CN108960259A - A kind of license plate preprocess method based on HSV - Google Patents
A kind of license plate preprocess method based on HSV Download PDFInfo
- Publication number
- CN108960259A CN108960259A CN201810764379.1A CN201810764379A CN108960259A CN 108960259 A CN108960259 A CN 108960259A CN 201810764379 A CN201810764379 A CN 201810764379A CN 108960259 A CN108960259 A CN 108960259A
- Authority
- CN
- China
- Prior art keywords
- image
- hsv
- license plate
- neighborhood
- binarization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000012937 correction Methods 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 230000004927 fusion Effects 0.000 claims abstract description 4
- 238000007781 pre-processing Methods 0.000 claims description 22
- 230000003044 adaptive effect Effects 0.000 claims description 6
- 238000007667 floating Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 10
- 238000005286 illumination Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000011160 research Methods 0.000 description 3
- 238000004042 decolorization Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004883 computer application Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000003706 image smoothing Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/48—Extraction of image or video features by mapping characteristic values of the pattern into a parameter space, e.g. Hough transformation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/62—Text, e.g. of license plates, overlay texts or captions on TV images
- G06V20/625—License plates
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Character Input (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及智能交通技术领域,具体涉及一种基于HSV的车牌预处理方法,它通过对HSV三通道进行处理,以减弱光照、噪声、阴影、污迹等对车牌二值化的影响。The invention relates to the technical field of intelligent transportation, in particular to an HSV-based license plate preprocessing method, which reduces the influence of light, noise, shadows, stains, etc. on the license plate binarization by processing the HSV three channels.
背景技术Background technique
随着我国交通网络的不断发展,安全问题愈发凸显。车牌是车辆的标识,但是实际生活中,由于场景或人为因素的影响,这一标识常常不容易被识别出来。在智慧交通项目中,常先将车牌预处理,然后在车牌二值图上进行字符分割,最后最分割出来的字符进行识别。因此,得到易处理的二值图像是车牌自动识别系统的一个关键。With the continuous development of my country's transportation network, security issues have become increasingly prominent. The license plate is the identification of the vehicle, but in real life, due to the influence of the scene or human factors, this identification is often not easy to be recognized. In smart transportation projects, the license plate is often preprocessed first, then the characters are segmented on the license plate binary image, and finally the most segmented characters are recognized. Therefore, obtaining an easy-to-handle binary image is a key to the automatic license plate recognition system.
常用的车牌预处理包括如下步骤:图像归一化、直方图均衡化、灰度拉伸、图像平滑、倾斜矫正和二值化。李战明(车牌号识别系统中的车牌图像预处理研究[J].科学技术与工程,2008,8(8):2081-2084.)、董玲娇(车牌图像预处理研究[J].机电工程,2009,26(6):107-109.)和陈若珠(基于车牌识别的图像预处理研究[J].工业仪表与自动化装置,2015(4):40-43.)介绍了相关技术。但是,一般的车牌预处理步骤对于实际应用中诸如光照不均匀、车牌污损等特殊情况不具有鲁棒性。Commonly used license plate preprocessing includes the following steps: image normalization, histogram equalization, grayscale stretching, image smoothing, skew correction, and binarization. Li Zhanming (Research on License Plate Image Preprocessing in License Plate Number Recognition System [J]. Science Technology and Engineering, 2008, 8(8): 2081-2084.), Dong Lingjiao (Research on License Plate Image Preprocessing [J]. Mechanical and Electrical Engineering, 2009 ,26(6):107-109.) and Chen Ruozhu (Research on Image Preprocessing Based on License Plate Recognition [J]. Industrial Instrumentation and Automation Devices, 2015(4):40-43.) introduced related technologies. However, general license plate preprocessing steps are not robust to special situations in practical applications such as uneven illumination, license plate defacement, etc.
相对一般车牌预处理操作,更为复杂的预处理步骤包括:光照不均匀处理、污损修复等。如赵坤(一种改进的车牌识别预处理方法[J].河南科学,2010,28(3):000329-332.)提出光照空域矫正结合同态滤波后,利用局部阈值进行二值化操作,得到理想二值图,但是该方法只实现了对车牌局部光照过强的处理,对于阴影。再如马超玉(融合多级光照处理的车牌图像二值化算法[J].计算机应用,2013,33(a02):200-202.)基于加权得到的车牌灰度图,用顶帽算法平滑背景光照,用Retinex算法平滑字符光照,最后用局部阈值方法得到最终的车牌二值图像。虽然该方法能够均匀光照,但其计算复杂度高。车牌阴影问题是光照不均匀问题的一个子问题,徐云静等(一种阴影车牌图像二值化方法,CN106650728A[P].2017)采用原始车牌的红色通道图像作为灰度图,基于寻找亮暗分界线实现对含规则阴影车牌图像的二值化,但是该方法无法处理非规则阴影。卜珂等(一种车牌图像的预处理方法,CN102509095A[P].2012.)首先获取车牌的上下左右边界,然后找到阴阳分界线(即阴影区与非阴影区的亮暗分界线)将车牌分为上下两部分,分别计算上下两部分的灰度阈值,最终对上半部分的像素点进行灰度补充。该方法要求定位得到的车牌具有明确的上下左右边界,且只能处理规则阴影。车牌污迹的修复是指把握车牌整体性的基础上,对污迹处基于邻域像素插值或直接用邻域像素替代,该类方法的计算复杂度都很高。Compared with general license plate preprocessing operations, more complex preprocessing steps include: uneven illumination treatment, defacement repair, etc. For example, Zhao Kun (an improved preprocessing method for license plate recognition [J]. Henan Science, 2010, 28(3): 000329-332.) proposes to use local thresholds for binarization after light space correction combined with homomorphic filtering , to obtain an ideal binary image, but this method only realizes the processing of excessive local illumination of the license plate, for the shadow. Another example is Ma Chaoyu (A license plate image binarization algorithm that integrates multi-level light processing [J]. Computer Applications, 2013, 33 (a02): 200-202.) Based on the license plate grayscale image obtained by weighting, it is smoothed with the top hat algorithm The background light is smoothed by the Retinex algorithm, and the final binary image of the license plate is obtained by the local threshold method. Although this method can uniformly illuminate, its computational complexity is high. The license plate shadow problem is a sub-problem of the uneven illumination problem. Xu Yunjing et al. (A binarization method for shadowed license plate images, CN106650728A[P].2017) used the red channel image of the original license plate as the grayscale image, based on finding the bright and dark points Boundary realizes the binarization of license plate images with regular shadows, but this method cannot deal with irregular shadows. Bu Ke et al. (A preprocessing method for license plate images, CN102509095A[P].2012.) firstly obtain the upper, lower, left, and right boundaries of the license plate, and then find the Yin-Yang dividing line (that is, the light-dark dividing line between the shaded area and the non-shaded area) to convert the license plate It is divided into upper and lower parts, and the gray thresholds of the upper and lower parts are calculated respectively, and finally the gray level of the pixels in the upper part is supplemented. This method requires that the license plate obtained by positioning has clear upper, lower, left, and right boundaries, and can only deal with regular shadows. The repair of license plate stains refers to grasping the integrity of the license plate, interpolating the stains based on neighborhood pixels or directly replacing them with neighbor pixels. The computational complexity of such methods is very high.
综上所述,当前车牌预处理操作存在的不足包括:1)一般预处理步骤简单,效率高,但无法处理光照不均匀车牌和污损车牌;2)对光照不均匀车牌,存在只能处理规则阴影和算法太耗时问题;3)污损修复算法复杂度过高,暂时无法应用于实时车牌识别的预处理环节。To sum up, the shortcomings of the current license plate preprocessing operation include: 1) the general preprocessing steps are simple and efficient, but cannot deal with unevenly illuminated license plates and defaced license plates; 2) for unevenly illuminated license plates, there are only Regular shadows and algorithms are too time-consuming; 3) The complexity of the defacement repair algorithm is too high, and it cannot be applied to the preprocessing link of real-time license plate recognition for the time being.
发明内容Contents of the invention
针对现有技术中存在的上述问题,本发明的目的在于提供一种基于HSV的车牌预处理方法,它通过对HSV三通道进行处理,减弱光照、噪声、阴影、污迹等对车牌二值化的影响,克服了一般车牌图像预处理方法中的不足,得到容易进行后续处理的二值图像。For the above-mentioned problems existing in the prior art, the object of the present invention is to provide a kind of license plate preprocessing method based on HSV, it is by processing HSV three channels, weakens illumination, noise, shadow, stain etc. to the license plate binarization The impact of the method overcomes the shortcomings of the general license plate image preprocessing method, and obtains a binary image that is easy to carry out subsequent processing.
所述的一种基于HSV的车牌预处理方法,其特征在于包括如下步骤:Described a kind of license plate preprocessing method based on HSV is characterized in that comprising the steps:
步骤1:得到车牌图像IRGB,其中图像的高度为h,宽度为w,单位为像素;Step 1: Obtain the license plate image I RGB , wherein the height of the image is h, the width is w, and the unit is pixel;
步骤2:将车牌图像从RGB颜色空间转换为HSV颜色空间,得到IHSV,将IHSV的色调、饱和度和亮度三通道分别记Hi,j,Si,j和Vi,j,其中i、j分别表示图像像素的横坐标、纵坐标,且1≤i≤h,1≤j≤w;Step 2: Convert the license plate image from RGB color space to HSV color space to obtain I HSV , and record the three channels of hue, saturation and brightness of I HSV as H i,j , S i,j and V i,j respectively, where i and j represent the abscissa and ordinate of the image pixel respectively, and 1≤i≤h, 1≤j≤w;
步骤3:对步骤2)中的亮度Vi,j,用Hough直线检测法确定图像的水平倾斜角α;Step 3: For the brightness V i,j in step 2), use the Hough line detection method to determine the horizontal tilt angle α of the image;
步骤4:对步骤2)中的饱和度Si,j,根据公式(1)~(4),用Sauvola局部阈值二值化方法实现二值化,具体如下:首先求得每一像素点(i,j)在其c*c邻域范围内的自适应阈值T(i,j),然后按公式(4)实现二值化,得到S* i,j;Step 4: For the saturation S i,j in step 2), according to the formulas (1)~(4), use the Sauvola local threshold binarization method to achieve binarization, as follows: first obtain each pixel point ( i, j) the adaptive threshold T(i, j) in its c*c neighborhood range, and then realize binarization according to formula (4), and obtain S * i, j ;
其中,c表示像素邻域范围,m(i,j)表示Si,j在c*c邻域内的均值,σ(i,j)表示Si,j在c*c邻域内的均方差,k1表示均方差的权重因子,R1表示均方差变化浮动范围;Among them, c represents the range of the pixel neighborhood, m(i,j) represents the mean value of S i,j in the c*c neighborhood, σ(i,j) represents the mean square error of Si ,j in the c*c neighborhood, k 1 represents the weight factor of the mean square error, and R 1 represents the floating range of the mean square error change;
步骤5:对步骤2)中的亮度Vi,j,根据公式(5)~(8),用Sauvola局部阈值二值化方法实现二值化,具体如下:首先求得每一像素点(i,j)在其c*c邻域范围内的自适应阈值T*(i,j),然后按公式(8)实现二值化,得到V* i,j;Step 5: For the luminance V i,j in step 2), according to formulas (5)-(8), use the Sauvola local threshold value binarization method to realize binarization, as follows: first obtain each pixel point (i , j) the adaptive threshold T * (i, j) in its c*c neighborhood range, then realize binarization by formula (8), obtain V * i, j ;
其中,m*(i,j)表示Vi,j在c*c邻域内的均值,σ*(i,j)表示Vi,j在c*c邻域内的均方差,k2表示均方差的权重因子,R2表示均方差变化浮动范围;Among them, m * (i, j) represents the mean value of V i, j in the c*c neighborhood, σ * (i, j) represents the mean square error of V i, j in the c*c neighborhood, k 2 means the mean square error The weight factor of , R 2 represents the floating range of mean square error change;
步骤6:将Hi,j、S* i,j和V* i,j三通道进行通道融合,并将图像从HSV颜色空间转回到RGB颜色空间,得到新的RGB图像I;Step 6: Perform channel fusion on the three channels of H i,j , S * i,j and V * i,j , and convert the image from the HSV color space back to the RGB color space to obtain a new RGB image I;
步骤7:对步骤6)中的RGB图像I,利用步骤3)中计算得到的α将图像进行水平倾斜矫正,得到图像M;Step 7: For the RGB image I in step 6), use the α calculated in step 3) to carry out horizontal tilt correction on the image to obtain image M;
步骤8:对步骤7)得到的图像M,依次进行灰度化、3*3中值滤波、OTSU二值化,得到预处理结果G。Step 8: For the image M obtained in step 7), perform grayscale conversion, 3*3 median filtering, and OTSU binarization in sequence to obtain the preprocessing result G.
本发明的优点是:本发明通过采用上述技术,能有效减弱光照、噪声、阴影、污迹等对车牌的影响,得到的二值图像容易进行后续处理。The advantages of the present invention are: by adopting the above-mentioned technology, the present invention can effectively reduce the influence of illumination, noise, shadow, stain, etc. on the license plate, and the obtained binary image is easy to carry out subsequent processing.
附图说明Description of drawings
图1为本发明的实施例选取的五张车牌图像去色效果图;Fig. 1 is the decolorization effect figure of five license plate images that the embodiment of the present invention chooses;
图2为本发明的经过步骤7处理后的五张车牌图像去色效果图;Fig. 2 is five license plate image decolorization effect figures after step 7 processing of the present invention;
图3为本发明的经过步骤8处理后的五张车牌图像。Fig. 3 is five license plate images after step 8 processing of the present invention.
具体实施方式Detailed ways
下面结合实施例来详细阐述本发明的基于HSV的车牌预处理方法的具体实施方式。The specific implementation of the HSV-based license plate preprocessing method of the present invention will be described in detail below in conjunction with the examples.
如图所示,本发明的基于HSV的车牌预处理方法,包括如下步骤:As shown in the figure, the license plate preprocessing method based on HSV of the present invention comprises the following steps:
步骤1:得到车牌图像IRGB,如图1所示,其中图像的高度为h,宽度为w,单位为像素;Step 1: Obtain the license plate image I RGB , as shown in Figure 1, wherein the height of the image is h, the width is w, and the unit is pixel;
步骤2:将车牌图像从RGB颜色空间转换为HSV颜色空间,得到IHSV,将IHSV的色调、饱和度和亮度三通道分别记Hi,j,Si,j和Vi,j,其中i、j分别表示图像像素的横、纵坐标,且1≤i≤h,1≤j≤w;Step 2: Convert the license plate image from RGB color space to HSV color space to obtain I HSV , and record the three channels of hue, saturation and brightness of I HSV as H i,j , S i,j and V i,j respectively, where i and j represent the abscissa and ordinate of the image pixel respectively, and 1≤i≤h, 1≤j≤w;
步骤3:对步骤2)中的亮度Vi,j,用Hough直线检测法确定图像的水平倾斜角α;Step 3: For the brightness V i,j in step 2), use the Hough line detection method to determine the horizontal tilt angle α of the image;
步骤4:对步骤2)中的饱和度Si,j,根据公式(1)~(4),用Sauvola局部阈值二值化方法实现二值化,具体如下:首先求得每一像素点(i,j)在其c*c邻域范围内的自适应阈值T(i,j),然后按公式(4)实现二值化,得到S* i,j;Step 4: For the saturation S i,j in step 2), according to the formulas (1)~(4), use the Sauvola local threshold binarization method to achieve binarization, as follows: first obtain each pixel point ( i, j) the adaptive threshold T(i, j) in its c*c neighborhood range, and then realize binarization according to formula (4), and obtain S * i, j ;
其中,c表示像素邻域范围,m(i,j)表示Si,j在c*c邻域内的均值,σ(i,j)表示Si,j在c*c邻域内的均方差,k1表示均方差的权重因子,R1表示均方差变化浮动范围;在本实例中,c=15,k=0.5,R=128;Among them, c represents the range of the pixel neighborhood, m(i,j) represents the mean value of S i,j in the c*c neighborhood, σ(i,j) represents the mean square error of Si ,j in the c*c neighborhood, k 1 represents the weight factor of the mean square error, and R 1 represents the floating range of the mean square error change; in this example, c=15, k=0.5, R=128;
步骤5:对步骤2)中的亮度Vi,j,根据公式(5)~(8),用Sauvola局部阈值二值化方法实现二值化,具体如下:首先求得每一像素点(i,j)在其c*c邻域范围内的自适应阈值T*(i,j),然后按公式(8)实现二值化,得到V* i,j;Step 5: For the luminance V i,j in step 2), according to formulas (5)-(8), use the Sauvola local threshold value binarization method to realize binarization, as follows: first obtain each pixel point (i , j) the adaptive threshold T * (i, j) in its c*c neighborhood range, then realize binarization by formula (8), obtain V * i, j ;
其中,m*(i,j)表示Vi,j在c*c邻域内的均值,σ*(i,j)表示Vi,j在c*c邻域内的均方差,k2表示均方差的权重因子,R2表示均方差变化浮动范围;在本实例中,k2=0.5,R2=128;Among them, m * (i, j) represents the mean value of V i, j in the c*c neighborhood, σ * (i, j) represents the mean square error of V i, j in the c*c neighborhood, k 2 means the mean square error The weight factor of , R 2 represents the floating range of mean square error change; in this example, k 2 =0.5, R 2 =128;
步骤6:将Hi,j、S* i,j和V* i,j三通道进行通道融合,并将图像从HSV颜色空间转回到RGB颜色空间,得到新的RGB图像I;Step 6: Perform channel fusion on the three channels of H i,j , S * i,j and V * i,j , and convert the image from the HSV color space back to the RGB color space to obtain a new RGB image I;
步骤7:对步骤6中的RGB图像I,利用步骤3中计算得到的α将图像进行水平倾斜矫正,得到图像M,如图2所示;Step 7: For the RGB image I in step 6, use the α calculated in step 3 to correct the horizontal tilt of the image to obtain the image M, as shown in Figure 2;
步骤8:对步骤7的图像M,依次进行灰度化、3*3中值滤波、OTSU二值化,得到预处理结果G,如图3所示。Step 8: For the image M in step 7, perform grayscale conversion, 3*3 median filter, and OTSU binarization in sequence to obtain the preprocessing result G, as shown in Figure 3.
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围的不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。The content described in the embodiments of this specification is only an enumeration of the implementation forms of the inventive concept. The protection scope of the present invention should not be regarded as limited to the specific forms stated in the embodiments. The protection scope of the present invention also extends to the field Equivalent technical means that the skilled person can think of based on the concept of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810764379.1A CN108960259A (en) | 2018-07-12 | 2018-07-12 | A kind of license plate preprocess method based on HSV |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810764379.1A CN108960259A (en) | 2018-07-12 | 2018-07-12 | A kind of license plate preprocess method based on HSV |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108960259A true CN108960259A (en) | 2018-12-07 |
Family
ID=64483818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810764379.1A Pending CN108960259A (en) | 2018-07-12 | 2018-07-12 | A kind of license plate preprocess method based on HSV |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108960259A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110060222A (en) * | 2019-04-29 | 2019-07-26 | 重庆金山医疗器械有限公司 | A kind of method for correcting image, device and endoscopic system |
CN110992387A (en) * | 2019-11-08 | 2020-04-10 | 浪潮电子信息产业股份有限公司 | Image processing method and device, electronic equipment and storage medium |
CN111582046A (en) * | 2020-04-15 | 2020-08-25 | 浙江大华技术股份有限公司 | License plate image processing method and device |
CN112489042A (en) * | 2020-12-21 | 2021-03-12 | 大连工业大学 | Detection method of metal printing defects and surface damage based on super-resolution reconstruction |
CN113538602A (en) * | 2021-08-09 | 2021-10-22 | 宁波华高信息科技有限公司 | Document image processing method and system based on HSV color space |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101334836A (en) * | 2008-07-30 | 2008-12-31 | 电子科技大学 | A License Plate Location Method Combining Color, Size and Texture Features |
CN102375982A (en) * | 2011-10-18 | 2012-03-14 | 华中科技大学 | Multi-character characteristic fused license plate positioning method |
US20160203379A1 (en) * | 2015-01-12 | 2016-07-14 | TigerIT Americas, LLC | Systems, methods and devices for the automated verification and quality control and assurance of vehicle identification plates |
CN106845480A (en) * | 2017-01-13 | 2017-06-13 | 河海大学 | A kind of method that car plate is recognized from picture |
-
2018
- 2018-07-12 CN CN201810764379.1A patent/CN108960259A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101334836A (en) * | 2008-07-30 | 2008-12-31 | 电子科技大学 | A License Plate Location Method Combining Color, Size and Texture Features |
CN102375982A (en) * | 2011-10-18 | 2012-03-14 | 华中科技大学 | Multi-character characteristic fused license plate positioning method |
US20160203379A1 (en) * | 2015-01-12 | 2016-07-14 | TigerIT Americas, LLC | Systems, methods and devices for the automated verification and quality control and assurance of vehicle identification plates |
CN106845480A (en) * | 2017-01-13 | 2017-06-13 | 河海大学 | A kind of method that car plate is recognized from picture |
Non-Patent Citations (2)
Title |
---|
张晶: "《多媒体信息与通信》", 31 December 2017, 西安电子科技大学出版社 * |
胡德文,陈芳林: "《生物特征识别技术与方法》", 31 August 2013, 国防工业出版社 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110060222A (en) * | 2019-04-29 | 2019-07-26 | 重庆金山医疗器械有限公司 | A kind of method for correcting image, device and endoscopic system |
CN110060222B (en) * | 2019-04-29 | 2022-05-06 | 重庆金山医疗技术研究院有限公司 | Image correction method and device and endoscope system |
CN110992387A (en) * | 2019-11-08 | 2020-04-10 | 浪潮电子信息产业股份有限公司 | Image processing method and device, electronic equipment and storage medium |
CN111582046A (en) * | 2020-04-15 | 2020-08-25 | 浙江大华技术股份有限公司 | License plate image processing method and device |
CN111582046B (en) * | 2020-04-15 | 2023-09-05 | 浙江大华技术股份有限公司 | License plate image processing method and device |
CN112489042A (en) * | 2020-12-21 | 2021-03-12 | 大连工业大学 | Detection method of metal printing defects and surface damage based on super-resolution reconstruction |
CN113538602A (en) * | 2021-08-09 | 2021-10-22 | 宁波华高信息科技有限公司 | Document image processing method and system based on HSV color space |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108960259A (en) | A kind of license plate preprocess method based on HSV | |
CN107067389B (en) | A kind of blind evidence collecting method of distorted image | |
Shen et al. | Improving OCR performance with background image elimination | |
CN110309806B (en) | A gesture recognition system and method based on video image processing | |
CN109087254B (en) | Unmanned aerial vehicle aerial image haze sky and white area self-adaptive processing method | |
CN106096610A (en) | A kind of file and picture binary coding method based on support vector machine | |
Chen et al. | A novel color edge detection algorithm in RGB color space | |
CN109961416B (en) | A business license information extraction method based on multi-scale fusion of morphological gradients | |
CN103824091A (en) | Vehicle license plate recognition method for intelligent transportation system | |
CN111783773B (en) | Correction method for angle-inclined telegraph pole signboard | |
CN108898132A (en) | A kind of terahertz image dangerous material recognition methods based on Shape context description | |
CN103971367B (en) | Hydrologic data image segmenting method | |
CN114511770A (en) | Road sign plate identification method | |
CN109522768A (en) | The recognition methods of QR code and device | |
CN110263778A (en) | A kind of meter register method and device based on image recognition | |
CN113505622A (en) | Test system and method for automatically identifying multiple bar codes and LED lamps | |
CN106650728A (en) | Shadow license plate image binarization method | |
CN111915509A (en) | Protection pressing plate state identification method based on image processing shadow removal optimization | |
CN115587966A (en) | A method and system for detecting whether parts are missing or not under the condition of uneven illumination | |
CN118038515A (en) | Face recognition method | |
CN116128849A (en) | Method, device, equipment and storage medium for detecting underwater cracks of concrete dam | |
CN105608683B (en) | A kind of single image to the fog method | |
Wang et al. | Lane detection algorithm based on density clustering and RANSAC | |
CN115358948A (en) | Low-illumination image enhancement method based on improved Retinex algorithm | |
CN103106663A (en) | Method for detecting defect of subscriber identity module (SIM) card based on image processing in computer system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181207 |