in the additive gas used to produce the powder) and/or molecular elements).
实验1
除了雾化混合物与加热的金属源接触的组合物外,在相同的实验条件下通过等离子体雾化生产四种不同的粉末。Four different powders were produced by plasma atomization under the same experimental conditions, except for the composition in which the atomized mixture was contacted with a heated metal source.
雾化气体是高纯氩气(99.997%)。The nebulizing gas was high purity argon (99.997%).
在测试1和2中,在雾化工艺期间仅使用雾化气体接触加热的金属源。In Tests 1 and 2, only the atomizing gas was used to contact the heated metal source during the atomization process.
在测试3中,将空气注入高纯氩气中以形成80ppm空气与氩气的雾化混合物。在雾化期间将加热的金属与雾化混合物接触。In Test 3, air was injected into high purity argon to form an 80 ppm atomized mixture of air and argon. The heated metal is contacted with the atomized mixture during atomization.
在测试4中,将O2注入高纯氩气中以形成50ppm O2与氩气的雾化混合物。在雾化期间将加热的金属与该第二雾化混合物接触。In Test 4, O2 was injected into high purity argon to form a 50 ppm O2 and argon atomized mixture. The heated metal is contacted with the second atomized mixture during atomization.
在与雾化气体(测试1和2)或雾化混合物(测试3和4)接触后,将所形成的原始活性金属粉末筛分以分离15-45μm粒度分布。After contact with the atomizing gas (
然后将筛分的粉末混合以确保均匀性。The sieved powders are then blended to ensure uniformity.
在蒸馏水或软化水中进一步搅拌粉末以除去在先前步骤期间积累的静电电荷。The powder is further stirred in distilled or demineralized water to remove the electrostatic charge accumulated during the previous steps.
在空气中在80℃下将粉末干燥12小时。The powder was dried in air at 80°C for 12 hours.
图9是说明通过TOF-SIMS的不同样品之间的氧分布比较的图。对于测试1至4,获得粉末的TOF-SIMS特征。耗尽层的存在可与高流动性粉末相关联,如表1中所示。Figure 9 is a graph illustrating a comparison of oxygen distribution between different samples by TOF-SIMS. For
从图9中可以清楚地看到已处理的细粉的TOF-SIMS特征。氧含量的尾部在表面层中更深地进入。获得具有一定临界深度的耗尽层是至关重要的,以便获得改善的流动性行为。TOF-SIMS结果表明耗尽层具有约100nm的深度。可以通过用轮廓仪校准在Ti-6Al-4V主体部件上获得的离子束的溅射速率来估计深度。溅射速率取决于离子束强度和材料类型。在测量之前完成校准,并且离子束能量非常稳定。The TOF-SIMS characteristics of the treated fine powder can be clearly seen from Figure 9. The tail of oxygen content goes deeper in the surface layer. It is crucial to obtain a depletion layer with a certain critical depth in order to obtain improved flow behavior. TOF-SIMS results indicate that the depletion layer has a depth of about 100 nm. Depth can be estimated by calibrating the sputtering rate of the ion beam obtained on the Ti-6Al-4V body part with a profiler. The sputtering rate depends on the ion beam intensity and material type. Calibration is done before measurement and the ion beam energy is very stable.
表1:具有在15-45μm粒度分布上测量的流动性和表观密度的测试1-4的描述Table 1: Description of Tests 1-4 with Flowability and Apparent Density Measured on 15-45 μm Particle Size Distribution
表2:在15-45μm粒度分布上的测试1-4的粉末化学组成Table 2: Powder chemical composition of tests 1-4 on 15-45 μm particle size distribution
表3:在15-45μm粒度分布上的测试1-4的粒度分布Table 3: Particle size distribution for tests 1-4 on 15-45 μm particle size distribution
从许多批次的统计数据分析确定注入空气(测试3)向粉末中添加约100-150ppm的氮气和约50ppm的氧气。注入空气改善了所形成的活性金属粉末的流动性。Statistical analysis of many batches determined that air injection (Test 3) added about 100-150 ppm nitrogen and about 50 ppm oxygen to the powder. Injecting air improves the flowability of the formed active metal powder.
从统计数据分析进一步确定,仅注入O2(测试4)添加约150-200ppm的氧气且不添加氮气。It was further determined from statistical data analysis that only O2 injection (Test 4) added about 150-200 ppm of oxygen and no nitrogen.
通过注入水蒸气进行了对15-45μm粒度分布的流动性的另外的成功测试。还观察到15-45μm粒度分布的流动性的改善。Additional successful tests for flowability of the 15-45 μm particle size distribution were carried out by injecting water vapour. An improvement in flowability was also observed for the 15-45 μm particle size distribution.
根据标准ASTM B348、ASTM F2924和ASTM F3001的组成,所进行的处理保持令人满意的化学组成。如果原料的氧会略高,则它也会符合AMS 4998的要求。The treatment carried out maintained a satisfactory chemical composition according to the composition of the standards ASTM B348, ASTM F2924 and ASTM F3001. If the feedstock will be slightly higher in oxygen, it will also meet the requirements of AMS 4998.
图10是根据雾化工艺形成的一批约100kg金属粉末的照片,该工艺不包括与添加剂气体接触。由于聚集体,90%的收集桶被填充并且视觉压实差。Figure 10 is a photograph of a batch of about 100 kg of metal powder formed according to an atomization process that did not include contact with additive gases. Due to aggregates, 90% of the collection bucket was filled and had poor visual compaction.
图11是根据雾化工艺形成的一批约100kg金属粉末的照片,该工艺中金属源与添加剂气体接触。由于改善的流动性和颗粒之间的较低表面相互作用,20%的收集桶被填充有在图10的运行期间使用的相同量材料并且视觉压实良好。Figure 11 is a photograph of a batch of about 100 kg of metal powder formed according to an atomization process in which a metal source is in contact with an additive gas. Due to improved flow and lower surface interaction between particles, 20% of the collection bucket was filled with the same amount of material used during the run of Figure 10 and visually compacted well.
通过间歇地注入添加剂气体来进行类似于测试3和4的测试。发现该处理仍然有效,同时具有向最终产品中添加较少杂质的优点。Tests similar to Tests 3 and 4 were carried out by injecting additive gas intermittently. The treatment was found to still be effective, while having the advantage of adding less impurities to the final product.
类似地,我们发现,具有良好流动性的高达30%粉末的混合物可与不在霍尔流量计中流动的70%粉末共混,并且即使不如起始粉末那样,所得粉末仍然流动。Similarly, we have found that mixtures of up to 30% powder with good flow can be blended with 70% powder that does not flow in the Hall meter, and the resulting powder still flows, if not as well as the starting powder.
实验2Experiment 2
在已经形成的金属粉末上进行后验热处理,该金属粉末是由不使用添加剂气体的工艺形成的。Post heat treatment is performed on the metal powder that has been formed by a process that does not use additive gases.
更具体地,在空气气氛中在约250℃下将已形成的金属粉末加热12小时。预计这种加热会导致向原始金属粉末颗粒表面添加氧气并增加天然氧化物层的厚度。More specifically, the formed metal powder was heated at about 250°C for 12 hours in an air atmosphere. This heating is expected to result in the addition of oxygen to the surface of the pristine metal powder particles and increase the thickness of the native oxide layer.
观察到后验的氧化/氮化不会产生与雾化工艺的雾化区中的添加剂气体接触的类似结果。没有观察到金属粉末的流动性的改善。It was observed that a posteriori oxidation/nitridation did not produce similar results for contact with additive gases in the atomization zone of the atomization process. No improvement in the fluidity of the metal powder was observed.
似乎已经形成的金属粉末的后验加热将仅使天然氧化物层变厚并且不具有在颗粒上提供足够的深度和耗尽氧化物层/氮化物层的能力。较厚的氧化物层也将保持准化学计量,并且不能提供由耗尽层提供的带正电的层1。It appears that a posteriori heating of the metal powder that has formed will only thicken the native oxide layer and not have the ability to provide sufficient depth and depletion of the oxide/nitride layer on the particles. Thicker oxide layers will also remain quasi-stoichiometric and fail to provide the positively charged
不受理论束缚,雾化期间所涉及的高温和添加剂气体的低浓度使得能够在金属源与添加剂气体接触时形成耗尽氧化物层/氮化物层的氧化/氮化反应。Without being bound by theory, the high temperatures involved and the low concentration of additive gas during atomization enable the formation of an oxidation/nitridation reaction that depletes the oxide/nitride layer when the metal source is in contact with the additive gas.
本公开的段落[18]至[195]的实施方式以本公开中的这种方式呈现,以便证明在适用时可以进行实施方式的每个组合。因此,在说明书中以等同于为依赖于任何前述权利要求(覆盖先前呈现的实施方式)的所有实施方式做出从属权利要求的方式呈现了这些实施方式,从而证明了它们可以以所有可能的方式组合在一起。例如,在适用时,在此由本公开覆盖了段落[18]至[195]的实施方式与段落[7]至[15]的工艺之间的所有可能组合。The embodiments of paragraphs [18] to [195] of the present disclosure are presented in this disclosure in such a way as to demonstrate that each combination of embodiments is possible where applicable. Accordingly, these embodiments are presented in the specification in a manner equivalent to making dependent claims for all embodiments dependent on any preceding claim (covering previously presented embodiments), thereby demonstrating that they may be possible in all possible ways combine it all toghther. For example, where applicable, all possible combinations between the embodiments of paragraphs [18] to [195] and the processes of paragraphs [7] to [15] are covered herein by this disclosure.
应当理解的是,为了说明的简单和清楚,在认为合适的情况下,可以在附图中重复附图标记以指示对应或类似的要素或步骤。另外,阐述了许多具体细节以便提供对本文描述的示例性实施方式的透彻理解。然而,本领域普通技术人员应该理解的是,可以在没有这些具体细节的情况下实践本文描述的实施方式。在其它情况下,没有详细描述众所周知的方法、过程和组件,以免模糊本文描述的实施方式。此外,该描述不应被视为以任何方式限制本文描述的实施方式的范围,而是仅描述本文描述的各种实施方式的实现。It will be understood that for simplicity and clarity of illustration, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements or steps. Furthermore, numerous specific details are set forth in order to provide a thorough understanding of the exemplary embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the embodiments described herein. Furthermore, this description should not be viewed in any way as limiting the scope of the embodiments described herein, but merely as describing implementations of the various embodiments described herein.
Claims (99)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662320874P | 2016-04-11 | 2016-04-11 | |
US62/320,874 | 2016-04-11 | ||
PCT/CA2017/050431 WO2017177315A1 (en) | 2016-04-11 | 2017-04-10 | Reactive metal powders in-flight heat treatment processes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109070209A CN109070209A (en) | 2018-12-21 |
CN109070209B true CN109070209B (en) | 2022-06-17 |
Family
ID=60042317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780028601.5A Active CN109070209B (en) | 2016-04-11 | 2017-04-10 | Active metal powder in-flight heat treatment process |
Country Status (8)
Country | Link |
---|---|
US (3) | US11235385B2 (en) |
EP (2) | EP4159345A1 (en) |
JP (1) | JP7144401B2 (en) |
KR (1) | KR102475050B1 (en) |
CN (1) | CN109070209B (en) |
AU (2) | AU2017249439B2 (en) |
CA (2) | CA3097498C (en) |
WO (1) | WO2017177315A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2693244C2 (en) | 2014-03-11 | 2019-07-01 | Текна Плазма Системз Инк. | Method and device for producing powder particles by atomisation of raw material in form of elongated element |
CN108883407A (en) | 2015-12-16 | 2018-11-23 | 阿马斯坦技术有限责任公司 | Spherical dehydrogenation metal and metal alloy particle |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
US11235385B2 (en) * | 2016-04-11 | 2022-02-01 | Ap&C Advanced Powders & Coating Inc. | Reactive metal powders in-flight heat treatment processes |
JP7024394B2 (en) * | 2017-12-26 | 2022-02-24 | 大同特殊鋼株式会社 | Metal powder material |
CA3104080A1 (en) | 2018-06-19 | 2019-12-26 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
EP3810820A1 (en) * | 2018-06-19 | 2021-04-28 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
US11611130B2 (en) | 2019-04-30 | 2023-03-21 | 6K Inc. | Lithium lanthanum zirconium oxide (LLZO) powder |
US11311938B2 (en) | 2019-04-30 | 2022-04-26 | 6K Inc. | Mechanically alloyed powder feedstock |
CN118905220A (en) * | 2019-05-02 | 2024-11-08 | 泰科纳等离子系统有限公司 | Additive manufactured powder with improved physical properties, method of manufacturing the same and use thereof |
AU2020356593A1 (en) * | 2019-09-27 | 2022-04-07 | Ap&C Advanced Powders & Coatings Inc. | Aluminum based metal powders and methods of their production |
WO2021118762A1 (en) | 2019-11-18 | 2021-06-17 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
US11654483B2 (en) | 2020-04-07 | 2023-05-23 | General Electric Company | Method for forming high quality powder for an additive manufacturing process |
CN116034496A (en) | 2020-06-25 | 2023-04-28 | 6K有限公司 | Microscopic composite alloy structure |
CN116547068A (en) | 2020-09-24 | 2023-08-04 | 6K有限公司 | Systems, devices and methods for initiating a plasma |
CN116600915A (en) | 2020-10-30 | 2023-08-15 | 6K有限公司 | Systems and methods for synthesizing spheroidized metal powders |
US12042861B2 (en) | 2021-03-31 | 2024-07-23 | 6K Inc. | Systems and methods for additive manufacturing of metal nitride ceramics |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
WO2024044498A1 (en) | 2022-08-25 | 2024-02-29 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (pip) |
CN115519118B (en) * | 2022-09-29 | 2024-01-19 | 晶高优材(北京)科技有限公司 | Method for improving fluidity, loose packing and tap density of additive manufacturing metal powder |
US12195338B2 (en) | 2022-12-15 | 2025-01-14 | 6K Inc. | Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production |
EP4491300A1 (en) | 2023-06-29 | 2025-01-15 | General Electric Company | System and method for atomized powder processing and a processed powder |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2912282A1 (en) * | 2014-03-11 | 2015-09-17 | Tekna Plasma Systems Inc. | Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member |
Family Cites Families (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3172753A (en) | 1965-03-09 | Method for theproduction of | ||
US3041672A (en) | 1958-09-22 | 1962-07-03 | Union Carbide Corp | Making spheroidal powder |
US3347698A (en) | 1964-01-10 | 1967-10-17 | Metco Inc | Radio frequency plasma flame spraying |
JPS4925554B1 (en) | 1969-05-16 | 1974-07-01 | ||
US3891824A (en) | 1971-04-01 | 1975-06-24 | Philips Corp | Method of plasma-MIG-welding |
US3944412A (en) | 1974-09-18 | 1976-03-16 | Hsin Liu | Method for recovering metals |
GB1540810A (en) | 1975-04-09 | 1979-02-14 | Metallisation Ltd | Metal spraying devices |
US4022872A (en) | 1975-11-12 | 1977-05-10 | Ppg Industries, Inc. | Process for preparing finely-divided refractory powders |
US4374075A (en) | 1981-06-17 | 1983-02-15 | Crucible Inc. | Method for the plasma-arc production of metal powder |
CA1173784A (en) | 1981-07-30 | 1984-09-04 | William H. Gauvin | Transferred-arc plasma reactor for chemical and metallurgical applications |
US5120352A (en) | 1983-06-23 | 1992-06-09 | General Electric Company | Method and apparatus for making alloy powder |
GB8505811D0 (en) | 1985-03-06 | 1985-04-11 | Bekaert Sa Nv | Induction heating |
US4544404A (en) | 1985-03-12 | 1985-10-01 | Crucible Materials Corporation | Method for atomizing titanium |
ATE70758T1 (en) | 1986-03-13 | 1992-01-15 | Richard F Cheney | POWDER SPRAYING METHOD AND APPARATUS. |
US4690796A (en) * | 1986-03-13 | 1987-09-01 | Gte Products Corporation | Process for producing aluminum-titanium diboride composites |
US4788402A (en) | 1987-03-11 | 1988-11-29 | Browning James A | High power extended arc plasma spray method and apparatus |
JPS63266001A (en) * | 1987-04-22 | 1988-11-02 | Sumitomo Metal Mining Co Ltd | Production of composite spherical powder |
US5114471A (en) | 1988-01-04 | 1992-05-19 | Gte Products Corporation | Hydrometallurgical process for producing finely divided spherical maraging steel powders |
US5176938A (en) * | 1988-11-23 | 1993-01-05 | Plasmacarb Inc. | Process for surface treatment of pulverulent material |
US4982410A (en) | 1989-04-19 | 1991-01-01 | Mustoe Trevor N | Plasma arc furnace with variable path transferred arc |
US5213610A (en) | 1989-09-27 | 1993-05-25 | Crucible Materials Corporation | Method for atomizing a titanium-based material |
EP0586756B1 (en) | 1990-05-29 | 2002-04-17 | Sulzer Metco AG | Plasma systems for thermal spraying of powders |
US5296667A (en) | 1990-08-31 | 1994-03-22 | Flame-Spray Industries, Inc. | High velocity electric-arc spray apparatus and method of forming materials |
US5147448A (en) * | 1990-10-01 | 1992-09-15 | Nuclear Metals, Inc. | Techniques for producing fine metal powder |
JPH05503322A (en) | 1990-10-09 | 1993-06-03 | アイオワ・ステイト・ユニバーシティ・リサーチ・ファウンデーション・インコーポレイテッド | Alloy powder with stable reactivity to the environment and its manufacturing method |
DE4102101C2 (en) | 1991-01-25 | 2003-12-18 | Ald Vacuum Techn Ag | Device for producing powders from metals |
US5200595A (en) | 1991-04-12 | 1993-04-06 | Universite De Sherbrooke | High performance induction plasma torch with a water-cooled ceramic confinement tube |
FR2679473B1 (en) | 1991-07-25 | 1994-01-21 | Aubert Duval | METHOD AND DEVICE FOR PRODUCING POWDERS AND ESPECIALLY METAL POWDERS BY ATOMIZATION. |
US5294242A (en) | 1991-09-30 | 1994-03-15 | Air Products And Chemicals | Method for making metal powders |
US5277705A (en) | 1992-12-30 | 1994-01-11 | Iowa State University Research Foundation, Inc. | Powder collection apparatus/method |
US5368657A (en) | 1993-04-13 | 1994-11-29 | Iowa State University Research Foundation, Inc. | Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions |
JP3545783B2 (en) * | 1993-08-12 | 2004-07-21 | 株式会社日清製粉グループ本社 | Method for producing coated particles |
US5480471A (en) | 1994-04-29 | 1996-01-02 | Crucible Materials Corporation | Re-Fe-B magnets and manufacturing method for the same |
US5707419A (en) | 1995-08-15 | 1998-01-13 | Pegasus Refractory Materials, Inc. | Method of production of metal and ceramic powders by plasma atomization |
US5855642A (en) | 1996-06-17 | 1999-01-05 | Starmet Corporation | System and method for producing fine metallic and ceramic powders |
US5935461A (en) | 1996-07-25 | 1999-08-10 | Utron Inc. | Pulsed high energy synthesis of fine metal powders |
US5939151A (en) | 1996-10-25 | 1999-08-17 | Iowa State University Research Foundation, Inc. | Method and apparatus for reactive plasma atomization |
CA2214194C (en) | 1997-01-10 | 2002-04-09 | Basf Corporation | Multiple domain fibers having inter-domain boundary compatibilizing layer and methods of making the same |
US5808270A (en) | 1997-02-14 | 1998-09-15 | Ford Global Technologies, Inc. | Plasma transferred wire arc thermal spray apparatus and method |
US5989648A (en) * | 1997-05-06 | 1999-11-23 | The Penn State Research Foundation | Plasma generation of supported metal catalysts |
JPH10330806A (en) * | 1997-06-02 | 1998-12-15 | Sanyo Special Steel Co Ltd | Production of metal powder of pseudo-spherical irregular shape |
US6142382A (en) | 1997-06-18 | 2000-11-07 | Iowa State University Research Foundation, Inc. | Atomizing nozzle and method |
AT409235B (en) | 1999-01-19 | 2002-06-25 | Boehler Edelstahl | METHOD AND DEVICE FOR PRODUCING METAL POWDER |
JP4004675B2 (en) | 1999-01-29 | 2007-11-07 | 株式会社日清製粉グループ本社 | Method for producing oxide-coated metal fine particles |
JP3696429B2 (en) * | 1999-02-22 | 2005-09-21 | 日本化学工業株式会社 | Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder |
JP2003508633A (en) | 1999-09-03 | 2003-03-04 | アメリカン インター − メタリックス、インコーポレイテッド | Apparatus and method for producing powder |
CA2399581A1 (en) | 2000-02-10 | 2001-08-16 | Tetronics Limited | Plasma arc reactor for the production of fine powders |
JP2001226704A (en) | 2000-02-10 | 2001-08-21 | Sumitomo Metal Ind Ltd | Apparatus and method for producing metal powder |
JP2001254103A (en) * | 2000-03-13 | 2001-09-18 | Sanei Kasei Kk | Metallic grain having nanocomposite structure and its producing method by self-organizing |
EP1281296B1 (en) | 2000-04-10 | 2004-09-29 | Tetronics Limited | Twin plasma torch apparatus |
US6365867B1 (en) | 2000-11-01 | 2002-04-02 | Sandia Corporation | Plasma arc torch with coaxial wire feed |
US20020125591A1 (en) | 2000-12-04 | 2002-09-12 | Jaynes Scot Eric | Process and apparatus for producing atomized powder using recirculating atomizing gas |
US6398125B1 (en) | 2001-02-10 | 2002-06-04 | Nanotek Instruments, Inc. | Process and apparatus for the production of nanometer-sized powders |
FR2821925B1 (en) | 2001-03-06 | 2003-05-16 | Celes | THERMAL INSULATION GAS AND VACUUM ENCLOSURE FOR AN INDUCTION HEATING DEVICE |
US6444009B1 (en) | 2001-04-12 | 2002-09-03 | Nanotek Instruments, Inc. | Method for producing environmentally stable reactive alloy powders |
US6915964B2 (en) | 2001-04-24 | 2005-07-12 | Innovative Technology, Inc. | System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation |
US6693253B2 (en) | 2001-10-05 | 2004-02-17 | Universite De Sherbrooke | Multi-coil induction plasma torch for solid state power supply |
GB0201600D0 (en) | 2002-01-24 | 2002-03-13 | Univ Cambridge Tech | Large- scale plasma synthesis of hollow nanostructures |
US6780219B2 (en) | 2002-07-03 | 2004-08-24 | Osram Sylvania Inc. | Method of spheridizing silicon metal powders |
JP2004091843A (en) | 2002-08-30 | 2004-03-25 | Hitachi Metals Ltd | Manufacturing method of high purity high melting point metal powder |
TW583043B (en) | 2002-12-27 | 2004-04-11 | Ind Tech Res Inst | Nanostructured metal powder and the method of fabricating the same |
US6939389B2 (en) | 2003-08-08 | 2005-09-06 | Frank Mooney | Method and apparatus for manufacturing fine powders |
PL1689519T3 (en) | 2003-08-28 | 2012-11-30 | Tekna Plasma Systems Inc | Process for the synthesis, separation and purification of powder materials |
US7131597B2 (en) | 2003-09-09 | 2006-11-07 | Scattergood John R | Atomization technique for producing fine particles |
US7803235B2 (en) | 2004-01-08 | 2010-09-28 | Cabot Corporation | Passivation of tantalum and other metal powders using oxygen |
SG111177A1 (en) | 2004-02-28 | 2005-05-30 | Wira Kurnia | Fine particle powder production |
CN1709585A (en) | 2004-06-18 | 2005-12-21 | 杭州宇通微粉有限公司 | High-pressure gas atomizing nozzle |
US8377576B2 (en) * | 2005-05-11 | 2013-02-19 | Inframat Corporation | Magnetic composites and methods of making and using |
KR101330402B1 (en) | 2005-10-17 | 2013-11-15 | 닛신 엔지니어링 가부시키가이샤 | Process for producing ultrafine particles |
ES2328395T3 (en) | 2005-10-21 | 2009-11-12 | Sulzer Metco (Us) Inc. | A METHOD OF MANUFACTURE OF HIGH PURITY AND FLUID METAL OXIDE POWDER FOR A PLASMA SYSTEM. |
CN101024248A (en) | 2006-02-16 | 2007-08-29 | 精工爱普生株式会社 | Metal powder production apparatus and metal powder |
US8859931B2 (en) | 2006-03-08 | 2014-10-14 | Tekna Plasma Systems Inc. | Plasma synthesis of nanopowders |
US7967891B2 (en) | 2006-06-01 | 2011-06-28 | Inco Limited | Method producing metal nanopowders by decompositon of metal carbonyl using an induction plasma torch |
JP5052291B2 (en) | 2006-11-02 | 2012-10-17 | 株式会社日清製粉グループ本社 | Alloy fine particles and method for producing the same |
US7753989B2 (en) | 2006-12-22 | 2010-07-13 | Cristal Us, Inc. | Direct passivation of metal powder |
US7943084B1 (en) | 2007-05-23 | 2011-05-17 | The United States Of America As Represented By The Secretary Of The Navy | Metal powders with improved flowability |
DE102008064648A1 (en) | 2008-01-23 | 2010-05-20 | Tradium Gmbh | Reaction vessel for the production of metal powders |
JP5427452B2 (en) | 2008-03-31 | 2014-02-26 | 日立金属株式会社 | Method for producing titanium metal |
JP2010018825A (en) | 2008-07-08 | 2010-01-28 | Japan Atomic Energy Agency | Method and apparatus for producing metal particles and metal particles produced thereby |
JP5322049B2 (en) | 2008-07-08 | 2013-10-23 | 独立行政法人日本原子力研究開発機構 | Beryllium material filler and method for forming beryllium material filler |
US8778099B2 (en) * | 2008-12-09 | 2014-07-15 | United Technologies Corporation | Conversion process for heat treatable L12 aluminum alloys |
US9090971B2 (en) * | 2009-05-11 | 2015-07-28 | The Regents Of The University Of Colorado, A Body Corporate | Ultra-thin metal oxide and carbon-metal oxide films prepared by atomic layer deposition (ALD) |
WO2011054113A1 (en) | 2009-11-05 | 2011-05-12 | Ap&C Advanced Powders & Coatings Inc. | Methods and apparatuses for preparing spheroidal powders |
GB201001984D0 (en) | 2010-02-08 | 2010-03-24 | Renewable Holdings Ltd | Biodiesel synthesis |
GB2479721B (en) | 2010-04-19 | 2012-04-04 | Rolls Royce Plc | Method of producing a powder |
JP5571537B2 (en) | 2010-11-22 | 2014-08-13 | 日立金属株式会社 | Metal titanium manufacturing apparatus and metal titanium manufacturing method |
CN103221558B (en) | 2010-11-22 | 2014-08-20 | 日立金属株式会社 | Device for producing titanium metal, and method for producing titanium metal |
US8581138B2 (en) | 2010-12-22 | 2013-11-12 | Flame-Spray Industries, Inc. | Thermal spray method and apparatus using plasma transferred wire arc |
US9380693B2 (en) | 2011-02-03 | 2016-06-28 | Tekna Plasma Systems Inc. | High performance induction plasma torch |
CN102094163B (en) | 2011-02-25 | 2012-09-05 | 中国科学院金属研究所 | CoNiCrAlY corrosion-resistant thermal spraying alloy powder and preparation method thereof |
US20120325051A1 (en) | 2011-06-27 | 2012-12-27 | United Technologies Corporation | Production of atomized powder for glassy aluminum-based alloys |
KR101436498B1 (en) | 2011-10-20 | 2014-09-01 | 한국기계연구원 | Apparatus for preparing 500 ㎚-10 ㎛ sized fine spherical powder using plasma |
US9956615B2 (en) | 2012-03-08 | 2018-05-01 | Carpenter Technology Corporation | Titanium powder production apparatus and method |
US9650309B2 (en) * | 2012-04-12 | 2017-05-16 | Iowa State University Research Foundation, Inc. | Stability of gas atomized reactive powders through multiple step in-situ passivation |
CN103846447B (en) | 2012-12-06 | 2016-04-27 | 北京有色金属研究总院 | The aerosolization preparation method of a kind of superfine spherical titanium or titanium alloy powder |
CN103223492A (en) | 2013-04-09 | 2013-07-31 | 宁夏新和新材科技有限公司 | High-activity ultrafine aluminum powder preparing process and device |
US9833837B2 (en) | 2013-06-20 | 2017-12-05 | Iowa State University Research Foundation, Inc. | Passivation and alloying element retention in gas atomized powders |
CN103433499B (en) | 2013-08-27 | 2015-08-12 | 湖南航天工业总公司 | A kind of ultrasonic atomizatio preparation facilities of globular metallic powder and preparation method |
US9981315B2 (en) | 2013-09-24 | 2018-05-29 | Iowa State University Research Foundation, Inc. | Atomizer for improved ultra-fine powder production |
KR101516258B1 (en) | 2013-11-27 | 2015-05-04 | 한국기계연구원 | Method for manufacturing of weight percentage controlled micro-nano mixed powder and micro-nano mixed powder thereby |
CN103752822B (en) | 2014-02-20 | 2016-11-02 | 西华大学 | A kind of composite powder and preparation method thereof |
CN103801704B (en) * | 2014-02-28 | 2016-08-17 | 昆山德泰新材料科技有限公司 | A kind of be applicable to 3D print molding copper powder, preparation method and its usage |
KR20160143757A (en) | 2014-04-07 | 2016-12-14 | 파우더 트리트먼트 테크놀로지 엘엘씨 | Surface energy modified particles, method of making, and use thereof |
WO2016012399A1 (en) | 2014-07-21 | 2016-01-28 | Nuovo Pignone Srl | Method for manufacturing machine components by additive manufacturing |
CN104493187B (en) * | 2014-12-25 | 2017-01-04 | 安徽旭晶粉体新材料科技有限公司 | A kind of jet atomization technique during water atomization metal powder preparation |
CN104894483B (en) * | 2015-05-15 | 2018-07-31 | 安泰科技股份有限公司 | Powder metallurgy wear resistant tools steel |
CA3060504A1 (en) | 2015-06-05 | 2016-12-08 | Pyrogenesis Canada Inc. | Plasma apparatus for the production of high quality spherical powders at high capacity |
WO2017000065A1 (en) | 2015-06-29 | 2017-01-05 | Tekna Plasma Systems Inc. | Induction plasma torch with higher plasma energy density |
EP3368238B1 (en) * | 2015-10-29 | 2024-10-09 | AP&C Advanced Powders And Coatings Inc. | Metal powder atomization manufacturing processes |
US11235385B2 (en) * | 2016-04-11 | 2022-02-01 | Ap&C Advanced Powders & Coating Inc. | Reactive metal powders in-flight heat treatment processes |
-
2017
- 2017-04-10 US US16/092,790 patent/US11235385B2/en active Active
- 2017-04-10 CA CA3097498A patent/CA3097498C/en active Active
- 2017-04-10 EP EP22208543.3A patent/EP4159345A1/en active Pending
- 2017-04-10 KR KR1020187032426A patent/KR102475050B1/en active IP Right Grant
- 2017-04-10 WO PCT/CA2017/050431 patent/WO2017177315A1/en active Application Filing
- 2017-04-10 CA CA3020720A patent/CA3020720C/en active Active
- 2017-04-10 CN CN201780028601.5A patent/CN109070209B/en active Active
- 2017-04-10 JP JP2019503602A patent/JP7144401B2/en active Active
- 2017-04-10 AU AU2017249439A patent/AU2017249439B2/en active Active
- 2017-04-10 EP EP17781668.3A patent/EP3442726B1/en active Active
-
2022
- 2022-01-28 US US17/587,728 patent/US11794247B2/en active Active
- 2022-12-08 AU AU2022283742A patent/AU2022283742B2/en active Active
-
2023
- 2023-09-07 US US18/462,616 patent/US20230415231A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2912282A1 (en) * | 2014-03-11 | 2015-09-17 | Tekna Plasma Systems Inc. | Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member |
Also Published As
Publication number | Publication date |
---|---|
CN109070209A (en) | 2018-12-21 |
AU2017249439B2 (en) | 2022-10-20 |
US20220143693A1 (en) | 2022-05-12 |
AU2022283742B2 (en) | 2024-03-14 |
WO2017177315A1 (en) | 2017-10-19 |
KR20180133899A (en) | 2018-12-17 |
CA3020720C (en) | 2020-12-01 |
US11235385B2 (en) | 2022-02-01 |
EP3442726A4 (en) | 2019-05-08 |
AU2022283742A1 (en) | 2023-02-02 |
EP3442726B1 (en) | 2023-01-04 |
JP2019516020A (en) | 2019-06-13 |
CA3097498C (en) | 2023-09-26 |
CA3097498A1 (en) | 2017-10-19 |
JP7144401B2 (en) | 2022-09-29 |
US20230415231A1 (en) | 2023-12-28 |
AU2017249439A1 (en) | 2018-11-29 |
EP4159345A1 (en) | 2023-04-05 |
US11794247B2 (en) | 2023-10-24 |
CA3020720A1 (en) | 2017-10-19 |
KR102475050B1 (en) | 2022-12-06 |
EP3442726A1 (en) | 2019-02-20 |
US20190232365A1 (en) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109070209B (en) | Active metal powder in-flight heat treatment process | |
US20240383036A1 (en) | Metal powder atomization manufacturing processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |