CN109037153A - A kind of preparation method and gallium nitride Base HEMT device of gallium nitride Base HEMT device - Google Patents
A kind of preparation method and gallium nitride Base HEMT device of gallium nitride Base HEMT device Download PDFInfo
- Publication number
- CN109037153A CN109037153A CN201810694477.2A CN201810694477A CN109037153A CN 109037153 A CN109037153 A CN 109037153A CN 201810694477 A CN201810694477 A CN 201810694477A CN 109037153 A CN109037153 A CN 109037153A
- Authority
- CN
- China
- Prior art keywords
- gallium nitride
- layer
- drain
- barrier layer
- hemt device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 145
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 230000004888 barrier function Effects 0.000 claims abstract description 66
- 238000002161 passivation Methods 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000000151 deposition Methods 0.000 claims abstract description 6
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 24
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000005468 ion implantation Methods 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 6
- 239000010980 sapphire Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 229910002704 AlGaN Inorganic materials 0.000 claims description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000005036 potential barrier Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001364 causal effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/08—Manufacture or treatment characterised by using material-based technologies using combinations of technologies, e.g. using both Si and SiC technologies or using both Si and Group III-V technologies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/03—Manufacture or treatment wherein the substrate comprises sapphire, e.g. silicon-on-sapphire [SOS]
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本申请提供一种氮化镓基HEMT器件的制备方法及氮化镓基HEMT器件。所述方法包括:在预选定的衬底上依次外延生长缓冲层、沟道层、势垒层;在所述势垒层上沉积形成钝化层;对所述钝化层和所述势垒层的一部分进行刻蚀,形成凹槽;在所述凹槽中再生长p型氮化镓,使p型氮化镓填满所述凹槽;在所述p型氮化镓两侧分别形成第一源极和第一漏极,均插接至所述沟道层;在所述第一漏极的一侧形成第二源极和第二漏极;在所述p型氮化镓上形成第一栅极;在所述第二源极和所述第二漏极形成第二栅极。利用本申请中各个实施例,可以得到在同一片晶片上实现常开和常闭两种特性的氮化镓基HEMT器件。
The present application provides a preparation method of a gallium nitride-based HEMT device and a gallium nitride-based HEMT device. The method comprises: sequentially epitaxially growing a buffer layer, a channel layer, and a barrier layer on a pre-selected substrate; depositing a passivation layer on the barrier layer; A part of the layer is etched to form a groove; p-type gallium nitride is regrown in the groove so that p-type gallium nitride fills the groove; The first source and the first drain are plugged into the channel layer; a second source and a second drain are formed on one side of the first drain; on the p-type gallium nitride forming a first gate; forming a second gate on the second source and the second drain. Using various embodiments in the present application, a GaN-based HEMT device with two characteristics of normally-on and normally-off can be obtained on the same wafer.
Description
技术领域technical field
本申请涉及半导体技术领域,特别涉及一种氮化镓基HEMT器件的制备方法及氮化镓基HEMT器件。The present application relates to the field of semiconductor technology, in particular to a preparation method of a gallium nitride-based HEMT device and a gallium nitride-based HEMT device.
背景技术Background technique
氮化镓基的HEMT(High Electron Mobility Transistor,高电子迁移晶体管,简称HEMT)器件在其势垒层和沟道层之间存在二维电子气,由于所述二维电子气的存在,导致氮化镓基HEMT器件是一种常开型器件。Gallium nitride-based HEMT (High Electron Mobility Transistor, HEMT for short) device has two-dimensional electron gas between its barrier layer and channel layer, due to the existence of the two-dimensional electron gas, resulting in nitrogen GaN-based HEMT devices are normally-on devices.
但是现有技术中,氮化镓基HEMT器件在实际的电子电路中安装使用中,通常需要同一片晶片上同时实现常开和常闭两种功能,比如在变频器中。而现有技术中没有可以在同一个晶片上同时具备常开性能和常闭性能的氮化镓基HEMT器件,也没有可以制备这类器件的方法。However, in the prior art, when GaN-based HEMT devices are installed and used in actual electronic circuits, it is usually necessary to implement two functions of normally open and normally closed on the same chip at the same time, such as in a frequency converter. However, in the prior art, there is no GaN-based HEMT device capable of both normally-on performance and normally-off performance on the same wafer, and there is no method for preparing such a device.
现有技术中至少存在如下问题:现有技术中没有可以在同一个晶片上同时具备常开性能和常闭性能的氮化镓基HEMT器件,也没有可以制备这类器件的方法。There are at least the following problems in the prior art: there is no Gallium Nitride-based HEMT device capable of both normally-on performance and normally-off performance on the same wafer in the prior art, and there is no method for preparing such a device.
发明内容Contents of the invention
本申请实施例的目的是提供一种氮化镓基HEMT器件的制备方法及氮化镓基HEMT器件,以得到一种在同一片晶片上实现常开和常闭两种特性的氮化镓基HEMT器件。The purpose of the embodiment of the present application is to provide a preparation method of a gallium nitride-based HEMT device and a gallium nitride-based HEMT device, so as to obtain a gallium nitride-based HEMT devices.
本申请实施例提供一种氮化镓基HEMT器件的制备方法及氮化镓基HEMT器件是这样实现的:The embodiment of the present application provides a method for preparing a gallium nitride-based HEMT device and the gallium nitride-based HEMT device is realized as follows:
一种氮化镓基HEMT器件的制备方法,所述方法包括:A method for preparing a gallium nitride-based HEMT device, the method comprising:
在预选定的衬底上依次外延生长缓冲层、沟道层、势垒层;Epitaxial growth of buffer layer, channel layer, and barrier layer in sequence on a pre-selected substrate;
在所述势垒层上沉积形成钝化层;depositing a passivation layer on the barrier layer;
对所述钝化层和所述势垒层的一部分进行刻蚀,形成凹槽,所述凹槽贯穿所述钝化层停止在所述势垒层;etching a portion of the passivation layer and the barrier layer to form a groove, the groove penetrating through the passivation layer and stopping at the barrier layer;
采用气相外延生长工艺在所述凹槽中再生长p型氮化镓,使p型氮化镓填满所述凹槽;Regrowing p-type gallium nitride in the groove by using a vapor phase epitaxy growth process, so that the p-type gallium nitride fills the groove;
在所述p型氮化镓两侧分别形成第一源极和第一漏极,所述第一源极和所述第一漏极均插接至所述沟道层;A first source and a first drain are respectively formed on both sides of the p-type gallium nitride, and both the first source and the first drain are plugged into the channel layer;
在所述第一漏极远离所述p型氮化镓的一侧形成第二源极和第二漏极;forming a second source and a second drain on a side of the first drain away from the p-type gallium nitride;
在所述p型氮化镓上形成第一栅极,所述第一栅极与所述p型氮化镓形成肖特基接触;forming a first gate on the p-type gallium nitride, and forming a Schottky contact with the p-type gallium nitride;
在所述第二源极和所述第二漏极之间形成第二栅极,所述第二栅极与所述势垒层形成肖特基接触。A second gate is formed between the second source and the second drain, and the second gate forms a Schottky contact with the barrier layer.
优选实施例中,所述衬底的种类包括硅衬底、碳化硅衬底、蓝宝石衬底;In a preferred embodiment, the types of substrates include silicon substrates, silicon carbide substrates, and sapphire substrates;
所述缓冲层的组成材料包括氮化镓或氮化铝镓,所述沟道层的组成材料包括氮化镓,所述势垒层的组成材料包括氮化铝镓;The composition material of the buffer layer includes gallium nitride or aluminum gallium nitride, the composition material of the channel layer includes gallium nitride, and the composition material of the barrier layer includes aluminum gallium nitride;
所述钝化层的组成材料包括二氧化硅或氮化硅。The composition material of the passivation layer includes silicon dioxide or silicon nitride.
优选实施例中,所述在所述势垒层上沉积形成钝化层包括:In a preferred embodiment, said depositing and forming a passivation layer on said barrier layer comprises:
通过刻蚀或者离子注入在所述势垒层形成凸型隔离后,在所述势垒层上沉积形成所述钝化层。After the convex isolation is formed on the barrier layer by etching or ion implantation, the passivation layer is deposited on the barrier layer to form the passivation layer.
优选实施例中,所述对所述钝化层和所述势垒层的一部分进行刻蚀包括:In a preferred embodiment, the etching a part of the passivation layer and the barrier layer includes:
采用p型氮化镓栅极掩模,对所述钝化层和所述势垒层的一部分进行刻蚀。A part of the passivation layer and the barrier layer is etched by using a p-type gallium nitride gate mask.
一种氮化镓基HEMT器件,所述器件包括:A gallium nitride-based HEMT device, the device comprising:
衬底;Substrate;
缓冲层,形成在所述衬底上;a buffer layer formed on the substrate;
氮化镓沟道层,外延生长在所述缓冲层上;a gallium nitride channel layer epitaxially grown on said buffer layer;
氮化铝镓势垒层,外延生长在所述氮化镓沟道层上;an aluminum gallium nitride barrier layer epitaxially grown on the gallium nitride channel layer;
钝化层,沉积在所述氮化铝镓势垒层上;a passivation layer deposited on the aluminum gallium nitride barrier layer;
p型氮化镓层,贯穿所述钝化层和所述氮化铝镓势垒层的一部分,所述p型氮化镓层的底部位于所述氮化铝镓势垒层中;a p-type gallium nitride layer passing through the passivation layer and a part of the aluminum gallium nitride barrier layer, the bottom of the p-type gallium nitride layer being located in the aluminum gallium nitride barrier layer;
在所述p型氮化镓层上形成有第一栅极;A first gate is formed on the p-type gallium nitride layer;
所述第一栅极的两侧分别形成有第一源极和第一漏极,所述第一源极和所述第一漏极均插接至所述沟道层;A first source and a first drain are respectively formed on both sides of the first gate, and both the first source and the first drain are plugged into the channel layer;
所述第一漏极远离所述第一栅极的一侧形成有第二源极和第二漏极,所述第二源极和所述第二漏极均插接至所述沟道层;A second source and a second drain are formed on the side of the first drain away from the first gate, and both the second source and the second drain are plugged into the channel layer ;
所述第二源极和所述第二漏极之间形成有第二栅极;A second gate is formed between the second source and the second drain;
所述沟道层与所述势垒层之间形成有二维电子气,所述p型氮化镓正下方区域内的二维电子气耗尽。A two-dimensional electron gas is formed between the channel layer and the potential barrier layer, and the two-dimensional electron gas in the region directly below the p-type gallium nitride is depleted.
优选实施例中,所述衬底、所述缓冲层、所述势垒层、所述沟道层、所述钝化层、所述p型氮化镓层、所述第一栅极、所述第一源极、所述第一漏极组成常闭型HEMT器件;In a preferred embodiment, the substrate, the buffer layer, the barrier layer, the channel layer, the passivation layer, the p-type gallium nitride layer, the first gate, the The first source and the first drain form a normally-off HEMT device;
所述缓冲层、所述势垒层、所述沟道层、所述钝化层、所述第二栅极、所述第二源极、所述第二漏极组成常开型HEMT器件。The buffer layer, the barrier layer, the channel layer, the passivation layer, the second gate, the second source, and the second drain form a normally-on HEMT device.
优选实施例中,所述第一栅极与所述p型氮化镓层形成肖特基接触,所述第二栅极与所述氮化铝镓势垒层形成肖特基接触。In a preferred embodiment, the first gate forms a Schottky contact with the p-type GaN layer, and the second gate forms a Schottky contact with the AlGaN barrier layer.
优选实施例中,所述第一源极和所述第一漏极与所述沟道层形成欧姆接触,所述第二源极和所述第二漏极与所述沟道层形成欧姆接触。In a preferred embodiment, the first source and the first drain form an ohmic contact with the channel layer, and the second source and the second drain form an ohmic contact with the channel layer .
优选实施例中,所述衬底的种类包括硅衬底、碳化硅衬底、蓝宝石衬底;In a preferred embodiment, the types of substrates include silicon substrates, silicon carbide substrates, and sapphire substrates;
所述缓冲层的组成材料包括氮化镓或氮化铝镓,所述沟道层的组成材料包括氮化镓,所述势垒层的组成材料包括氮化铝镓;The composition material of the buffer layer includes gallium nitride or aluminum gallium nitride, the composition material of the channel layer includes gallium nitride, and the composition material of the barrier layer includes aluminum gallium nitride;
所述钝化层的组成材料包括二氧化硅或氮化硅。The composition material of the passivation layer includes silicon dioxide or silicon nitride.
优选实施例中,所述势垒层和所述钝化层之间设置有通过离子注入或刻蚀形成的凸型隔离。In a preferred embodiment, a convex isolation formed by ion implantation or etching is provided between the barrier layer and the passivation layer.
利用本申请实施例提供的一种氮化镓基HEMT器件的制备方法,可以制备出在同一晶片上的常开型氮化镓基HEMT器件和常闭型氮化镓基HEMT器件。可以在外延生长时保证常开型HEMT器件具有最优化的势垒结构,从而保证其较优的电学性能,还可以采用前外延生长工艺实现常闭型的HEMT器件的栅极阈值电压大于1V。本申请实施例提供的一种氮化镓基HEMT器件,所述器件包括常开型HEMT器件和常闭型HEMT器件,而且两种器件生长在同一晶片上,可以有效增加所述器件的应用范围。同时还可以保证常开型HEMT器件和常闭型HEMT器件均具有最优的电学性能。A normally-on GaN-based HEMT device and a normally-off GaN-based HEMT device on the same wafer can be fabricated by using a method for manufacturing a GaN-based HEMT device provided in an embodiment of the present application. The normally-on HEMT device can be guaranteed to have an optimized barrier structure during epitaxial growth, thereby ensuring its better electrical performance, and the gate threshold voltage of the normally-off HEMT device can be greater than 1V by using the pre-epitaxial growth process. A GaN-based HEMT device provided in an embodiment of the present application, the device includes a normally-on HEMT device and a normally-closed HEMT device, and the two devices are grown on the same wafer, which can effectively increase the application range of the device . At the same time, it can also ensure that both the normally-on HEMT device and the normally-closed HEMT device have optimal electrical performance.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments described in this application. Those skilled in the art can also obtain other drawings based on these drawings without any creative effort.
图1是本申请一个实施例提供的一种氮化镓基HEMT器件的制备方法的方法流程示意图;Fig. 1 is a schematic flow chart of a method for preparing a GaN-based HEMT device provided by an embodiment of the present application;
图2是本申请一个实施例提供的一种氮化镓基HEMT器件的结构示意图;FIG. 2 is a schematic structural diagram of a GaN-based HEMT device provided by an embodiment of the present application;
图3是本申请一个实施例提供的一种氮化镓基HEMT器件的第一个制备步骤得到的结构示意图;Fig. 3 is a schematic structural diagram obtained in the first preparation step of a GaN-based HEMT device provided by an embodiment of the present application;
图4是本申请一个实施例提供的一种氮化镓基HEMT器件的第二个制备步骤得到的结构示意图;Fig. 4 is a schematic structural diagram obtained in the second preparation step of a GaN-based HEMT device provided by an embodiment of the present application;
图5是本申请一个实施例提供的一种氮化镓基HEMT器件的第三个制备步骤得到的结构示意图;Fig. 5 is a schematic structural diagram obtained in the third preparation step of a GaN-based HEMT device provided by an embodiment of the present application;
图6是本申请一个实施例提供的一种氮化镓基HEMT器件的第四个制备步骤得到的结构示意图;Fig. 6 is a schematic structural diagram obtained in the fourth preparation step of a GaN-based HEMT device provided by an embodiment of the present application;
图7是本申请一个实施例提供的一种氮化镓基HEMT器件的第五个制备步骤得到的结构示意图;Fig. 7 is a schematic structural diagram obtained in the fifth preparation step of a GaN-based HEMT device provided by an embodiment of the present application;
图8是本申请一个实施例提供的一种氮化镓基HEMT器件的第六个制备步骤得到的结构示意图。Fig. 8 is a schematic structural diagram obtained in the sixth preparation step of a GaN-based HEMT device provided by an embodiment of the present application.
具体实施方式Detailed ways
本申请实施例提供一种氮化镓基HEMT器件的制备方法及氮化镓基HEMT器件。Embodiments of the present application provide a method for manufacturing a gallium nitride-based HEMT device and a gallium nitride-based HEMT device.
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to enable those skilled in the art to better understand the technical solutions in the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described The embodiments are only some of the embodiments of the present application, but not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection of this application.
图1是本申请所述一种氮化镓基HEMT器件的制备方法一种实施例的方法流程示意图。虽然本申请提供了如下述实施例或附图所示的方法操作步骤或结构,但基于常规或者无需创造性的劳动在所述方法或器件中可以包括更多或者更少的操作步骤或结构。在逻辑性上不存在必要因果关系的步骤或结构中,这些步骤的执行顺序或器件的模块结构不限于本申请实施例或附图所示的执行顺序或结构。FIG. 1 is a schematic flow chart of an embodiment of a method for manufacturing a gallium nitride-based HEMT device described in the present application. Although the present application provides method operation steps or structures as shown in the following embodiments or drawings, more or less operation steps or structures may be included in the methods or devices based on conventional or creative efforts. In the steps or structures that logically do not have a necessary causal relationship, the execution order of these steps or the module structure of the device is not limited to the execution order or structure shown in the embodiments of the present application or the drawings.
具体的,如图1所述,本申请提供的一种氮化镓基HEMT器件的制备方法的一种实施例可以包括:Specifically, as shown in Figure 1, an embodiment of a method for preparing a GaN-based HEMT device provided by the present application may include:
S1:在预选定的衬底上依次外延生长缓冲层、沟道层、势垒层。S1: epitaxially grow a buffer layer, a channel layer, and a barrier layer sequentially on a pre-selected substrate.
图3是本步骤中得到的器件的制备过程中的结构示意图。从图3中可以看出,所述沟道层和所述势垒层之间形成有二维电子气。FIG. 3 is a schematic structural view during the preparation process of the device obtained in this step. It can be seen from FIG. 3 that a two-dimensional electron gas is formed between the channel layer and the barrier layer.
其中,所述衬底的种类可以包括硅衬底、碳化硅衬底、蓝宝石衬底。Wherein, the type of the substrate may include a silicon substrate, a silicon carbide substrate, and a sapphire substrate.
所述缓冲层的组成材料包括氮化镓或氮化铝镓,所述沟道层的组成材料包括氮化镓,所述势垒层的组成材料包括氮化铝镓。The composition material of the buffer layer includes gallium nitride or aluminum gallium nitride, the composition material of the channel layer includes gallium nitride, and the composition material of the barrier layer includes aluminum gallium nitride.
S2:在所述势垒层上沉积形成钝化层。S2: Depositing a passivation layer on the barrier layer.
图4是本步骤中得到的器件的制备过程中的结构示意图。本例中,所述钝化层的组成材料包括二氧化硅或氮化硅。同时,在所述钝化层和所述势垒层之间通过刻蚀或者离子注入形成有凸型隔离。Fig. 4 is a schematic structural diagram during the preparation process of the device obtained in this step. In this example, the composition material of the passivation layer includes silicon dioxide or silicon nitride. At the same time, a convex isolation is formed between the passivation layer and the barrier layer by etching or ion implantation.
S3:对所述钝化层和所述势垒层的一部分进行刻蚀,形成凹槽,所述凹槽贯穿所述钝化层停止在所述势垒层。S3: Etching the passivation layer and a part of the barrier layer to form a groove, and the groove penetrates through the passivation layer and stops at the barrier layer.
本例中,所述对所述钝化层和所述势垒层的一部分进行刻蚀的方式可以包括:In this example, the manner of etching a part of the passivation layer and the barrier layer may include:
采用p型氮化镓栅极掩模,对所述钝化层和所述势垒层的一部分进行刻蚀。A part of the passivation layer and the barrier layer is etched by using a p-type gallium nitride gate mask.
图5是本步骤中得到的器件的制备过程中的结构示意图。如图5所示,采用p型氮化镓栅极掩模进行刻蚀,形成的白色区域表示所述凹槽,所述凹槽底部在所述势垒层中。FIG. 5 is a schematic structural view during the preparation process of the device obtained in this step. As shown in FIG. 5 , the p-type gallium nitride gate mask is used for etching, and the formed white area represents the groove, and the bottom of the groove is in the barrier layer.
S4:采用气相外延生长工艺在所述凹槽中再生长p型氮化镓,使p型氮化镓填满所述凹槽。S4: Regrowing p-type GaN in the groove by using a vapor phase epitaxy growth process, so that the p-type GaN fills the groove.
图6是本步骤中得到的器件的制备过程中的结构示意图。如图6所示,在所述凹槽中采用气相外延生长工艺再生长p型氮化镓,所述p型氮化镓填满所述凹槽,并从所述凹槽中凸起。FIG. 6 is a schematic structural diagram during the preparation process of the device obtained in this step. As shown in FIG. 6 , p-type gallium nitride is regrown in the groove by vapor phase epitaxial growth process, and the p-type gallium nitride fills the groove and protrudes from the groove.
S5:在所述p型氮化镓两侧分别形成第一源极和第一漏极,所述第一源极和所述第一漏极均插接至所述沟道层。S5: Forming a first source and a first drain on both sides of the p-type gallium nitride respectively, and both the first source and the first drain are plugged into the channel layer.
S6:在所述第一漏极远离所述p型氮化镓的一侧形成第二源极和第二漏极。S6: forming a second source and a second drain on a side of the first drain away from the p-type gallium nitride.
图7是本步骤中得到的器件的制备过程中的结构示意图。如图7所示,所述第一源极和所述第一漏极均插接至所述沟道层,与所述沟道层形成欧姆接触。所述第二源极和所述第二漏极均插接至所述沟道层,与所述沟道层形成欧姆接触。FIG. 7 is a schematic structural diagram during the preparation process of the device obtained in this step. As shown in FIG. 7 , both the first source and the first drain are plugged into the channel layer to form an ohmic contact with the channel layer. Both the second source and the second drain are plugged into the channel layer to form an ohmic contact with the channel layer.
S7:在所述p型氮化镓上形成第一栅极,所述第一栅极与所述p型氮化镓形成肖特基接触。S7: forming a first gate on the p-type GaN, and forming a Schottky contact with the p-type GaN.
图8是本步骤中得到的器件的制备过程中的结构示意图。如图8所示,所述第一栅极形成于所述p型氮化镓上,与所述p型氮化镓形成肖特基接触。Fig. 8 is a schematic structural diagram during the preparation process of the device obtained in this step. As shown in FIG. 8 , the first gate is formed on the p-type GaN to form a Schottky contact with the p-type GaN.
S8:在所述第二源极和所述第二漏极之间形成第二栅极,所述第二栅极与所述势垒层形成肖特基接触。S8: forming a second gate between the second source and the second drain, the second gate forming a Schottky contact with the barrier layer.
图2是利用本申请一个实施例中采用所述方法制备得到的一种氮化镓基HEMT器件的结构示意图。图2中黑色虚线代表二维电子气9的分布范围,从图中可以看出,在所述p型氮化镓6的正下方,二维电子气耗尽,在所述第二栅极正下方存在二维电子气9。这样,就实现了在同一晶片上制备出常闭型氮化镓基HEMT器件和常开型氮化镓基HEMT器件。FIG. 2 is a schematic structural diagram of a GaN-based HEMT device prepared by using the method described in an embodiment of the present application. The black dotted line in Fig. 2 represents the distribution range of the two-dimensional electron gas 9. It can be seen from the figure that the two-dimensional electron gas is depleted right below the p-type gallium nitride 6, and the two-dimensional electron gas is depleted directly under the second grid. A two-dimensional electron gas 9 exists below. In this way, a normally-off GaN-based HEMT device and a normally-on GaN-based HEMT device are fabricated on the same wafer.
利用上述实施例提供的一种氮化镓基HEMT器件的实施方式,可以制备出在同一晶片上的常开型氮化镓基HEMT器件和常闭型氮化镓基HEMT器件。可以在外延生长时保证常开型HEMT器件具有最优化的势垒结构,从而保证其较优的电学性能,还可以采用前外延生长工艺实现常闭型的HEMT器件的栅极阈值电压大于1V。Using the implementation of a GaN-based HEMT device provided in the above embodiments, a normally-on GaN-based HEMT device and a normally-off GaN-based HEMT device can be fabricated on the same wafer. The normally-on HEMT device can be guaranteed to have an optimized barrier structure during epitaxial growth, thereby ensuring its better electrical performance, and the gate threshold voltage of the normally-off HEMT device can be greater than 1V by using the pre-epitaxial growth process.
图2是本申请一个实施例提供的一种氮化镓基HEMT器件的结构示意图。具体的,如图2所示,本申请提供的一种氮化镓基HEMT器件的一种实施例可以包括:FIG. 2 is a schematic structural diagram of a GaN-based HEMT device provided by an embodiment of the present application. Specifically, as shown in Figure 2, an embodiment of a GaN-based HEMT device provided by the present application may include:
衬底1;substrate1;
缓冲层2,形成在所述衬底1上;a buffer layer 2 formed on the substrate 1;
氮化镓沟道层3,外延生长在所述缓冲层2上;Gallium nitride channel layer 3, epitaxially grown on the buffer layer 2;
氮化铝镓势垒层4,外延生长在所述氮化镓沟道层3上;an aluminum gallium nitride barrier layer 4 epitaxially grown on the gallium nitride channel layer 3;
钝化层5,沉积在所述氮化铝镓势垒层4上;a passivation layer 5 deposited on the aluminum gallium nitride barrier layer 4;
p型氮化镓层6,贯穿所述钝化层5和所述氮化铝镓势垒层4的一部分,所述p型氮化镓层6的底部位于所述氮化铝镓势垒层4中;The p-type gallium nitride layer 6 runs through a part of the passivation layer 5 and the aluminum gallium nitride barrier layer 4, and the bottom of the p-type gallium nitride layer 6 is located in the aluminum gallium nitride barrier layer 4 in;
在所述p型氮化镓层6上形成有第一栅极71;A first gate 71 is formed on the p-type gallium nitride layer 6;
所述第一栅极71的两侧分别形成有第一源极72和第一漏极73,所述第一源极72和所述第一漏极73均插接至所述沟道层3;Both sides of the first gate 71 are respectively formed with a first source 72 and a first drain 73, and both the first source 72 and the first drain 73 are plugged into the channel layer 3 ;
所述第一漏极73远离所述第一栅极71的一侧形成有第二源极82和第二漏极83,所述第二源极82和所述第二漏极83均插接至所述沟道层3;A second source 82 and a second drain 83 are formed on the side of the first drain 73 away from the first gate 71, and the second source 82 and the second drain 83 are plugged into to the channel layer 3;
所述第二源极82和所述第二漏极83之间形成有第二栅极81;A second gate 81 is formed between the second source 82 and the second drain 83;
所述沟道层3与所述势垒层4之间形成有二维电子气9,所述p型氮化镓6正下方区域内的二维电子气耗尽。即不存在二维电子气。A two-dimensional electron gas 9 is formed between the channel layer 3 and the barrier layer 4 , and the two-dimensional electron gas in the area directly below the p-type gallium nitride 6 is depleted. That is, there is no two-dimensional electron gas.
本例中,所述衬底1、所述缓冲层2、所述势垒层4、所述沟道层3、所述钝化层5、所述p型氮化镓层6、所述第一栅极71、所述第一源极72、所述第一漏极73组成常闭型HEMT器件;In this example, the substrate 1, the buffer layer 2, the barrier layer 4, the channel layer 3, the passivation layer 5, the p-type gallium nitride layer 6, the first A gate 71, the first source 72, and the first drain 73 form a normally closed HEMT device;
所述缓冲层2、所述势垒层4、所述沟道层3、所述钝化层5、所述第二栅极81、所述第二源极82、所述第二漏极83组成常开型HEMT器件。The buffer layer 2, the barrier layer 4, the channel layer 3, the passivation layer 5, the second gate 81, the second source 82, the second drain 83 A normally-on HEMT device is formed.
本例中,所述第一栅极71与所述p型氮化镓层6形成肖特基接触,所述第二栅极72与所述氮化铝镓势垒层4形成肖特基接触。In this example, the first gate 71 forms a Schottky contact with the p-type GaN layer 6, and the second gate 72 forms a Schottky contact with the AlGaN barrier layer 4 .
本例中,所述第一源极72和所述第一漏极73与所述沟道层3形成欧姆接触,所述第二源极82和所述第二漏极83与所述沟道层3形成欧姆接触。In this example, the first source 72 and the first drain 73 form an ohmic contact with the channel layer 3, and the second source 82 and the second drain 83 form an ohmic contact with the channel layer 3. Layer 3 forms an ohmic contact.
本例中,所述衬底1的种类包括硅衬底、碳化硅衬底、蓝宝石衬底;In this example, the types of the substrate 1 include silicon substrates, silicon carbide substrates, and sapphire substrates;
所述缓冲层2的组成材料包括氮化镓或氮化铝镓,所述沟道层3的组成材料包括氮化镓,所述势垒层4的组成材料包括氮化铝镓;The composition material of the buffer layer 2 includes gallium nitride or aluminum gallium nitride, the composition material of the channel layer 3 includes gallium nitride, and the composition material of the barrier layer 4 includes aluminum gallium nitride;
所述钝化层5的组成材料包括二氧化硅或氮化硅。The composition material of the passivation layer 5 includes silicon dioxide or silicon nitride.
本申请一个实施例中,所述势垒层4和所述钝化层5之间设置有通过离子注入或刻蚀形成的凸型隔离。In an embodiment of the present application, a convex isolation formed by ion implantation or etching is provided between the barrier layer 4 and the passivation layer 5 .
利用上述实施例提供的一种氮化镓基HEMT器件的实施方式,所述器件包括常开型HEMT器件和常闭型HEMT器件,而且两种器件生长在同一晶片上,可以有效增加所述器件的应用范围。同时还可以保证常开型HEMT器件和常闭型HEMT器件均具有最优的电学性能。Using the implementation of a gallium nitride-based HEMT device provided in the above embodiment, the device includes a normally-on HEMT device and a normally-closed HEMT device, and the two devices are grown on the same wafer, which can effectively increase the number of devices scope of application. At the same time, it can also ensure that both the normally-on HEMT device and the normally-closed HEMT device have optimal electrical performance.
本说明书中的各个实施例采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。Each embodiment in this specification is described in a progressive manner, and the same or similar parts of each embodiment can be referred to each other, and each embodiment focuses on the difference from other embodiments.
虽然通过实施例描绘了本申请,本领域普通技术人员知道,本申请有许多变形和变化而不脱离本申请的精神,希望所附的权利要求包括这些变形和变化而不脱离本申请的精神。Although the present application has been described by way of example, those of ordinary skill in the art know that there are many variations and changes in the application without departing from the spirit of the application, and it is intended that the appended claims cover these variations and changes without departing from the spirit of the application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810694477.2A CN109037153A (en) | 2018-06-29 | 2018-06-29 | A kind of preparation method and gallium nitride Base HEMT device of gallium nitride Base HEMT device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810694477.2A CN109037153A (en) | 2018-06-29 | 2018-06-29 | A kind of preparation method and gallium nitride Base HEMT device of gallium nitride Base HEMT device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109037153A true CN109037153A (en) | 2018-12-18 |
Family
ID=65520920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810694477.2A Pending CN109037153A (en) | 2018-06-29 | 2018-06-29 | A kind of preparation method and gallium nitride Base HEMT device of gallium nitride Base HEMT device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109037153A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112289859A (en) * | 2019-07-23 | 2021-01-29 | 珠海格力电器股份有限公司 | GaN power semiconductor device and manufacturing method thereof |
WO2024146485A1 (en) * | 2023-01-04 | 2024-07-11 | 中兴通讯股份有限公司 | Gallium nitride device and manufacturing method therefor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010015437A1 (en) * | 2000-01-25 | 2001-08-23 | Hirotatsu Ishii | GaN field-effect transistor, inverter device, and production processes therefor |
CN101336482A (en) * | 2005-11-29 | 2008-12-31 | 香港科技大学 | Low Density Drain HEMT |
CN101378062A (en) * | 2007-08-30 | 2009-03-04 | 古河电气工业株式会社 | Ed inverting circuit and integrated circuit element including the same |
CN101515568A (en) * | 2008-02-20 | 2009-08-26 | 中国科学院半导体研究所 | Method for manufacturing integrated enhanced-type and depletion-type HEMT on InP substrate |
US20110210377A1 (en) * | 2010-02-26 | 2011-09-01 | Infineon Technologies Austria Ag | Nitride semiconductor device |
CN105428314A (en) * | 2015-12-26 | 2016-03-23 | 中国电子科技集团公司第十三研究所 | Preparation method for GaN-based HEMT device |
CN106783962A (en) * | 2017-01-11 | 2017-05-31 | 西安电子科技大学 | A kind of p GaN enhanced AlGaNs/GaN HEMTs |
-
2018
- 2018-06-29 CN CN201810694477.2A patent/CN109037153A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010015437A1 (en) * | 2000-01-25 | 2001-08-23 | Hirotatsu Ishii | GaN field-effect transistor, inverter device, and production processes therefor |
CN101336482A (en) * | 2005-11-29 | 2008-12-31 | 香港科技大学 | Low Density Drain HEMT |
CN101378062A (en) * | 2007-08-30 | 2009-03-04 | 古河电气工业株式会社 | Ed inverting circuit and integrated circuit element including the same |
CN101515568A (en) * | 2008-02-20 | 2009-08-26 | 中国科学院半导体研究所 | Method for manufacturing integrated enhanced-type and depletion-type HEMT on InP substrate |
US20110210377A1 (en) * | 2010-02-26 | 2011-09-01 | Infineon Technologies Austria Ag | Nitride semiconductor device |
CN105428314A (en) * | 2015-12-26 | 2016-03-23 | 中国电子科技集团公司第十三研究所 | Preparation method for GaN-based HEMT device |
CN106783962A (en) * | 2017-01-11 | 2017-05-31 | 西安电子科技大学 | A kind of p GaN enhanced AlGaNs/GaN HEMTs |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112289859A (en) * | 2019-07-23 | 2021-01-29 | 珠海格力电器股份有限公司 | GaN power semiconductor device and manufacturing method thereof |
CN112289859B (en) * | 2019-07-23 | 2022-02-11 | 珠海格力电器股份有限公司 | GaN power semiconductor device and manufacturing method thereof |
WO2024146485A1 (en) * | 2023-01-04 | 2024-07-11 | 中兴通讯股份有限公司 | Gallium nitride device and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12094962B2 (en) | Enhancement-mode semiconductor device and preparation method therefor | |
JP5160225B2 (en) | Method for fabricating nitride-based transistor with regrowth ohmic contact region and nitride-based transistor with regrowth ohmic contact region | |
EP1779437B1 (en) | Nitride-based transistors having laterally grown active region and methods of fabricating same | |
CN103930995B (en) | Enhancement mode III N races HEMT with reverse polarization cap | |
US20190326404A1 (en) | Semiconductor device and method for manufacturing the same | |
CN112017957A (en) | Gallium cleavage plane III-nitride epitaxial structure, active device thereof and manufacturing method thereof | |
KR20130048688A (en) | Compound semiconductor device, and method for manufacturing the same | |
CN103594507B (en) | High breakdown voltage III-nitride device | |
CN105324846B (en) | The method for forming the transistor with the contact of the metal in barrier layer | |
KR20120010951A (en) | Enhanced Mode High Electron Mobility Transistor and Manufacturing Method Thereof | |
US10608102B2 (en) | Semiconductor device having a drain electrode contacting an epi material inside a through-hole and method of manufacturing the same | |
US8637902B2 (en) | Semiconductor device and method of manufacturing the same | |
US20250056827A1 (en) | High electron mobility transistor and method of manufacturing the same | |
KR101943356B1 (en) | Nitride semiconductor using selective growth and method thereof | |
US11610989B2 (en) | High electron mobility transistor | |
CN109037153A (en) | A kind of preparation method and gallium nitride Base HEMT device of gallium nitride Base HEMT device | |
CN108649065A (en) | A kind of normally-off gallium nitride HEMT device and preparation method thereof | |
TWM508782U (en) | Semiconductor device | |
US11978791B2 (en) | Semiconductor structures and manufacturing methods thereof | |
JP6156038B2 (en) | Manufacturing method of semiconductor device | |
KR102248808B1 (en) | Semiconductor device and a method for manufacturing the same | |
CN117981087A (en) | Gallium nitride semiconductor device with reduced leakage current and method for manufacturing the same | |
JP2017085014A (en) | Semiconductor crystal substrate, semiconductor device, semiconductor crystal substrate manufacturing method, and semiconductor device manufacturing method | |
CN107046053B (en) | Semiconductor structure and manufacturing method thereof | |
TW201503364A (en) | High electron mobility transistor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181218 |