CN108932715A - 一种基于深度学习的冠状动脉造影图分割的优化方法 - Google Patents
一种基于深度学习的冠状动脉造影图分割的优化方法 Download PDFInfo
- Publication number
- CN108932715A CN108932715A CN201810766732.XA CN201810766732A CN108932715A CN 108932715 A CN108932715 A CN 108932715A CN 201810766732 A CN201810766732 A CN 201810766732A CN 108932715 A CN108932715 A CN 108932715A
- Authority
- CN
- China
- Prior art keywords
- module
- layer
- cascade
- output
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000011218 segmentation Effects 0.000 title claims abstract description 32
- 238000013135 deep learning Methods 0.000 title claims abstract description 12
- 238000005457 optimization Methods 0.000 title abstract description 9
- 238000011084 recovery Methods 0.000 claims abstract description 27
- 238000013528 artificial neural network Methods 0.000 claims abstract description 21
- 210000004351 coronary vessel Anatomy 0.000 claims description 34
- 238000013507 mapping Methods 0.000 claims description 20
- 238000002586 coronary angiography Methods 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 14
- 238000002583 angiography Methods 0.000 claims description 13
- 238000010606 normalization Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 claims description 7
- 238000003709 image segmentation Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 4
- 230000009191 jumping Effects 0.000 claims description 3
- 238000012549 training Methods 0.000 abstract description 14
- 210000004204 blood vessel Anatomy 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000011176 pooling Methods 0.000 description 4
- 238000002372 labelling Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810766732.XA CN108932715B (zh) | 2018-07-13 | 2018-07-13 | 一种基于深度学习的冠状动脉造影图分割的优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810766732.XA CN108932715B (zh) | 2018-07-13 | 2018-07-13 | 一种基于深度学习的冠状动脉造影图分割的优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108932715A true CN108932715A (zh) | 2018-12-04 |
CN108932715B CN108932715B (zh) | 2022-06-07 |
Family
ID=64447470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810766732.XA Active CN108932715B (zh) | 2018-07-13 | 2018-07-13 | 一种基于深度学习的冠状动脉造影图分割的优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108932715B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109859146A (zh) * | 2019-02-28 | 2019-06-07 | 电子科技大学 | 一种基于U-net卷积神经网络的彩色眼底图像血管分割方法 |
CN110047076A (zh) * | 2019-03-29 | 2019-07-23 | 腾讯科技(深圳)有限公司 | 一种图像信息的处理方法、装置及存储介质 |
CN111178420A (zh) * | 2019-12-24 | 2020-05-19 | 北京理工大学 | 一种二维造影图像上冠脉段标注方法及系统 |
CN111652880A (zh) * | 2020-07-01 | 2020-09-11 | 杭州脉流科技有限公司 | 基于神经网络的ct冠状动脉中心线种子点检测和追踪方法、装置、设备以及可读存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150112182A1 (en) * | 2013-10-17 | 2015-04-23 | Siemens Aktiengesellschaft | Method and System for Machine Learning Based Assessment of Fractional Flow Reserve |
CN106296660A (zh) * | 2016-07-28 | 2017-01-04 | 北京师范大学 | 一种全自动冠状动脉分割方法 |
CN106887000A (zh) * | 2017-01-23 | 2017-06-23 | 上海联影医疗科技有限公司 | 医学图像的网格化处理方法及其系统 |
CN107563983A (zh) * | 2017-09-28 | 2018-01-09 | 上海联影医疗科技有限公司 | 图像处理方法以及医学成像设备 |
CN107886510A (zh) * | 2017-11-27 | 2018-04-06 | 杭州电子科技大学 | 一种基于三维全卷积神经网络的前列腺mri分割方法 |
CN107997778A (zh) * | 2016-10-31 | 2018-05-08 | 西门子保健有限责任公司 | 在计算机断层扫描血管造影术中基于深度学习的骨移除 |
-
2018
- 2018-07-13 CN CN201810766732.XA patent/CN108932715B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150112182A1 (en) * | 2013-10-17 | 2015-04-23 | Siemens Aktiengesellschaft | Method and System for Machine Learning Based Assessment of Fractional Flow Reserve |
CN106296660A (zh) * | 2016-07-28 | 2017-01-04 | 北京师范大学 | 一种全自动冠状动脉分割方法 |
CN107997778A (zh) * | 2016-10-31 | 2018-05-08 | 西门子保健有限责任公司 | 在计算机断层扫描血管造影术中基于深度学习的骨移除 |
CN106887000A (zh) * | 2017-01-23 | 2017-06-23 | 上海联影医疗科技有限公司 | 医学图像的网格化处理方法及其系统 |
CN107563983A (zh) * | 2017-09-28 | 2018-01-09 | 上海联影医疗科技有限公司 | 图像处理方法以及医学成像设备 |
CN107886510A (zh) * | 2017-11-27 | 2018-04-06 | 杭州电子科技大学 | 一种基于三维全卷积神经网络的前列腺mri分割方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109859146A (zh) * | 2019-02-28 | 2019-06-07 | 电子科技大学 | 一种基于U-net卷积神经网络的彩色眼底图像血管分割方法 |
CN110047076A (zh) * | 2019-03-29 | 2019-07-23 | 腾讯科技(深圳)有限公司 | 一种图像信息的处理方法、装置及存储介质 |
CN111178420A (zh) * | 2019-12-24 | 2020-05-19 | 北京理工大学 | 一种二维造影图像上冠脉段标注方法及系统 |
CN111178420B (zh) * | 2019-12-24 | 2024-01-09 | 北京理工大学 | 一种二维造影图像上冠脉段标注方法及系统 |
CN111652880A (zh) * | 2020-07-01 | 2020-09-11 | 杭州脉流科技有限公司 | 基于神经网络的ct冠状动脉中心线种子点检测和追踪方法、装置、设备以及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN108932715B (zh) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11501415B2 (en) | Method and system for high-resolution image inpainting | |
CN110189334B (zh) | 基于注意力机制的残差型全卷积神经网络的医学图像分割方法 | |
KR102640237B1 (ko) | 이미지 프로세싱 방법, 장치, 전자 디바이스 및 컴퓨터 판독가능 저장 매체 | |
CN112446383B (zh) | 车牌识别方法及装置、存储介质、终端 | |
CN108932715B (zh) | 一种基于深度学习的冠状动脉造影图分割的优化方法 | |
CN111507993A (zh) | 一种基于生成对抗网络的图像分割方法、装置及存储介质 | |
CN106228512A (zh) | 基于学习率自适应的卷积神经网络图像超分辨率重建方法 | |
CN110223304B (zh) | 一种基于多路径聚合的图像分割方法、装置和计算机可读存储介质 | |
Zuo et al. | Convolutional neural networks for image denoising and restoration | |
CN113129212B (zh) | 图像超分辨率重建方法、装置、终端设备及存储介质 | |
CN113554665A (zh) | 一种血管分割方法及装置 | |
CN113222818A (zh) | 一种使用轻量化多通道聚合网络重建超分辨率图像的方法 | |
CN112270366B (zh) | 基于自适应多特征融合的微小目标检测方法 | |
CN111861886B (zh) | 一种基于多尺度反馈网络的图像超分辨率重建方法 | |
CN114048822A (zh) | 一种图像的注意力机制特征融合分割方法 | |
CN111382759A (zh) | 一种像素级分类方法、装置、设备及存储介质 | |
CN116863194A (zh) | 一种足溃疡图像分类方法、系统、设备及介质 | |
CN109993701B (zh) | 一种基于金字塔结构的深度图超分辨率重建的方法 | |
CN112700460A (zh) | 图像分割方法及系统 | |
CN114897782B (zh) | 基于生成式对抗网络的胃癌病理切片图像分割预测方法 | |
CN113095473A (zh) | 神经网络架构搜索系统和方法及计算机可读记录介质 | |
CN115953784A (zh) | 基于残差和特征分块注意力的激光打码字符分割方法 | |
CN111667401A (zh) | 多层次渐变图像风格迁移方法及系统 | |
US20230073175A1 (en) | Method and system for processing image based on weighted multiple kernels | |
CN114581454B (zh) | 基于背景差分法的量子图像分割方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210127 Address after: 100086 1704-1705, 17th floor, Qingyun contemporary building, building 9, Manting Fangyuan community, Qingyun Li, Haidian District, Beijing Applicant after: BEIJING HONGYUN ZHISHENG TECHNOLOGY Co.,Ltd. Applicant after: FUWAI HOSPITAL, CHINESE ACADEMY OF MEDICAL SCIENCES Address before: 100086 1704-1705, 17th floor, Qingyun contemporary building, building 9, Manting Fangyuan community, Qingyun Li, Haidian District, Beijing Applicant before: BEIJING HONGYUN ZHISHENG TECHNOLOGY Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |