[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108893740B - 一种液气相交替沉积制备高温绝缘薄膜的方法 - Google Patents

一种液气相交替沉积制备高温绝缘薄膜的方法 Download PDF

Info

Publication number
CN108893740B
CN108893740B CN201810761459.1A CN201810761459A CN108893740B CN 108893740 B CN108893740 B CN 108893740B CN 201810761459 A CN201810761459 A CN 201810761459A CN 108893740 B CN108893740 B CN 108893740B
Authority
CN
China
Prior art keywords
liquid
insulating layer
insulating
temperature
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810761459.1A
Other languages
English (en)
Other versions
CN108893740A (zh
Inventor
梁军生
张朝阳
陈亮
王金鹏
王大志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810761459.1A priority Critical patent/CN108893740B/zh
Publication of CN108893740A publication Critical patent/CN108893740A/zh
Application granted granted Critical
Publication of CN108893740B publication Critical patent/CN108893740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)

Abstract

本发明一种液气相交替沉积制备高温绝缘薄膜的方法属于先进制造技术领域,涉及一种液相‑气相交替沉积制备高温绝缘薄膜的方法。该方法中交替采用液相沉积和气相沉积步骤,将绝缘材料逐层沉积到待测试件表面。该方法首先配制绝缘材料的液态浆料,接着采用液相沉积方法将液态浆料按照特定厚度沉积到待测试件上,经过烘干和高温烧结,获得第I绝缘层;然后采用气相沉积方法,在第I绝缘层上沉积第II绝缘层;以此类推,多次交替重复液相沉积步骤和气相沉积步骤,最终获得所需厚度的高温绝缘薄膜。该方法制备的高温绝缘薄膜具有结构致密、厚度可控、绝缘性和稳定性好等特点,有效提升了绝缘薄膜在高温下的绝缘电阻。

Description

一种液气相交替沉积制备高温绝缘薄膜的方法
技术领域
本发明属于先进制造技术领域,涉及一种液相-气相交替沉积制备高温绝缘薄膜的方法。
背景技术
高温薄膜传感器是一类在高温环境下测量应变、热流、温度、压力、成分等物理量或化学量的特种传感器,高温薄膜传感器主要结构包括绝缘薄膜、敏感层和保护层三部分。其中,绝缘薄膜的作用是实现被测件和敏感层的电绝缘。高质量的绝缘薄膜是高温薄膜传感器的关键结构,由绝缘薄膜缺陷导致的被测件与敏感层之间的电导通,将破坏传感器正确获取和输出被测电信号的基本条件,造成传感器的彻底失效。
高温薄膜传感器的绝缘薄膜材料一般为各种耐高温的氧化物陶瓷、氮化物陶瓷、硼化物陶瓷、碳化物陶瓷等,或者由上述两种或两种以上陶瓷材料组成的复合陶瓷。上述陶瓷绝缘薄膜可采用磁控溅射、电子束/离子束沉积、物理/化学气相沉积、热氧化生长等多种方法来制备。一般而言,增加薄膜厚度和减少薄膜缺陷是提高绝缘薄膜电阻的两个有效途径。文献Gao J,Duan F L,Yu C,et al.Electrical insulation of ceramic thin filmon metallic aero-engine blade for high temperature sensor applications[J].Ceramics International,2016,42(16):19269-19275.报道了一种氧化钇稳定的氧化锆(YSZ)高温绝缘薄膜的制备方法,为了提高YSZ薄膜的高温绝缘电阻,采用热等离子体喷涂工艺将YSZ绝缘薄膜厚度增加到500μm,1300℃环境中其绝缘电阻≥10kΩ。然而在工艺实践中,过大的膜厚往往会在薄膜内部引入更多的工艺缺陷,增加绝缘薄膜在高温环境中开裂失效的风险。在高温构件力学参量的测量中,过厚的绝缘薄膜还会增加被测量传递到敏感层的路径长度,降低传感器的灵敏度,同时对测试环境造成额外干扰。另一方面,结构致密、抗热震性强的绝缘薄膜同样有利于提高其绝缘电阻。文献Niu D,Wang Q,Zhang C,etal.Preparation,characterization and application of high-temperature Al2O3,insulating film[J].Surface&Coatings Technology,2016,291:318-324.采用先在试样表面磁控溅射NiCoCrAlY薄膜,再热氧化NiCoCrAlY生成Al2O3过渡层,最后用双离子束溅射沉积Al2O3薄膜的复合工艺,获得了结构致密、总厚度约4μm的Al2O3绝缘薄膜,然而因总膜厚过小,其最大绝缘电阻在800℃时仅为8.4kΩ。由此可见,虽然热生长和溅射工艺制备的薄膜致密度高、缺陷较少,但是受到工艺限制,薄膜总厚度相对较小,绝缘薄膜的高温绝缘性能难以提高,而增大溅射厚度则会在薄膜内部产生过大的内应力,导致绝缘薄膜在高温下开裂或与衬底剥离。因此,如何通过合理的制备工艺提高薄膜结构致密度并适度增大薄膜厚度,是提升高温绝缘薄膜性能的关键所在。
发明内容
本发明要解决的技术问题是克服现有技术缺陷,发明了一种液气相交替沉积制备高温绝缘薄膜的方法。该方法交替采用液相沉积和气相沉积步骤,将绝缘材料逐层沉积到待测试件表面,通过液相沉积获得绝缘薄膜的结构层,通过气相沉积填补液相沉积结构层中的空穴和裂纹等缺陷,所制备的高温绝缘薄膜具有结构致密、厚度可控、绝缘性和稳定性好等特点。
本发明采取的技术方案是:一种液气相交替沉积制备高温绝缘薄膜的方法,其特征是,该方法中交替采用液相沉积和气相沉积步骤,将绝缘材料逐层沉积到待测试件表面,采用液相沉积获得绝缘薄膜的结构层,采用气相沉积填补液相沉积结构层中的空穴和裂纹缺陷,从而获得结构致密、厚度可控、绝缘性好、稳定性高的高温绝缘薄膜;该方法首先将绝缘材料以粉体、溶胶或溶液形式混合到液态分散剂中配制成液态浆料,采用单次或多次液相沉积方法将液态浆料按照特定厚度沉积到被测试件上,经过烘干和高温烧结,获得第I绝缘层;然后采用气相沉积方法,在第I绝缘层上沉积第II绝缘层;接着采用单次或多次液相沉积方法将液态浆料沉积到第II绝缘层上,经过烘干和高温烧结,获得第III绝缘层;再次采用气相沉积方法,在第III绝缘层上沉积第IV绝缘层;以此类推,多次交替重复液相沉积步骤和气相沉积步骤,最终获得所需厚度的高温绝缘薄膜;方法的具体步骤如下:
第一步,配制绝缘浆料
首先将绝缘材料以粉体、溶胶或溶液形式混合到液态分散剂中配制成液态浆料,所述的绝缘材料包括一种或多种氧化物陶瓷、氮化物陶瓷、硼化物陶瓷或碳化物陶瓷,或者由上述两种或两种以上陶瓷材料组成的复合陶瓷;所述液态分散剂包括水、有机物/无机物水溶液和液态有机物中的一种或多种混合液;所述绝缘陶瓷液态浆料可为溶液、溶胶、凝胶、悬浮液、悬浊液、乳浊液、膏状物中的一种或多种液态混合物形态;
第二步,液相沉积第I绝缘层胚料
所述液相沉积方法为将液态介质沉积在待测试件表面,形成功能性或装饰性的金属、非金属、或化合物涂层的方法,包含但不限于旋涂、流延、打印、涂覆、丝网印刷、电射流沉积、雾化喷涂、电泳沉积、提拉沉积等方法中的一种或多种方法组合;将配制好的绝缘浆料以液相沉积方法均匀沉积到试件表面,获得厚度50~5000nm的第I绝缘层胚料,
第三步,烘干第I绝缘层胚料
将第I绝缘层胚料放置于温度为20~500℃的环境中烘干,使第I绝缘层胚料中的液体成分以气态形式挥发出来,获得干燥后的第I绝缘层胚料;
第四步,控制第I绝缘层胚料的厚度
重复第二、第三步多次,直至第I绝缘层胚料的厚度达到设定值;
第五步,烧结第I绝缘层胚料
根据不同陶瓷材料的烧结需求,高温环境为真空状态、空气氛围、氧气氛围、氮气氛围或惰性气体氛围中的一种或多种组合;将干燥后的第I绝缘层胚料放置于温度300~1500℃的高温环境中进行烧结,控制烧结温度和烧结时间,获得具有特定物理和化学性能的第I绝缘层;
第六步,气相沉积第II绝缘层
所述的气相沉积方法为利用气相中发生的物理、化学过程,在工件表面形成功能性或装饰性的金属、非金属或化合物涂层的方法,包含但不限于物理气相沉积、化学气相沉积或外延膜沉积方法中的一种或多种方法组合;采用气相沉积方法,在烧结后的第I绝缘层表面沉积厚度为50~5000nm的第II绝缘层;气相沉积材料为一种或多种氧化物陶瓷、氮化物陶瓷、硼化物陶瓷或碳化物陶瓷,或者由上述两种或两种以上陶瓷材料组成的复合陶瓷;
第七步,重复液气相交替沉积步骤
重复以上第二至第六步,直至获得理想厚度的高温绝缘薄膜。
本发明的显著效果是:应用本发明提供的一种液气相交替沉积制备高温绝缘薄膜的方法,可以逐层弥补薄膜制备过程中在薄膜结构内引入的空穴和裂纹等缺陷,减小薄膜内应力。采用该方法制备的高温绝缘薄膜结构致密、厚度可控,在高温环境下具有良好的电绝缘性能和物理化学稳定性,有效提升了绝缘薄膜在高温下的绝缘电阻。
附图说明
图1是本发明液气相交替沉积制备高温绝缘薄膜的方法示意图,其中:1-待测试件,2-采用液相沉积方法均匀沉积的第I绝缘层,3-采用气相沉积方法均匀沉积的第II绝缘层,4-采用液相沉积方法均匀沉积的第III绝缘层,5-采用气相沉积方法均匀沉积的第IV绝缘层,n-采用液相沉积方法均匀沉积的第n-1绝缘层,n+1-采用气相沉积方法均匀沉积的第n绝缘层。
图2是仅采用电射流沉积法制备的氧化铝绝缘薄膜和采用本发明液气相交替沉积制备高温绝缘薄膜的方法制备的氧化铝-氮化硅复合绝缘薄膜在25~1200℃环境下的绝缘电阻值对比图,其中:1-仅采用电射流沉积法制备的氧化铝绝缘薄膜在25~1200℃环境下的绝缘电阻值,2-采用本发明液气相交替沉积制备高温绝缘薄膜的方法制备的氧化铝-氮化硅复合绝缘薄膜在25~1200℃环境下的绝缘电阻值。
图3是仅采用电射流沉积法制备的氧化铝绝缘薄膜和采用本发明液气相交替沉积制备高温绝缘薄膜的方法制备的氧化铝-氮化硅复合绝缘薄膜在1100~1200℃高温环境下的绝缘电阻值对比图,其中:1-仅采用电射流沉积法制备的氧化铝绝缘薄膜在1100~1200℃环境下的绝缘电阻值,2-采用本发明液气相交替沉积制备高温绝缘薄膜的方法制备的氧化铝-氮化硅复合绝缘薄膜在1100~1200℃环境下的绝缘电阻值。
具体实施方式
以下结合技术方案和附图详细说明本发明的具体实施。
本实施例选择绝缘材料为氧化铝陶瓷,首先配制氧化铝绝缘浆料。采用电射流沉积法在待测试件上液相沉积第I绝缘层胚料,再烘干、烧结第I绝缘层胚料。采用气相沉积方法,在烧结后的第I绝缘层表面沉积第II绝缘层;重复液气相交替沉积步骤,直至获得理想厚度的高温绝缘薄膜。
图1是本发明液气相交替沉积制备高温绝缘薄膜的方法示意图,如图所示,方法的具体步骤如下:
第一步,配制氧化铝绝缘浆料
选择绝缘材料为氧化铝陶瓷,选择液态分散剂为无水乙醇,所配置绝缘材料液态浆料形态为悬浮液,将氧化铝陶瓷以粉体形式混合到无水乙醇中配置成氧化铝悬浮液;
第二步,采用电射流沉积法制备第I绝缘层胚料
选择液相沉积方法为电射流沉积,将配制好的氧化铝绝缘浆料以电射流沉积方法均匀沉积到待测试件表面,获得厚度50nm的氧化铝第I绝缘层胚料;
第三步,烘干第I绝缘层胚料
将沉积有氧化铝绝缘层胚料的待测试件放置于恒温加热台上,在500℃环境下烘干10min;使氧化铝绝缘层胚料中的液体成分以气态形式挥发出来,获得干燥后的第I绝缘层胚料;
第四步,控制第I绝缘层胚料的厚度
重复第二、第三步10次,直至氧化铝绝缘层胚料的厚度达到500nm;
第五步,烧结第I绝缘层胚料
选择烧结高温环境为空气氛围,将干燥后的氧化铝绝缘层胚料放置于温度1500℃的空气氛围中恒温烧结1小时,获得具有稳定物理和化学性能的、材料为氧化铝的第I绝缘层;
第六步,采用气相沉积方法沉积第II绝缘层
选择气相沉积材料为氮化硅陶瓷,采用气相沉积方法,在烧结后的第I绝缘层表面沉积厚度为50nm的氮化硅,作为第II绝缘层;
第七步,重复液相-气相交替沉积步骤
重复以上第二至第六步,直至获得总厚度10μm的氧化铝-氮化硅复合高温绝缘薄膜。
图2是仅采用电射流沉积方法制备的氧化铝绝缘薄膜和本发明液气相交替沉积制备高温绝缘薄膜的方法制备的氧化铝-氮化硅复合绝缘薄膜在25℃~1200℃环境下的绝缘电阻值对比图。图3是仅采用电射流方法制备的氧化铝绝缘薄膜和本发明液气相交替沉积制备高温绝缘薄膜的方法制备的氧化铝-氮化硅复合绝缘薄膜在1100℃~1200℃高温环境下的绝缘电阻值对比图。从图2可以看出,采用本发明液气相交替沉积制备高温绝缘薄膜的方法制备的绝缘薄膜电阻值明显高于仅采用电射流方法制备的氧化铝绝缘薄膜。从图3可以看出,当温度达到1200℃时,仅采用电射流方法制备的氧化铝绝缘薄膜的绝缘电阻值为38KΩ,而采用本发明液气相交替沉积制备高温绝缘薄膜的方法制备的氧化铝-氮化硅复合绝缘薄膜绝缘电阻值为54KΩ,薄膜绝缘电阻值相比提高了41%。
本发明一种液气相交替沉积制备高温绝缘薄膜的方法,可以逐层弥补薄膜制备过程中在薄膜结构内引入的空穴和裂纹等缺陷,减小薄膜内应力。采用本发明制备的高温绝缘薄膜具有结构致密、厚度可控、绝缘性和稳定性好等优点,为提升绝缘薄膜在高温下的绝缘电阻值提供了新的技术方法。

Claims (1)

1.一种液气相交替沉积制备高温绝缘薄膜的方法,其特征是,该方法中交替采用液相沉积和气相沉积步骤,将绝缘材料逐层沉积到待测试件表面,采用液相沉积获得绝缘薄膜的结构层,采用气相沉积填补液相沉积结构层中的空穴和裂纹缺陷,从而获得结构致密、厚度可控、绝缘性好、稳定性高的高温绝缘薄膜;该方法首先将绝缘材料以粉体、溶胶或溶液形式混合到液态分散剂中配制成液态浆料,接着采用单次或多次液相沉积方法将液态浆料按照特定厚度沉积到被测试件上,经过烘干和高温烧结,获得第I绝缘层;然后采用气相沉积方法,在第I绝缘层上沉积第II绝缘层;接着采用单次或多次液相沉积方法将液态浆料沉积到第II绝缘层上,经过烘干和高温烧结,获得第III绝缘层;再次采用气相沉积方法,在第III绝缘层上沉积第IV绝缘层;以此类推,多次交替重复液相沉积步骤和气相沉积步骤,最终获得所需厚度的高温绝缘薄膜;方法的具体步骤如下:
第一步,配制绝缘浆料
首先将绝缘材料以粉体、溶胶或溶液形式混合到液态分散剂中配制成液态浆料,所述的绝缘材料包括一种或多种氧化物陶瓷、氮化物陶瓷、硼化物陶瓷或碳化物陶瓷,或者由上述两种或两种以上陶瓷材料组成的复合陶瓷;所述液态分散剂包括水、有机物/无机物水溶液和液态有机物中的一种或多种混合液;所述绝缘陶瓷液态浆料可为溶液、凝胶、悬浮液、悬浊液、乳浊液、膏状物中的一种或多种液态混合物形态;
第二步,液相沉积第I绝缘层胚料
所述液相沉积方法为将液态介质沉积在被测试件表面,形成功能性或装饰性的化合物涂层的方法,包含但不限于旋涂、流延、打印、涂覆、丝网印刷、电射流沉积、雾化喷涂、电泳沉积、提拉沉积等方法中的一种或多种方法组合;将配制好的绝缘浆料以液相沉积方法均匀沉积到被测试件表面,获得厚度50~5000nm的第I绝缘层胚料,
第三步,烘干第I绝缘层胚料
将第I绝缘层胚料放置于温度为20~500℃的环境中烘干,使第I绝缘层胚料中的液体成分以气态形式挥发出来,获得干燥后的第I绝缘层胚料;
第四步,控制第I绝缘层胚料的厚度
多次重复第二、第三步,直至第I绝缘层胚料的厚度达到设定值;
第五步,烧结第I绝缘层胚料
根据不同陶瓷材料的烧结需求,高温环境为真空状态、空气氛围、氧气氛围、氮气氛围或惰性气体氛围中的一种或多种组合;将干燥后的第I绝缘层胚料放置于温度300~1500℃的高温环境中进行烧结,控制烧结温度和烧结时间,获得具有特定物理和化学性能的第I绝缘层;
第六步,气相沉积第II绝缘层
所述的气相沉积方法为利用气相中发生的物理、化学过程,在工件表面形成功能性或装饰性的化合物涂层的方法,包含但不限于物理气相沉积、化学气相沉积或外延膜沉积方法中的一种或多种方法组合;采用气相沉积方法,在烧结后的第I绝缘层表面沉积厚度为50~5000nm的第II绝缘层;气相沉积材料为一种或多种氧化物陶瓷、氮化物陶瓷、硼化物陶瓷或碳化物陶瓷,或者由上述两种或两种以上陶瓷材料组成的复合陶瓷;
第七步,重复液气相交替沉积步骤
重复以上第二至第六步,直至获得理想厚度的高温绝缘薄膜。
CN201810761459.1A 2018-07-12 2018-07-12 一种液气相交替沉积制备高温绝缘薄膜的方法 Active CN108893740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810761459.1A CN108893740B (zh) 2018-07-12 2018-07-12 一种液气相交替沉积制备高温绝缘薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810761459.1A CN108893740B (zh) 2018-07-12 2018-07-12 一种液气相交替沉积制备高温绝缘薄膜的方法

Publications (2)

Publication Number Publication Date
CN108893740A CN108893740A (zh) 2018-11-27
CN108893740B true CN108893740B (zh) 2020-02-18

Family

ID=64349382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810761459.1A Active CN108893740B (zh) 2018-07-12 2018-07-12 一种液气相交替沉积制备高温绝缘薄膜的方法

Country Status (1)

Country Link
CN (1) CN108893740B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725385B (zh) * 2020-06-16 2022-04-12 大连理工大学 基于溶胶-凝胶法和电射流沉积法的复合型pzt压电膜的制备方法
CN115522163A (zh) * 2022-10-09 2022-12-27 中国工程物理研究院总体工程研究所 一种三维异面结构陶瓷基薄膜热电偶的保护层制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862856A (zh) * 2005-05-14 2006-11-15 鸿富锦精密工业(深圳)有限公司 气体扩散电极及其制造方法
CN101414676A (zh) * 2007-10-15 2009-04-22 索尼株式会社 负极和电池
CN104354394A (zh) * 2014-10-16 2015-02-18 中国科学院上海技术物理研究所 基于金属纳米颗粒吸收膜系结构
TW201537759A (zh) * 2014-03-31 2015-10-01 Nat Univ Chung Hsing 半導體光電元件及其製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862856A (zh) * 2005-05-14 2006-11-15 鸿富锦精密工业(深圳)有限公司 气体扩散电极及其制造方法
CN101414676A (zh) * 2007-10-15 2009-04-22 索尼株式会社 负极和电池
TW201537759A (zh) * 2014-03-31 2015-10-01 Nat Univ Chung Hsing 半導體光電元件及其製造方法
CN104354394A (zh) * 2014-10-16 2015-02-18 中国科学院上海技术物理研究所 基于金属纳米颗粒吸收膜系结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
无裂纹SiO2薄膜的纳尺度电射流叠层沉积工艺;梁军生;《电子元件与材料》;20180705;第37卷(第7期);83-87 *

Also Published As

Publication number Publication date
CN108893740A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
US7422671B2 (en) Non-line-of-sight process for coating complexed shaped structures
CN103344350B (zh) 高温陶瓷基薄膜热电偶及其制作方法
CN105198492B (zh) 一种抗氧化涂层及其制备方法
CN102245540A (zh) 抗反应性等离子体处理的保护涂层
CN108893740B (zh) 一种液气相交替沉积制备高温绝缘薄膜的方法
Jiang et al. Fabrication of barium-strontium aluminosilicate coatings on C/SiC composites via laser cladding
CN114315390A (zh) 一种碳/碳复合材料表面宽温域长寿命抗氧化涂层及低温制备方法
GB2583911A (en) High density corrosion resistant layer arrangement for electrostatic chucks
Huo et al. Formation of a high stability NTC thick film by low-temperature sintering of Co2. 77Mn1. 71Fe1. 10Zn0. 42O8 ceramics containing Bi2O3-B2O3-SiO2-ZnO glass frits
CN107201502A (zh) 一种带自愈合复合防护层的高温薄膜传感器及其制备方法
CN106083057B (zh) 一种碳化硅基复相陶瓷材料及其制备方法
KR102072287B1 (ko) Ltcc(저온 동시 소성 세라믹)를 이용한 유해가스 감지센서의 제조방법
CN116855898A (zh) 一种C/SiC复合材料基底薄膜传感器用过渡层及其制备方法
CN106756848B (zh) 一种金属基高温组合绝缘层及其制备方法
CN113403594B (zh) 陶瓷基复合材料用耐高温、抗水氧低红外发射率复合薄膜及制备方法
TWI839332B (zh) 生產負溫度係數電阻器感應器的方法
JPH0679444B2 (ja) 電気皮膜
Schubert et al. Analysis of the characteristics of thick-film NTC thermistor devices manufactured by screen-printing and firing technique and by room temperature aerosol deposition method (ADM)
CN114477985A (zh) 一种精调负温度系数热敏电阻的材料常数的方法
WO2022077821A1 (zh) 具有加热功能的静电吸盘及其制备方法
CN114993496B (zh) 一种合金表面快速响应薄膜热电偶及其制备方法
RU2776992C1 (ru) Способ изготовления интегральных устройств СВЧ на основе ферритового материала параметрического ряда литиевой феррошпинели
CN117326868B (zh) 陶瓷材料及其制备方法和在压电中的应用
Kim et al. Electrical properties of 3-component piezoelectric thick films by screen printing method
CN113862673A (zh) 发动机叶片薄膜传感器用高温绝缘层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant