CN108962313A - Memory operation method and memory operation device - Google Patents
Memory operation method and memory operation device Download PDFInfo
- Publication number
- CN108962313A CN108962313A CN201710366000.7A CN201710366000A CN108962313A CN 108962313 A CN108962313 A CN 108962313A CN 201710366000 A CN201710366000 A CN 201710366000A CN 108962313 A CN108962313 A CN 108962313A
- Authority
- CN
- China
- Prior art keywords
- value
- control
- control voltage
- control line
- memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015654 memory Effects 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title abstract description 37
- 238000011017 operating method Methods 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims 2
- 102100028423 MAP6 domain-containing protein 1 Human genes 0.000 description 16
- 101710163760 MAP6 domain-containing protein 1 Proteins 0.000 description 16
- 238000010586 diagram Methods 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- TXPDMOOYDRZBLA-UHFFFAOYSA-N oxotungsten;tin Chemical compound [Sn].[W]=O TXPDMOOYDRZBLA-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
Landscapes
- Read Only Memory (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种操作方法及操作装置,且特别是涉及一种存储器操作方法及存储器操作装置。The invention relates to an operating method and an operating device, and in particular to a memory operating method and a memory operating device.
背景技术Background technique
随着存储器技术的发展,各种存储器不断推陈出新。可变电阻式存储器(Resistive Random-Access Memory,ReRAM)及相变化存储器(Phase-Change Memory,PCM)为非易失性存储器(non-volatile random-access memories)。可变电阻式存储器的运作通过改变介电固态材质的电阻来操作。相变化存储器的运作则是通过改变相位(phase)的方式来操作。在可变电阻式存储器及相变化存储器中,存储单元需要良好的写入控制能力来避免过度写入(over-writing)的问题。然而,若采用过多的操作步骤,将会影响到操作速度。With the development of memory technology, various memories are constantly being introduced. Resistive Random-Access Memory (ReRAM) and Phase-Change Memory (PCM) are non-volatile random-access memories. Variable resistance memory operates by changing the resistance of a dielectric solid material. The operation of the phase change memory is operated by changing the phase. In the variable resistance memory and the phase change memory, the memory cell needs good writing control ability to avoid the problem of over-writing. However, if too many operation steps are adopted, the operation speed will be affected.
发明内容Contents of the invention
本发明有关于一种存储器操作方法及存储器操作装置,其利用执行一第一步进循环(first stepping loop)及一第二步进循环(second stepping loop)的方式,使得操作速度得以加快。The present invention relates to a memory operation method and a memory operation device, which use a method of executing a first stepping loop and a second stepping loop to speed up the operation speed.
根据本发明的一方面,提出一种存储器操作方法。存储器操作方法包括以下步骤。执行一第一步进循环及执行一第二步进循环。在第一步进循环中,施加于一第一控制线的一第一控制电压由一第一起始值增加至一第一最终值,且施加于一第二控制线的一第二控制电压固定于一第二起始值。第一最终值高于第一起始值。在第二步进循环中,施加于第一控制线的第一控制电压固定于一固定值,且施加于该第二控制线的第二控制电压由一中介值增加至一第二最终值。第二最终值高于第二起始值。According to an aspect of the present invention, a method for operating a memory is provided. The memory operation method includes the following steps. Execute a first stepping cycle and execute a second stepping cycle. In the first step cycle, a first control voltage applied to a first control line is increased from a first initial value to a first final value, and a second control voltage applied to a second control line is fixed at a second initial value. The first final value is higher than the first starting value. In the second step cycle, the first control voltage applied to the first control line is fixed at a fixed value, and the second control voltage applied to the second control line is increased from an intermediate value to a second final value. The second final value is higher than the second starting value.
根据本发明的另一方面,提出一种存储器操作装置。存储器操作装置包括一第一控制器、一第二控制器及一处理器。第一控制器用以控制施加于一第一控制线的一第一控制电压。第二控制器用以控制施加于第二控制线的一第二控制电压。处理器用以执行一第一步进循环(first stepping loop)及一第二步进循环(second stepping loop)。在第一步进循环中,施加于一第一控制线的一第一控制电压由一第一起始值增加至一第一最终值,且施加于一第二控制线的一第二控制电压固定于一第二起始值。第一最终值高于该第一起始值。在第二步进循环中,施加于第一控制线的第一控制电压固定于一固定值,且施加于第二控制线的第二控制电压由一中介值增加至一第二最终值。第二最终值高于第二起始值。According to another aspect of the present invention, a memory operating device is provided. The memory operating device includes a first controller, a second controller and a processor. The first controller is used for controlling a first control voltage applied to a first control line. The second controller is used for controlling a second control voltage applied to the second control line. The processor is used for executing a first stepping loop and a second stepping loop. In the first step cycle, a first control voltage applied to a first control line is increased from a first initial value to a first final value, and a second control voltage applied to a second control line is fixed at a second initial value. The first final value is higher than the first starting value. In the second step cycle, the first control voltage applied to the first control line is fixed at a fixed value, and the second control voltage applied to the second control line is increased from an intermediate value to a second final value. The second final value is higher than the second starting value.
为了对本发明上述及其他方面有更佳的了解,下文特列举实施例,并配合所附图式详细说明如下:In order to have a better understanding of the above and other aspects of the present invention, the following examples are specifically listed below, and the accompanying drawings are described in detail as follows:
附图说明Description of drawings
图1绘示存储器操作装置的示意图。FIG. 1 is a schematic diagram of a memory operating device.
图2A~2B绘示根据一实施例的存储器操作方法的流程图。2A-2B illustrate a flow chart of a memory operating method according to an embodiment.
图3为总枪数的分布图。Figure 3 is a distribution diagram of the total number of guns.
图4为根据本实施例的阻抗分布图。FIG. 4 is an impedance distribution diagram according to the present embodiment.
图5A~5B绘示根据另一实施例的存储器操作方法的流程图。5A-5B are flowcharts of a memory operation method according to another embodiment.
【符号说明】【Symbol Description】
100:存储器操作装置100: memory operation device
110:第一控制器110: First controller
120:第二控制器120: second controller
130:处理器130: Processor
200:存储器200: memory
C1、C2、C3、C4、C5、C6、C7:曲线C1, C2, C3, C4, C5, C6, C7: curves
CL1:第一控制线CL1: first control line
CL2:第二控制线CL2: second control line
CV1:第一控制电压CV1: first control voltage
CV2:第二控制电压CV2: second control voltage
S211、S212、S221、S222、S223、S224、S225、S231、S232、S233、S234、S235、S531:步骤S211, S212, S221, S222, S223, S224, S225, S231, S232, S233, S234, S235, S531: steps
SL21、SL51:第一步进循环SL21, SL51: first step cycle
SL22、SL52:第二步进循环SL22, SL52: second step cycle
W1:窗口W1: window
具体实施方式Detailed ways
请参照图1,其绘示存储器操作装置100的示意图。存储器操作装置100用以操作一存储器200。存储器操作装置100例如是一计算机、一处理设备、一电路板、一电路、一芯片或储存数组程序代码的储存装置。存储器200例如是一可变电阻式存储器(ResistiveRandom-Access Memory,ReRAM)及相变化存储器(Phase-Change Memory,PCM)。存储器200包括数条第一控制线CL1及数条第二控制线CL2。在一实施例中,各个第一控制线CL1可以是一位线(bit line)或一源极线(source line),且各个第二控制线CL2可以是一字线。在另一实施例中,各个第一控制线CL1可以是一字线,且各个第二控制线CL2可以是一位线或一源极线。存储器操作装置100包括一第一控制器110、一第二控制器120及一处理器130。第一控制器110用以控制第一控制线CL1,第二控制器120用以控制第二控制线CL2。Please refer to FIG. 1 , which shows a schematic diagram of a memory operating device 100 . The memory operating device 100 is used for operating a memory 200 . The memory operating device 100 is, for example, a computer, a processing device, a circuit board, a circuit, a chip or a storage device storing an array of program codes. The memory 200 is, for example, a variable resistance memory (Resistive Random-Access Memory, ReRAM) and a phase-change memory (Phase-Change Memory, PCM). The memory 200 includes several first control lines CL1 and several second control lines CL2. In an embodiment, each first control line CL1 may be a bit line or a source line, and each second control line CL2 may be a word line. In another embodiment, each first control line CL1 may be a word line, and each second control line CL2 may be a bit line or a source line. The memory operating device 100 includes a first controller 110 , a second controller 120 and a processor 130 . The first controller 110 is used to control the first control line CL1, and the second controller 120 is used to control the second control line CL2.
请参照图2A~2B,其绘示根据一实施例的存储器操作方法的流程图。存储器操作方法用以执行FORM、SET或RESET等操作程序。对这些操作程序而言,必须改善操作速度,以符合各种应用。在此实施例中,操作方法包括两个步进循环,例如是一第一步进循环(firststepping loop)SL21及一第二步进循环(second stepping loop)SL22。Please refer to FIGS. 2A-2B , which illustrate a flow chart of a memory operating method according to an embodiment. The memory operation method is used to execute the operation program such as FORM, SET or RESET. For these operating procedures, the operating speed must be improved to suit various applications. In this embodiment, the operation method includes two stepping loops, such as a first stepping loop (first stepping loop) SL21 and a second stepping loop (second stepping loop) SL22.
在第一步进循环SL21中,施加于第一控制线CL1的第一控制电压CV1逐渐增加,施加于第二控制线CL2的第二控制电压CV2则被固定。In the first step cycle SL21, the first control voltage CV1 applied to the first control line CL1 gradually increases, and the second control voltage CV2 applied to the second control line CL2 is fixed.
在第二步进循环SL22中,施加于第一控制线CL1的第一控制电压CV1被固定,施加于第二控制线CL2的第二控制电压CV2则被逐渐增加。In the second step cycle SL22, the first control voltage CV1 applied to the first control line CL1 is fixed, and the second control voltage CV2 applied to the second control line CL2 is gradually increased.
第二步进循环SL22执行于第一步进循环SL21之后。当第一步进循环SL21完成时,流程进入第二步进循环SL22,而不会回头执行第一步进循环SL21。就由执行第一步进循环SL21及第二步进循环SL22,操作速度得以有效改善。The second stepping loop SL22 is executed after the first stepping loop SL21. When the first stepping loop SL21 is completed, the flow enters the second stepping loop SL22 without returning to the first stepping loop SL21. By executing the first stepping cycle SL21 and the second stepping cycle SL22, the operating speed can be effectively improved.
更详细来说,存储器操作方法包括以下步骤。在步骤S211中,处理器130加载存储器200的相关信息,以定义出第一控制电压CV1的一第一起始值。在步骤S212中,处理器130加载存储器200的相关信息,以定义出第二控制电压CV2的一第二起始值。第一起始值为写入(形成)电流能够通过存储器200的第一控制线CL1,而不会造成过度写入(over-writing)的适当值。通常,第一起始值接近于但小于存储器200的动态阻值图的转折点(switchpoint)。举例来说,第一起始值例如是2V。同样地,第二起始值为写入(形成)电流能够通过存储器200的第二控制线CL2,而不会造成过度写入(over-writing)的适当值。通常,第二起始值接近于但小于存储器200的动态阻值图的转折点。举例来说,第二起始值例如是2V。More specifically, the memory operation method includes the following steps. In step S211 , the processor 130 loads relevant information from the memory 200 to define a first initial value of the first control voltage CV1 . In step S212 , the processor 130 loads relevant information from the memory 200 to define a second initial value of the second control voltage CV2 . The first initial value is an appropriate value at which the writing (forming) current can pass through the first control line CL1 of the memory 200 without causing over-writing. Usually, the first initial value is close to but smaller than a switchpoint of the dynamic resistance diagram of the memory 200 . For example, the first initial value is 2V. Likewise, the second initial value is an appropriate value at which the writing (forming) current can pass through the second control line CL2 of the memory 200 without causing over-writing. Typically, the second initial value is close to but smaller than the turning point of the dynamic resistance graph of the memory 200 . For example, the second initial value is 2V.
请参照表1,在第一步进循环SL21及第二步进循环SL22中,第一控制电压CV1及第二控制电压CV2根据表1进行设定。Please refer to Table 1, in the first step cycle SL21 and the second step cycle SL22, the first control voltage CV1 and the second control voltage CV2 are set according to Table 1.
表1Table 1
接着,在步骤S221中,第一控制器110设定第一控制电压CV1且第二控制器120设定第二控制电压CV2。Next, in step S221 , the first controller 110 sets the first control voltage CV1 and the second controller 120 sets the second control voltage CV2 .
在步骤S222中,根据第一控制电压CV1及第二控制电压CV2对存储器200进行FORM、SET、RESET等操作程序。In step S222 , perform operations such as FORM, SET, and RESET on the memory 200 according to the first control voltage CV1 and the second control voltage CV2 .
接着,在步骤S223中,处理器130判断FORM、RESET、SET等操作程序是否已完成。若FORM、SET、RESET等操作程序已完成,则结束本流程;若FORM、SET、RESET等操作程序未完成,则进入步骤S224。Next, in step S223, the processor 130 determines whether the operation procedures such as FORM, RESET, and SET have been completed. If the operation procedures such as FORM, SET, and RESET have been completed, the process ends; if the operation procedures such as FORM, SET, and RESET have not been completed, then enter step S224.
在步骤S224中,处理器130判断第一控制电压CV1是否已达到第一最终值。举例来说,第一最终值可以是5V。若第一控制电压CV1达到第一最终值,则进入步骤S231;若第一控制电压CV1尚未达到第一最终值,则进入步骤S225。In step S224, the processor 130 determines whether the first control voltage CV1 has reached the first final value. For example, the first final value may be 5V. If the first control voltage CV1 reaches the first final value, go to step S231; if the first control voltage CV1 has not yet reached the first final value, go to step S225.
在步骤S225中,第一控制电压CV1被增加一预定值(例如是1V)。接着,流程回至步骤S221及步骤S222,以再次执行存储器200的操作程序。第一步进循环SL21被重复地执行,直到FORM、SET、RESET等程序已完成、或第一控制电压CV1达到第一最终值。In step S225, the first control voltage CV1 is increased by a predetermined value (for example, 1V). Then, the process returns to step S221 and step S222 to execute the operation program of the memory 200 again. The first stepping loop SL21 is repeatedly executed until the FORM, SET, RESET etc. procedures are completed or the first control voltage CV1 reaches the first final value.
在步骤S231中,第一控制器110将施加于第一控制线CL1的第一控制电压CV1固定于固定值,且第二控制器120增加施加于第二控制线CL2的第二控制电压CV2。第二控制电压CV2由中介值开始增加。在此实施例中,固定值等于第一最终值。举例来说,第一最终值为5V,且固定值也为5V。中介值高于第二起始值。举例还说,第二起始值为2V,且中介值为3V。In step S231 , the first controller 110 fixes the first control voltage CV1 applied to the first control line CL1 at a fixed value, and the second controller 120 increases the second control voltage CV2 applied to the second control line CL2 . The second control voltage CV2 starts to increase from an intermediate value. In this embodiment, the fixed value is equal to the first final value. For example, the first final value is 5V, and the fixed value is also 5V. The intermediate value is higher than the second starting value. For example, the second initial value is 2V, and the intermediate value is 3V.
在步骤S232中,第一控制器110设定第一控制电压CVI且第二控制器120设定第二控制电压CV2。In step S232, the first controller 110 sets the first control voltage CVI and the second controller 120 sets the second control voltage CV2.
在步骤S233中,根据第一控制电压CV1及第二控制电压CV2,对存储器200进行FORM、SET、RESET等操作程序。In step S233 , according to the first control voltage CV1 and the second control voltage CV2 , perform operations such as FORM, SET, and RESET on the memory 200 .
接着,在步骤S234中,处理器130判断FORM、RESET、SET等操作程序是否已完成。若FORM、SET、RESET已完成,则结束本流程;若FORM、SET、RESET尚未完成,则进入步骤S235。Next, in step S234, the processor 130 determines whether the operation procedures such as FORM, RESET, and SET have been completed. If the FORM, SET, and RESET have been completed, then end this process; if the FORM, SET, and RESET have not been completed, then enter step S235.
在步骤S235中,处理器130判断第二控制电压CV2是否达到第二最终值。举例来说,第二最终值可以是5V。若第二控制电压达到第二最终值,则结束本流程;若第二控制电压尚未达到第二最终值,则回至步骤S231。若流程回至步骤S231及步骤S232,则第二控制器120再次增加第二控制电压CV2,且根据第二控制电压CV2,对存储器200再次执行操作程序。In step S235, the processor 130 determines whether the second control voltage CV2 reaches the second final value. For example, the second final value may be 5V. If the second control voltage reaches the second final value, then end the process; if the second control voltage has not yet reached the second final value, return to step S231. If the process returns to step S231 and step S232, the second controller 120 increases the second control voltage CV2 again, and executes the operation program on the memory 200 again according to the second control voltage CV2.
第二步进循环SL22被重复地执行,直到FORM、SET、RESET等操作程序已完成、或第二控制电压CV2达到第二最终值。The second step cycle SL22 is repeatedly executed until the FORM, SET, RESET, etc. operation procedures are completed, or the second control voltage CV2 reaches the second final value.
也就是说,在第一步进循环SL21中,施加于第一控制线CL1的第一控制电压CV1由第一起始值增加至第一最终值(大于第一起始值);施加于第二控制线CL2的第二控制电压CV2被固定于第二起始值。在第二步进循环SL22中,施加于第一控制线CL1的第一控制电压CV1固定于固定值(等于第一最终值);施加于第二控制线CL2的第二控制电压CV2从中介值(高于第二起始值)增加至第二最终值(高于中介值)。That is to say, in the first step cycle SL21, the first control voltage CV1 applied to the first control line CL1 increases from the first initial value to the first final value (greater than the first initial value); The second control voltage CV2 of line CL2 is fixed at a second initial value. In the second step cycle SL22, the first control voltage CV1 applied to the first control line CL1 is fixed at a fixed value (equal to the first final value); the second control voltage CV2 applied to the second control line CL2 changes from an intermediate value to (higher than the second starting value) to a second final value (above the intermediate value).
请参照表2,其说明FROM程序的一例子。在此例子中,存储器200为由氮化钛层(TiN)-氧化钨层(WOx)-氮化钛层(TiN)所组成的可变电阻式存储器,第一控制线CL1为位线(或源极线),第二控制线CL2为字线。在第一步进循环SL21中,位线电压由2V逐渐增加至4V,且字线电压固定于2V。在第二步进循环SL22中,位线电压固定于4V,且字线电压由3V逐渐增加至4V。在此例中,总枪数为5。相较于传统的FORM程序,其总枪数为9。因此,此例的操作速度获得大幅度的改善。Please refer to Table 2, which illustrates an example of the FROM program. In this example, the memory 200 is a variable resistance memory composed of a titanium nitride layer (TiN)-tungsten oxide layer (WOx)-titanium nitride layer (TiN), and the first control line CL1 is a bit line (or source line), and the second control line CL2 is a word line. In the first step cycle SL21, the bit line voltage is gradually increased from 2V to 4V, and the word line voltage is fixed at 2V. In the second step cycle SL22, the bit line voltage is fixed at 4V, and the word line voltage is gradually increased from 3V to 4V. In this example, the total number of shots is 5. Compared to the traditional FORM program, the total number of shots is 9. Therefore, the operating speed of this example is greatly improved.
表2Table 2
请参照表3,其说明SET程序的一例子。在此例子中,存储器200为由氮化钛层(TiN)-氧化钨层(WOx)-氮化钛层(TiN)所组成的可变电阻式存储器,第一控制线CL1为字线,第二控制线CL2为位线(或源极线)。在第一步进循环SL21中,字线电压由2V逐渐增加至5V,且位线电压固定于2V。在第二步进循环SL22中,字线电压固定于5V,且位线电压由3V逐渐增加至5V。在此例中,总枪数为7。相较于传统的SET程序,其总枪数为16。因此,此例的操作速度获得大幅度的改善。Please refer to Table 3, which illustrates an example of the SET procedure. In this example, the memory 200 is a variable resistance memory composed of titanium nitride layer (TiN)-tungsten oxide layer (WOx)-titanium nitride layer (TiN), the first control line CL1 is a word line, and the second control line CL1 is a word line. The second control line CL2 is a bit line (or a source line). In the first step cycle SL21, the word line voltage is gradually increased from 2V to 5V, and the bit line voltage is fixed at 2V. In the second step cycle SL22, the word line voltage is fixed at 5V, and the bit line voltage is gradually increased from 3V to 5V. In this example, the total number of guns is 7. Compared to the traditional SET procedure, the total number of shots is 16. Therefore, the operating speed of this example is greatly improved.
表3table 3
请参照表4,其说明RESET程序的一例子。在此例子中,存储器200为由氮化钛层(TiN)-氧化钨层(WOx)-氮化钛层(TiN)所组成的可变电阻式存储器,第一控制线CL1为字线,第二控制线CL2为位线(或源极线)。在第一步进循环SL21中,字线电压由2V逐渐增加至5V,且位线电压固定于2V。在第二步进循环SL22中,字线电压固定于5V,且位线电压由3V逐渐增加至5V。在此例中,总枪数为7。相较于传统的RESET程序,其总枪数为16。因此,此例的操作速度获得大幅度的改善。Please refer to Table 4, which illustrates an example of the RESET procedure. In this example, the memory 200 is a variable resistance memory composed of titanium nitride layer (TiN)-tungsten oxide layer (WOx)-titanium nitride layer (TiN), the first control line CL1 is a word line, and the second control line CL1 is a word line. The second control line CL2 is a bit line (or a source line). In the first step cycle SL21, the word line voltage is gradually increased from 2V to 5V, and the bit line voltage is fixed at 2V. In the second step cycle SL22, the word line voltage is fixed at 5V, and the bit line voltage is gradually increased from 3V to 5V. In this example, the total number of guns is 7. Compared to the traditional RESET procedure, the total number of shots is 16. Therefore, the operating speed of this example is greatly improved.
表4Table 4
请参照图3,其为总枪数的分布图。图3绘示四条曲线C1、C2、C3、C4。曲线C1表示传统SET程序的总枪数的分布,曲线C2表示传统RESET程序的总枪数的分布,曲线C3表示本发明SET程序的总枪数的分布,曲线C4表示本发明RESET程序的总枪数的分布。如曲线C1所示,部分传统SET程序需要超过6以上的总枪数。如曲线C3所示,所有的本发明SET程序皆仅需要低于6的总枪数。也就是说,本发明的SET程序的操作速度获得改善。Please refer to Figure 3, which is a distribution diagram of the total number of guns. Fig. 3 shows four curves C1, C2, C3, C4. Curve C1 represents the distribution of the total number of guns of the traditional SET program, curve C2 represents the distribution of the total number of guns of the traditional RESET program, curve C3 represents the distribution of the total number of guns of the SET program of the present invention, and curve C4 represents the total number of guns of the RESET program of the present invention distribution of numbers. As shown by curve C1, some traditional SET procedures require more than 6 total shots. As shown by the curve C3, all the SET procedures of the present invention require less than 6 total shots. That is, the operating speed of the SET program of the present invention is improved.
如曲线C2所示,部分的传统RESET程序需要超过6以上的总枪数。如曲线C4所示,所有的本发明RESET程序都仅需要低于6的总枪数。也就是说,本发明的RESET程序的操作速度获得改善。As shown by curve C2, some traditional RESET procedures require more than 6 total shots. As shown by curve C4, all RESET procedures of the present invention require less than 6 total shots. That is, the operation speed of the RESET procedure of the present invention is improved.
请参照图4,其为根据本实施例的阻抗分布图。图4绘是三条曲线C5、C6、C7。曲线C5表示执行本发明SET程序后的阻抗分布,曲线C6表示执行本发明RESET程序后的阻抗分布,曲线C7表示执行本发明FORM程序后的阻抗分布。一窗口(window)W1形成于曲线C5及曲线C6之间,使得SET状态与RESET状态能够明显地区别。也就是说,即使总枪数已降低,SET程序与RESET程序仍然有不错的结果。Please refer to FIG. 4 , which is an impedance distribution diagram according to this embodiment. Fig. 4 draws three curves C5, C6, C7. Curve C5 represents the impedance distribution after executing the SET procedure of the present invention, curve C6 represents the impedance distribution after executing the RESET procedure of the present invention, and curve C7 represents the impedance distribution after executing the FORM procedure of the present invention. A window (window) W1 is formed between the curve C5 and the curve C6, so that the SET state and the RESET state can be clearly distinguished. That is, even though the total number of shots has been reduced, the SET procedure and the RESET procedure still have good results.
请参照图5A~5B,其绘示根据另一实施例的存储器操作方法的流程图。请参照表5,在第一步进循环SL21及第二步进循环SL22中,第一控制电压CV1及第二控制电压CV2根据表5进行设定。Please refer to FIGS. 5A-5B , which illustrate a flow chart of a memory operating method according to another embodiment. Please refer to Table 5, in the first step cycle SL21 and the second step cycle SL22, the first control voltage CV1 and the second control voltage CV2 are set according to Table 5.
表5table 5
在此实施例中,第一步进循环SL51类似于第一步进循环SL21,其相同之处不在重复叙述。在第二步进循环SL52的步骤S531中,固定值小于第一最终值。固定值可以根据下式(1)进行计算。In this embodiment, the first stepping cycle SL51 is similar to the first stepping cycle SL21, and the similarities will not be repeated. In step S531 of the second stepping loop SL52, the fixed value is smaller than the first final value. The fixed value can be calculated according to the following formula (1).
FX=FN-Δ………………………………………(1)FX=FN-Δ…………………………………(1)
FX为固定值,FN为第一最终值,Δ为0~第一最终值。FX is a fixed value, FN is a first final value, and Δ is 0 to the first final value.
或者,在另一实施例中,固定值与第一最终值的比值可以高于0.8。或者,在另一实施例中,固定值与第一最终值之差可以大于0.1V。举例来说,第一最终值为5V,且固定值为4.5V。Alternatively, in another embodiment, the ratio of the fixed value to the first final value may be higher than 0.8. Alternatively, in another embodiment, the difference between the fixed value and the first final value may be greater than 0.1V. For example, the first final value is 5V, and the fixed value is 4.5V.
由于第二步进循环SL52的第一控制电压CV1固定于低于第一最终值值(即固定值低于第一最终值),重写(over-writing)的情况可以有效被避免。Since the first control voltage CV1 of the second step cycle SL52 is fixed at a value lower than the first final value (ie, the fixed value is lower than the first final value), the situation of over-writing can be effectively avoided.
也就是说,也就是说,在第一步进循环SL51中,施加于第一控制线CL1的第一控制电压CV1由第一起始值增加至第一最终值(大于第一起始值);施加于第二控制线CL2的第二控制电压CV2被固定于第二起始值。在第二步进循环SL52中,施加于第一控制线CL1的第一控制电压CV1固定于固定值(小于第一最终值);施加于第二控制线CL2的第二控制电压CV2从中介值(高于第二起始值)增加至第二最终值(高于中介值)。That is to say, in the first step cycle SL51, the first control voltage CV1 applied to the first control line CL1 increases from the first initial value to the first final value (greater than the first initial value); The second control voltage CV2 on the second control line CL2 is fixed at a second initial value. In the second step cycle SL52, the first control voltage CV1 applied to the first control line CL1 is fixed at a fixed value (less than the first final value); the second control voltage CV2 applied to the second control line CL2 changes from an intermediate value to (higher than the second starting value) to a second final value (above the intermediate value).
根据上述各种实施例,通过执行第一步进循环SL21、SL51及第二步进循环SL22、SL52,操作速度可以大幅地改善。According to the various embodiments described above, by executing the first stepping loop SL21, SL51 and the second stepping loop SL22, SL52, the operation speed can be greatly improved.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710366000.7A CN108962313A (en) | 2017-05-23 | 2017-05-23 | Memory operation method and memory operation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710366000.7A CN108962313A (en) | 2017-05-23 | 2017-05-23 | Memory operation method and memory operation device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108962313A true CN108962313A (en) | 2018-12-07 |
Family
ID=64462430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710366000.7A Pending CN108962313A (en) | 2017-05-23 | 2017-05-23 | Memory operation method and memory operation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108962313A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111564168A (en) * | 2019-02-13 | 2020-08-21 | 旺宏电子股份有限公司 | Control method of progressive resistance characteristic of resistive memory element |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101889311A (en) * | 2007-12-12 | 2010-11-17 | 索尼公司 | Storage device and information rerecording method |
TW201234375A (en) * | 2010-11-17 | 2012-08-16 | Sandisk 3D Llc | Memory system with reversible-switching using pulses of alternate polarity |
CN103081015A (en) * | 2010-07-19 | 2013-05-01 | 桑迪士克技术有限公司 | Programming non-volatile memory with bit line voltage step up |
US20140043913A1 (en) * | 2012-08-13 | 2014-02-13 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor device |
US9496036B1 (en) * | 2015-11-30 | 2016-11-15 | Winbond Electronics Corp. | Writing method for resistive memory cell and resistive memory |
CN106158013A (en) * | 2015-04-15 | 2016-11-23 | 华邦电子股份有限公司 | Resistive memory and data writing method of memory cell thereof |
-
2017
- 2017-05-23 CN CN201710366000.7A patent/CN108962313A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101889311A (en) * | 2007-12-12 | 2010-11-17 | 索尼公司 | Storage device and information rerecording method |
CN103081015A (en) * | 2010-07-19 | 2013-05-01 | 桑迪士克技术有限公司 | Programming non-volatile memory with bit line voltage step up |
TW201234375A (en) * | 2010-11-17 | 2012-08-16 | Sandisk 3D Llc | Memory system with reversible-switching using pulses of alternate polarity |
US20140043913A1 (en) * | 2012-08-13 | 2014-02-13 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor device |
CN106158013A (en) * | 2015-04-15 | 2016-11-23 | 华邦电子股份有限公司 | Resistive memory and data writing method of memory cell thereof |
US9496036B1 (en) * | 2015-11-30 | 2016-11-15 | Winbond Electronics Corp. | Writing method for resistive memory cell and resistive memory |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111564168A (en) * | 2019-02-13 | 2020-08-21 | 旺宏电子股份有限公司 | Control method of progressive resistance characteristic of resistive memory element |
CN111564168B (en) * | 2019-02-13 | 2022-05-27 | 旺宏电子股份有限公司 | Control method of progressive resistance characteristic of resistive memory element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8788741B2 (en) | Method and apparatus adapted to prevent code data from being lost in solder reflow | |
EP3423932B1 (en) | Techniques for command based on die termination | |
CN116134523B (en) | Multi-state programming of memory cells | |
CN109558338B (en) | Dynamic page allocation in memory | |
US12153823B2 (en) | Multi-level memory programming and readout | |
US20100214813A1 (en) | Memory module having a plurality of phase change memories, buffer RAM and nand flash memory | |
US10269423B2 (en) | Access methods of memory device using relative addressing | |
CN101373632A (en) | Resistance variable memory device and method of operating the same | |
US9147837B1 (en) | Resistive memory cell and method for forming a resistive memory cell | |
US9697874B1 (en) | Monolithic memory comprising 1T1R code memory and 1TnR storage class memory | |
TWI742036B (en) | Techniques to use chip select signals for a dual in-line memory module | |
CN109643292B (en) | Scalable bandwidth non-volatile memory | |
US9847114B2 (en) | Electronic device | |
US20150302925A1 (en) | Electronic device including semiconductor memory and operation method thereof | |
US10847577B2 (en) | Memory and logic device-integrated soft electronic system | |
US20120182786A1 (en) | Bidirectional resistive memory devices using selective read voltage polarity | |
US10276219B2 (en) | System for improved power distribution to a memory card through remote sense feedback | |
CN103065673A (en) | Combined memory block and data processing system having the same | |
CN108962313A (en) | Memory operation method and memory operation device | |
US20120230080A1 (en) | Variable Resistance Device, Semiconductor Device Including The Variable Resistance Device, And Method Of Operating The Semiconductor Device | |
KR20140136192A (en) | Semiconductor device and method for manufacturing the same, and micro processor, processor, system, data storage system and memory system including the semiconductor device | |
US20150153794A1 (en) | System including memory controller for managing power of memory | |
Soell et al. | Case study on memristor‐based multilevel memories | |
TWI493548B (en) | Configurable logic block and operation method thereof | |
TWI624837B (en) | Memory operating method and memory operating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181207 |