CN108863896A - Biindolyl class material, organic electroluminescence device and display device - Google Patents
Biindolyl class material, organic electroluminescence device and display device Download PDFInfo
- Publication number
- CN108863896A CN108863896A CN201810646906.9A CN201810646906A CN108863896A CN 108863896 A CN108863896 A CN 108863896A CN 201810646906 A CN201810646906 A CN 201810646906A CN 108863896 A CN108863896 A CN 108863896A
- Authority
- CN
- China
- Prior art keywords
- organic electroluminescent
- electroluminescent device
- substitution
- organic
- organic electroluminescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 title claims abstract description 78
- 238000005401 electroluminescence Methods 0.000 title claims description 16
- QZKLZARWTJMZLQ-UHFFFAOYSA-N 1-indol-1-ylindole Chemical group C1=CC2=CC=CC=C2N1N1C2=CC=CC=C2C=C1 QZKLZARWTJMZLQ-UHFFFAOYSA-N 0.000 title 1
- 238000002347 injection Methods 0.000 claims abstract description 29
- 239000007924 injection Substances 0.000 claims abstract description 29
- -1 benzocarbazolyl Chemical group 0.000 claims description 24
- 238000006467 substitution reaction Methods 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 5
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 claims description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 4
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 claims description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 claims description 2
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 claims description 2
- 235000010290 biphenyl Nutrition 0.000 claims description 2
- 239000004305 biphenyl Substances 0.000 claims description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 2
- 125000005299 dibenzofluorenyl group Chemical group C1(=CC=CC2=C3C(=C4C=5C=CC=CC5CC4=C21)C=CC=C3)* 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 claims description 2
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 claims description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000005580 triphenylene group Chemical group 0.000 claims description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 claims 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 32
- 230000005525 hole transport Effects 0.000 abstract description 22
- 238000005516 engineering process Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 74
- 238000001704 evaporation Methods 0.000 description 31
- 230000008020 evaporation Effects 0.000 description 28
- 239000000758 substrate Substances 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 239000011368 organic material Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 4
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012459 cleaning agent Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 4
- 239000008204 material by function Substances 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 0 CN(C1C=CC=C*11)C(c([n](C)c2ccccc22)c2-c(cc2)ccc2N2C(C=CCC3)=C3N(c(cc3)ccc3Nc3ccccc3)c3c2cccc3)=C1c(cc1)ccc1N1c(cccc2)c2N(c(cc2)ccc2N(CC=CC=C)c2ccccc2)c2c1cccc2 Chemical compound CN(C1C=CC=C*11)C(c([n](C)c2ccccc22)c2-c(cc2)ccc2N2C(C=CCC3)=C3N(c(cc3)ccc3Nc3ccccc3)c3c2cccc3)=C1c(cc1)ccc1N1c(cccc2)c2N(c(cc2)ccc2N(CC=CC=C)c2ccccc2)c2c1cccc2 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- JWJQEUDGBZMPAX-UHFFFAOYSA-N (9-phenylcarbazol-3-yl)boronic acid Chemical compound C12=CC=CC=C2C2=CC(B(O)O)=CC=C2N1C1=CC=CC=C1 JWJQEUDGBZMPAX-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 1
- HRACZWVHZFWLIA-UHFFFAOYSA-N 3-(4-bromophenyl)-1-methylindole Chemical compound C12=CC=CC=C2N(C)C=C1C1=CC=C(Br)C=C1 HRACZWVHZFWLIA-UHFFFAOYSA-N 0.000 description 1
- GQFBHWGPSXLOFG-UHFFFAOYSA-N CC(C)c(cc1)cc2c1N(c(cc1)ccc1C1=C(c([n](C)c3c4cccc3)c4-c(cc3)ccc3N3c(ccc(C(C)C)c4)c4Sc4c3ccc(C(C)C)c4)N(C)C3C=CC=CC13)c1ccc(C(C)C)cc1S2 Chemical compound CC(C)c(cc1)cc2c1N(c(cc1)ccc1C1=C(c([n](C)c3c4cccc3)c4-c(cc3)ccc3N3c(ccc(C(C)C)c4)c4Sc4c3ccc(C(C)C)c4)N(C)C3C=CC=CC13)c1ccc(C(C)C)cc1S2 GQFBHWGPSXLOFG-UHFFFAOYSA-N 0.000 description 1
- HNDRAADDGKQDAJ-UHFFFAOYSA-N CN(C1C=CC=CC11)C(c([n](C)c2ccccc22)c2-c(cc2)ccc2-[n]2c3ccc(-c4ccccc4)c4c3c3c2ccc(-c2ccccc2)c3cc4)=C1c(cc1)ccc1N1c2ccc(C3=CC=CCC3)c3ccc4C(c5ccccc5)=CCC1c4c23 Chemical compound CN(C1C=CC=CC11)C(c([n](C)c2ccccc22)c2-c(cc2)ccc2-[n]2c3ccc(-c4ccccc4)c4c3c3c2ccc(-c2ccccc2)c3cc4)=C1c(cc1)ccc1N1c2ccc(C3=CC=CCC3)c3ccc4C(c5ccccc5)=CCC1c4c23 HNDRAADDGKQDAJ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- WMKGGPCROCCUDY-PHEQNACWSA-N dibenzylideneacetone Chemical compound C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 WMKGGPCROCCUDY-PHEQNACWSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- CECAIMUJVYQLKA-UHFFFAOYSA-N iridium 1-phenylisoquinoline Chemical compound [Ir].C1=CC=CC=C1C1=NC=CC2=CC=CC=C12.C1=CC=CC=C1C1=NC=CC2=CC=CC=C12.C1=CC=CC=C1C1=NC=CC2=CC=CC=C12 CECAIMUJVYQLKA-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/10—Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
- C07D209/14—Radicals substituted by nitrogen atoms, not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明涉及显示技术领域,特别是涉及一种联吲哚类材料、有机电致发光器件及显示装置。根据本发明的化合物如式(1)所示:将本发明提供的化合物用作有机电致发光器件的空穴传输材料、空穴注入材料和/或主体材料,提高了有机电致发光器件的发光效率、降低了有机电致发光器件的驱动电压。The invention relates to the field of display technology, in particular to a biindole material, an organic electroluminescent device and a display device. Compound according to the present invention is shown in formula (1): Using the compound provided by the invention as the hole transport material, hole injection material and/or host material of the organic electroluminescent device improves the luminous efficiency of the organic electroluminescent device and reduces the driving voltage of the organic electroluminescent device .
Description
技术领域technical field
本发明涉及显示技术领域,特别是涉及一种联吲哚类材料、有机电致发光器件及显示装置。The invention relates to the field of display technology, in particular to a biindole material, an organic electroluminescent device and a display device.
背景技术Background technique
有机电致发光器件(Organic Light Emitting Display,简称OLED)作为新型的平板显示器,与液晶显示器(Liquid Crystal Display,简称LCD)相比,具有薄、轻、宽视角、主动发光、发光颜色连续可调、成本低、响应速度快、能耗小、驱动电压低、工作温度范围宽、生产工艺简单、发光效率高及可柔性显示等优点,得到了产业界和科学界的极大关注。Organic Light Emitting Display (OLED) is a new type of flat-panel display. Compared with Liquid Crystal Display (LCD), it has the advantages of thinness, lightness, wide viewing angle, active luminescence, and continuously adjustable luminous color. , low cost, fast response speed, low energy consumption, low driving voltage, wide operating temperature range, simple production process, high luminous efficiency and flexible display, etc., have attracted great attention from the industrial and scientific circles.
有机电致发光器件的发展促进了人们对有机电致发光材料的研究。相对于无机发光材料,有机电致发光材料具有以下优点:有机材料加工性能好,可通过蒸镀或者旋涂的方法在任何基板上成膜;有机分子结构的多样性使得可以通过分子结构设计及修饰的方法来调节有机材料的热稳定性、机械性能、发光及导电性能,使得材料有很大的改进空间。The development of organic electroluminescent devices has promoted the research on organic electroluminescent materials. Compared with inorganic light-emitting materials, organic electroluminescent materials have the following advantages: organic materials have good processability, and can be formed into films on any substrate by evaporation or spin coating; the diversity of organic molecular structures makes it possible to design and Modification methods are used to adjust the thermal stability, mechanical properties, luminescence and electrical conductivity of organic materials, so that there is a lot of room for improvement of materials.
有机电致发光的产生靠的是在有机半导体材料中传输的载流子(电子和空穴)的重组。众所周知,有机材料的导电性很差,有机半导体中没有延续的能带,载流子的传输常用跳跃理论来描述。为了能使有机电致发光器件在应用方面达到突破,必须克服有机材料电荷注入及传输能力差的困难。科学家们通过器件结构的调整,例如增加器件有机材料层的数目,并且使不同的有机层扮演不同的器件层,例如有的功能材料可以促进电子从阴极注入,有的功能材料可以促进空穴从阳极注入,有的材料可以促进电荷的传输,有的材料则能起到阻挡电子或者空穴传输的作用。当然在有机电致发光器件里,最重要的各种颜色的发光材料也要达到与相邻功能材料相匹配的目的。因此,效率好寿命长的有机电致发光器件通常是器件结构以及各种有机材料优化搭配的结果,这就为化学家们设计开发各种结构的功能化材料提供了极大的机遇和挑战。The generation of organic electroluminescence depends on the recombination of carriers (electrons and holes) transported in organic semiconductor materials. As we all know, the conductivity of organic materials is very poor, there is no continuous energy band in organic semiconductors, and the transport of carriers is often described by hopping theory. In order to achieve a breakthrough in the application of organic electroluminescent devices, it is necessary to overcome the difficulties of poor charge injection and transport capabilities of organic materials. Scientists have adjusted the device structure, such as increasing the number of organic material layers of the device, and making different organic layers play different device layers. For example, some functional materials can promote electron injection from the cathode, and some functional materials can promote hole injection from the cathode. For anode injection, some materials can promote the transport of charges, while others can block the transport of electrons or holes. Of course, in organic electroluminescent devices, the most important luminescent materials of various colors must also achieve the purpose of matching with adjacent functional materials. Therefore, organic electroluminescent devices with high efficiency and long life are usually the result of the optimal combination of device structure and various organic materials, which provides great opportunities and challenges for chemists to design and develop functional materials with various structures.
在有机电致发光器件制备工艺中,一种称为蒸镀法,即各个功能材料均通过真空热蒸镀的方式镀到基板上成膜,这也是目前业界的主流技术。但是此工艺的缺点也很明显,一方面有机材料的特性本身决定了,长时间在高温条件下进行热蒸镀,对材料的热稳定性要求很高;另外长时间的稳定控制蒸镀速率、保持基板上面材料分布的均匀性也是一个很重要的要求;而且高真空、高温蒸镀,能耗较高;更主要的,因为OLED材料本身生产工艺比较复杂,技术含量较高,因而售价比较昂贵,而现有工艺通过蒸镀方式使用,OLED材料的利用率较低,一般在10%以下。In the preparation process of organic electroluminescent devices, one is called evaporation method, that is, each functional material is deposited on the substrate by vacuum thermal evaporation to form a film, which is also the mainstream technology in the industry at present. However, the shortcomings of this process are also obvious. On the one hand, the characteristics of the organic material itself determine that thermal evaporation at high temperature for a long time requires high thermal stability of the material; in addition, the long-term stable control of the evaporation rate, Maintaining the uniformity of material distribution on the substrate is also a very important requirement; and high vacuum, high temperature evaporation, high energy consumption; more importantly, because the production process of the OLED material itself is relatively complicated and the technical content is high, so the price is relatively high. Expensive, and the existing process uses evaporation, and the utilization rate of OLED materials is low, generally below 10%.
在有机电致发光器件的制备工艺中,另外一种称为溶液法,即使用可溶的OLED材料,将其溶于溶剂中,通过打印、喷墨、旋涂等方式涂覆在基板上,以形成某些功能层,此种方法材料分布均匀,节省材料,简化OLED器件生产工艺,降低OLED器件生产成本。In the preparation process of organic electroluminescent devices, the other is called solution method, which uses soluble OLED materials, dissolves them in solvents, and coats them on the substrate by printing, inkjet, spin coating, etc. In order to form certain functional layers, this method distributes materials evenly, saves materials, simplifies the production process of OLED devices, and reduces the production cost of OLED devices.
发明内容Contents of the invention
本发明提供了一种联吲哚类材料、包含该化合物的有机电致发光器件及具有该有机电致发光器件的显示装置,包含该化合物的有机电致发光器件具有较低的驱动电压和较高的发光效率。The invention provides a biindole material, an organic electroluminescent device comprising the compound and a display device having the organic electroluminescent device. The organic electroluminescent device comprising the compound has lower driving voltage and higher High luminous efficiency.
根据本发明的一方面,提供了一种联吲哚类材料,如式(1)所示:According to one aspect of the present invention, a kind of biindole material is provided, as shown in formula (1):
其中B选自咔唑基、苯并咔唑基、二苯并咔唑基、茚并咔唑基、吲哚并咔唑基、吲哚并螺芴基、二氢吖啶基、二氢吩嗪基、10H-吩噻嗪基、10H-吩恶嗪基;B可以被C1~C20的烷基,C1~C20的烷氧基,C6~C40的由碳和氢组成的芳基、B-1所取代;所述取代可以是单取代,双取代,多取代:Wherein B is selected from carbazolyl, benzocarbazolyl, dibenzocarbazolyl, indenocarbazolyl, indolocarbazolyl, indolospirofluorenyl, dihydroacridinyl, dihydrophen Azinyl, 10H-phenothiazinyl, 10H-phenoxazinyl; B can be replaced by C1-C20 alkyl, C1-C20 alkoxy, C6-C40 aryl composed of carbon and hydrogen, B- 1 is substituted; the substitution can be single substitution, double substitution, multiple substitution:
B-1中,Ar1,Ar2独立的选自C6~C40的由碳和氢组成的芳基,B-1中*表示B-1和式(1)中B连接的位置;Ar1,Ar2可以被C1~C20的烷基,C1~C20的烷氧基,C6~C40的由碳和氢组成的芳基所取代;所述取代可以是单取代,双取代,多取代。In B-1, Ar 1 and Ar 2 are independently selected from C6-C40 aryl groups composed of carbon and hydrogen. In B-1, * indicates the position where B is connected to B in formula (1); Ar 1 , Ar 2 can be substituted by C1-C20 alkyl, C1-C20 alkoxy, C6-C40 aryl composed of carbon and hydrogen; the substitution can be single substitution, double substitution or multiple substitution.
进一步的,C6~C40的芳基选自:苯基、联苯基、三联苯基、萘基、蒽基、菲基、三亚苯基、芴基、荧蒽基、茚并芴基、螺芴基、苯并芴基、二苯并芴基、苯基取代萘基、苯并蒽基;C1~C20的烷基选自甲基、乙基、丙基、丁基、戊基、己基、环己基、庚基、辛基;C1~C20的烷氧基选自甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、环己氧基、庚氧基、辛氧基。Further, the C6-C40 aryl group is selected from: phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, phenanthrenyl, triphenylene, fluorenyl, fluoranthene, indenofluorenyl, spirofluorene Base, benzofluorenyl, dibenzofluorenyl, phenyl substituted naphthyl, benzanthracenyl; C1-C20 alkyl group selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, ring Hexyl, heptyl, octyl; C1~C20 alkoxy is selected from methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy, Octyloxy.
更进一步的,本发明提供的联吲哚类材料,选自以下结构:Furthermore, the biindole materials provided by the present invention are selected from the following structures:
根据本发明的另一方面,提供了一种有机电致发光器件,所述有机电致发光器件包括根据本发明所述的联吲哚类材料。According to another aspect of the present invention, an organic electroluminescent device is provided, the organic electroluminescent device comprising the biindole material according to the present invention.
可选地,所述有机电致发光器件的空穴传输材料为根据本发明的联吲哚类材料。Optionally, the hole-transporting material of the organic electroluminescent device is the biindole-based material according to the present invention.
可选地,所述有机电致发光器件的空穴注入材料为根据本发明的联吲哚类材料。Optionally, the hole injection material of the organic electroluminescence device is the biindoles material according to the present invention.
可选地,所述有机电致发光器件的发光层的主体材料为根据本发明的联吲哚类材料。Optionally, the host material of the light-emitting layer of the organic electroluminescent device is the biindole-based material according to the present invention.
进一步的,所述有机电致发光器件的发光层为磷光发光层。Further, the light-emitting layer of the organic electroluminescent device is a phosphorescent light-emitting layer.
根据本发明的另一方面,提供了一种显示装置,该显示装置包括根据本发明的有机电致发光器件。According to another aspect of the present invention, there is provided a display device comprising the organic electroluminescent device according to the present invention.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
将本发明提供的化合物用作有机电致发光器件的空穴注入材料或者/和空穴传输材料或者/和发光层主体材料,提高了有机电致发光器件的发光效率、降低了有机电致发光器件的驱动电压。Using the compound provided by the invention as a hole injection material or/and a hole transport material or/and a light-emitting layer host material of an organic electroluminescence device improves the luminous efficiency of the organic electroluminescence device and reduces the organic electroluminescence device drive voltage.
具体实施方式Detailed ways
具体实施方式仅为对本发明的说明,而不构成对本发明内容的限制,下面将结合具体的实施方式对本发明进行进一步说明和描述。The specific embodiments are only an illustration of the present invention, and do not constitute a limitation to the content of the present invention. The following will further illustrate and describe the present invention in conjunction with specific embodiments.
本发明提供了一种联吲哚类材料、包含该化合物的有机电致发光器件及具有该有机电致发光器件的显示装置,包含该化合物的有机电致发光器件具有较低的驱动电压和较高的发光效率。The invention provides a biindole material, an organic electroluminescent device comprising the compound and a display device having the organic electroluminescent device. The organic electroluminescent device comprising the compound has lower driving voltage and higher High luminous efficiency.
为了更加详细地说明本发明的化合物,下面将列举上述具体化合物的合成方法对本发明进行进一步的描述。In order to illustrate the compounds of the present invention in more detail, the following will further describe the present invention by enumerating the synthesis methods of the above-mentioned specific compounds.
实施例1化合物P-1的合成:The synthesis of embodiment 1 compound P-1:
中间体1的合成Synthesis of Intermediate 1
2000毫升三口瓶中,加入28.6克(0.1mol)3-(4-溴苯基)-1-甲基-1H-吲哚,800毫升无水乙腈,控制温度0~3℃缓慢滴加65%的硝酸10克,滴加完毕,控制温度0~3℃反应3小时,再控制温度0~3℃缓慢滴加65%的硝酸10克,控制温度0~3℃反应3小时,再控制温度0~3℃缓慢滴加65%的硝酸10克,控制温度0~3℃反应8小时,加水和二氯甲烷分液,水洗至中性,有机层硅胶柱层析分离,乙酸乙酯:石油醚=1:9(体积比)洗脱,洗脱液浓缩至干,用甲醇/甲苯混合溶剂重结晶,得到中间体1所示化合物10.1克,收率为35.43%。In a 2000ml three-necked flask, add 28.6g (0.1mol) 3-(4-bromophenyl)-1-methyl-1H-indole, 800ml anhydrous acetonitrile, and slowly add 65% 10 grams of nitric acid, after the dropwise addition, control the temperature at 0-3°C for 3 hours, then slowly add 10 grams of 65% nitric acid dropwise at 0-3°C, control the temperature at 0-3°C for 3 hours, and then control the temperature at 0-3°C. Slowly add 10 grams of 65% nitric acid dropwise at ~3°C, control the temperature at 0~3°C for 8 hours, add water and dichloromethane to separate liquid, wash with water until neutral, and separate the organic layer by silica gel column chromatography, ethyl acetate: petroleum ether =1:9 (volume ratio) for elution, the eluate was concentrated to dryness, and recrystallized from a methanol/toluene mixed solvent to obtain 10.1 g of the compound shown in Intermediate 1 with a yield of 35.43%.
对得到的中间体1所示产品进行了质谱检测,得到产品的m/e:570。Mass spectrometry was carried out on the product represented by the obtained intermediate 1, and the m/e of the product was obtained: 570.
对得到的中间体1所示产品进行了核磁检测,得到的核磁解析数据如下:The product shown in the obtained intermediate 1 has been subjected to nuclear magnetic detection, and the nuclear magnetic analysis data obtained are as follows:
1HNMR(500MHz,CDCl3):δ7.75(m,2H),δ7.58~7.48(m,10H),δ7.26(t,2H),δ7.02(m,2H),δ3.81(s,6H)。 1 HNMR (500MHz, CDCl 3 ): δ7.75(m, 2H), δ7.58~7.48(m, 10H), δ7.26(t, 2H), δ7.02(m, 2H), δ3.81 (s, 6H).
化合物P-1的合成Synthesis of Compound P-1
500毫升三口瓶中,在氮气保护下,加入300毫升干燥的甲苯、28.5克(0.05mol)中间体1所示化合物、20.04克(0.12mol)咔唑、14.4克(0.15mol)叔丁醇钠、0.58克(0.001mol)双(二亚苄基丙酮)钯、2.02克(0.001mol)10%的三叔丁基膦的甲苯溶液,加热至回流反应8小时后降至室温,加入稀盐酸,分液,有机层用水洗涤到中性,用无水硫酸镁干燥后,过硅胶柱分离,乙酸乙酯:石油醚=1:5(体积比)洗脱,洗脱液浓缩至干,用乙醇/甲苯混合溶剂重结晶,得到式P-1所示化合物26.6克,收率为71.6%。In a 500 ml three-necked flask, under nitrogen protection, add 300 ml of dry toluene, 28.5 g (0.05 mol) of the compound shown in Intermediate 1, 20.04 g (0.12 mol) of carbazole, 14.4 g (0.15 mol) of sodium tert-butoxide , 0.58 gram (0.001mol) two (dibenzylideneacetone) palladium, 2.02 gram (0.001mol) the toluene solution of 10% tri-tert-butylphosphine, be down to room temperature after heating to reflux reaction for 8 hours, add dilute hydrochloric acid, Separation, the organic layer was washed with water until neutral, dried over anhydrous magnesium sulfate, separated by silica gel column, eluted with ethyl acetate:petroleum ether=1:5 (volume ratio), the eluate was concentrated to dryness, washed with ethanol /toluene mixed solvent recrystallization to obtain 26.6 g of the compound represented by formula P-1, with a yield of 71.6%.
对得到的式P-1所示产品进行了质谱检测,得到产品的m/e:742。The obtained product represented by the formula P-1 was detected by mass spectrometry, and the m/e of the product was obtained: 742.
对得到的式P-1所示产品进行了核磁检测,得到的核磁解析数据如下:The product shown in the obtained formula P-1 has been carried out nuclear magnetic detection, and the obtained nuclear magnetic analysis data is as follows:
1HNMR(500MHz,CDCl3):δ8.51(m,2H),δ8.12(m,2H),δ7.90(m,8H),δ7.76(m,2H),δ7.51(m,4H),δ7.40(m,2H),δ7.28(m,2H),δ7.23~7.03(m,10H),δ3.78(s,6H)。 1 HNMR (500MHz, CDCl 3 ): δ8.51(m, 2H), δ8.12(m, 2H), δ7.90(m, 8H), δ7.76(m, 2H), δ7.51(m , 4H), δ7.40 (m, 2H), δ7.28 (m, 2H), δ7.23~7.03 (m, 10H), δ3.78 (s, 6H).
实施例2其它部分化合物的合成Synthesis of other part compounds of embodiment 2
参照化合物P-1的合成方法,只是将其中的咔唑根据需要换成相应的含氮芳香族化合物。具体反应所用的含氮芳香族化合物和所得到的本发明的化合物质谱数据列表如下:Referring to the synthesis method of compound P-1, only the carbazole therein is replaced with the corresponding nitrogen-containing aromatic compound as required. The used nitrogen-containing aromatic compound of concrete reaction and the obtained compound mass spectrum data list of the present invention are as follows:
实施例3化合物P-33的合成The synthesis of embodiment 3 compound P-33
1000毫升三口瓶,氮气保护,加入200毫升甲苯,200毫升乙醇,100毫升水,2.85克(0.005mol)中间体1所示化合物,3.34克(0.012mol)N-苯基咔唑-3-硼酸,0.112克(0.0001mol)四三苯基膦钯,2.12克(0.02mol)碳酸钠,缓慢加热至回流反应12小时,降温,分液,有机层硫酸镁干燥,硅胶柱层析分离,乙酸乙酯:石油醚=1:5(体积比)洗脱,洗脱液浓缩至干,得到式P-33所示产品3.06克,收率68.37%,1000 milliliter three-neck flask, nitrogen protection, add 200 milliliters of toluene, 200 milliliters of ethanol, 100 milliliters of water, 2.85 grams (0.005mol) of the compound shown in intermediate 1, 3.34 grams (0.012mol) of N-phenylcarbazole-3-boronic acid , 0.112 grams (0.0001mol) tetrakistriphenylphosphine palladium, 2.12 grams (0.02mol) sodium carbonate, slowly heated to reflux reaction for 12 hours, cooling, liquid separation, organic layer magnesium sulfate drying, silica gel column chromatography separation, ethyl acetate Ester: petroleum ether = 1:5 (volume ratio) for elution, and the eluate was concentrated to dryness to obtain 3.06 g of the product shown in formula P-33, with a yield of 68.37%.
对得到的式P-33所示产品进行了质谱检测,得到产品的m/e:894。The product represented by the obtained formula P-33 was detected by mass spectrometry, and the m/e of the product was obtained: 894.
对得到的式P-33所示产品进行了核磁检测,得到的核磁解析数据如下:The product shown in the obtained formula P-33 has been carried out nuclear magnetic detection, and the obtained nuclear magnetic analysis data is as follows:
1HNMR(500MHz,CDCl3):δ8.52(m,1H),δ8.22(m,3H),δ7.87(m,1H),δ7.76(m,2H),δ7.70(d,1H),δ7.66~7.56(m,7H),δ7.51(m,8H),δ7.38(m,1H),δ7.34~7.22(m,10H),δ7.20~7.13(m,4H),δ7.02(m,2H),δ3.79(s,6H)。 1 HNMR (500MHz, CDCl 3 ): δ8.52(m, 1H), δ8.22(m, 3H), δ7.87(m, 1H), δ7.76(m, 2H), δ7.70(d , 1H), δ7.66~7.56(m, 7H), δ7.51(m, 8H), δ7.38(m, 1H), δ7.34~7.22(m, 10H), δ7.20~7.13( m, 4H), δ7.02 (m, 2H), δ3.79 (s, 6H).
实施例4其它部分化合物的合成Synthesis of other part compounds of embodiment 4
参照化合物P-33的合成方法,只是将其中的N-苯基咔唑-3-硼酸根据需要换成相应的硼酸类化合物。具体反应所用的硼酸类化合物和所得到的本发明的化合物质谱数据列表如下:Referring to the synthesis method of compound P-33, only the N-phenylcarbazole-3-boronic acid is replaced with the corresponding boronic acid compound as required. The boronic acid compounds used in the specific reaction and the obtained compound mass spectrum data list of the present invention are as follows:
根据本发明的另一方面,提供了一种有机电致发光器件,所述有机电致发光器件的空穴注入材料/空穴传输材料/发光层主体材料为根据本发明的联吲哚类材料。According to another aspect of the present invention, an organic electroluminescent device is provided, the hole injection material/hole transport material/light-emitting layer host material of the organic electroluminescent device is the biindole material according to the present invention .
有机电致发光器件的典型结构为:基片/阳极/空穴注入层/空穴传输层(HTL)/有机发光层(EL)/电子传输层(ETL)/电子注入层/阴极。有机电致发光器件结构可以为单发光层也可以是多发光层。The typical structure of an organic electroluminescent device is: substrate/anode/hole injection layer/hole transport layer (HTL)/organic light-emitting layer (EL)/electron transport layer (ETL)/electron injection layer/cathode. The organic electroluminescent device structure can be a single light emitting layer or multiple light emitting layers.
其中,基片可以使用传统有机电致发光器件中的基板,如:玻璃或塑料。阳极可以采用透明的高导电性材料,如:铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO2)、氧化锌(ZnO)。Wherein, the substrate can be a substrate in a traditional organic electroluminescent device, such as glass or plastic. The anode can be made of transparent high-conductivity materials, such as: indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), zinc oxide (ZnO).
空穴注入层的空穴注入材料(Hole Injection Material,简称HIM),要求具有高的热稳定性(高的Tg),与阳极或者空穴注入材料有较小的势垒,蒸镀法制备有机电致发光器件时,要求材料能真空蒸镀形成无针孔薄膜。常用的HIM均为芳香多胺类化合物,主要是三芳胺类衍生物。对于溶液法制备有机电致发光器件时,要求材料有合适的溶解度,将溶液涂布于基板上后,溶液挥发后,能在基板上形成致密、均匀的无定型薄膜。常用的HIM材料主要有PEDOT:PSS。The hole injection material (HIM for short) of the hole injection layer is required to have high thermal stability (high Tg), and has a small potential barrier with the anode or the hole injection material. It is prepared by evaporation method. For electroluminescent devices, it is required that the material can be vacuum evaporated to form a pinhole-free film. Commonly used HIMs are aromatic polyamine compounds, mainly triarylamine derivatives. For the preparation of organic electroluminescent devices by the solution method, the materials are required to have appropriate solubility. After the solution is coated on the substrate and the solution evaporates, a dense and uniform amorphous film can be formed on the substrate. Commonly used HIM materials mainly include PEDOT:PSS.
空穴传输层的空穴传输材料(Hole Transport Material,简称HTM),要求具有高的热稳定性(高的Tg),较高的空穴传输能力,能真空蒸镀形成无针孔薄膜。常用的HTM均为芳香多胺类化合物,主要是三芳胺类衍生物。The hole transport material (HTM for short) of the hole transport layer is required to have high thermal stability (high Tg), high hole transport ability, and can be vacuum evaporated to form a pinhole-free film. Commonly used HTMs are aromatic polyamine compounds, mainly triarylamine derivatives.
有机发光层包括主体材料(host)和客体材料,其中客体材料为发光材料,例如染料,主体材料需要具备以下特点:可逆的电化学氧化还原电位,与相邻的空穴传输层及电子传输层相匹配的HOMO能级及LUMO能级,良好且相匹配的空穴及电子传输能力,良好的高的热稳定性及成膜性,以及合适的单线态或者三线态能隙用来控制激子在发光层,还有与相应的荧光染料或者磷光染料间良好的能量转移。有机发光层的发光材料,以染料为例,需要具备以下特点:具有高的荧光或者磷光量子效率;染料的吸收光谱与主体的发射光谱有好的重叠,即主体与染料能量适配,从主体到染料能有效地能量传递;红、绿、蓝的发射峰尽可能窄,以获得好的色纯度;稳定性好,能够进行蒸镀等。The organic light-emitting layer includes a host material (host) and a guest material, wherein the guest material is a light-emitting material, such as a dye, and the host material needs to have the following characteristics: reversible electrochemical redox potential, and the adjacent hole transport layer and electron transport layer Matching HOMO energy level and LUMO energy level, good and matching hole and electron transport ability, good high thermal stability and film formation, and suitable singlet or triplet energy gap to control excitons In the emitting layer there is also a good energy transfer with the corresponding fluorescent or phosphorescent dyes. The light-emitting material of the organic light-emitting layer, taking the dye as an example, needs to have the following characteristics: high fluorescence or phosphorescence quantum efficiency; the absorption spectrum of the dye and the emission spectrum of the host have a good overlap, that is, the energy of the host and the dye is adapted, and the energy from the host The dye can effectively transfer energy; the emission peaks of red, green, and blue are as narrow as possible to obtain good color purity; the stability is good, and it can be evaporated.
电子传输层的电子传输材料(Electron transport Material,简称ETM)要求ETM有可逆而且足够高的电化学还原电位,合适的HOMO能级和LUMO(Lowest UnoccupiedMolecular Orbital,最低未占分子轨道)能级值使得电子能够更好地注入,而且最好具有空穴阻挡能力;较高的电子传输能力,有好的成膜性和热稳定性。ETM一般为具有缺电子结构的共轭平面的芳香化合物。蒸镀法制备有机电致发光器件时,电子传输层一般采用Alq3(8-羟基喹啉铝)或者TAZ(3-苯基-4-(1’-萘基)-5-苯-1,2,4-三唑)或者TPBi(1,3,5-三(N-苯基-2-苯并咪唑)苯)或者取自这三种材料的任意两种的搭配。The electron transport material (Electron transport Material, referred to as ETM) of the electron transport layer requires that the ETM has a reversible and sufficiently high electrochemical reduction potential, and a suitable HOMO energy level and LUMO (Lowest Unoccupied Molecular Orbital, the lowest unoccupied molecular orbital) energy level value makes Electrons can be injected better, and it is better to have hole blocking ability; higher electron transport ability, good film formation and thermal stability. ETMs are generally aromatic compounds with conjugated planes of electron-deficient structures. When preparing organic electroluminescent devices by evaporation method, Alq3 (8-hydroxyquinoline aluminum) or TAZ (3-phenyl-4-(1'-naphthyl)-5-benzene-1,2 ,4-triazole) or TPBi (1,3,5-tris(N-phenyl-2-benzimidazole)benzene) or a combination of any two of these three materials.
根据本发明的另一方面,提供了一种显示装置,该显示装置包括根据本发明的有机电致发光器件。According to another aspect of the present invention, there is provided a display device comprising the organic electroluminescent device according to the present invention.
由此可见,根据本发明的化合物、有机电致发光器件和显示装置的可选因素较多,根据本发明的权利要求可以组合出不同的实施例。本发明的实施例仅作为对本发明的具体描述,并不作为对本发明的限制。下面将结合含有本发明的化合物的有机电致发光器件作为实施例对本发明进行进一步描述。It can be seen that there are many optional factors for the compound, organic electroluminescent device and display device according to the present invention, and different embodiments can be combined according to the claims of the present invention. The embodiments of the present invention are only used as a specific description of the present invention, not as a limitation of the present invention. The present invention will be further described below with reference to an organic electroluminescent device containing the compound of the present invention as an example.
实施例中所用材料的具体结构见下:The concrete structure of material used in the embodiment sees below:
实施例5Example 5
以本发明的化合物作为有机电致发光器件中的空穴传输材料,作为对比的有机电致发光器件,空穴传输材料选用NPB。The compound of the present invention is used as the hole transport material in the organic electroluminescent device, and as a comparative organic electroluminescent device, the hole transport material is NPB.
有机电致发光器件结构为:ITO/HIL02(100nm)/HTL(40nm)/EM1(30nm)/ETL(20nm)/LiF(0.5nm)/Al(150nm)。The structure of the organic electroluminescence device is: ITO/HIL02 (100nm)/HTL (40nm)/EM1 (30nm)/ETL (20nm)/LiF (0.5nm)/Al (150nm).
本实施例中的有机电致发光器件制作中选用玻璃基板,ITO作阳极材料,HIL02作空穴注入层,EM1作有机发光层的主体材料,TAZ作为电子传输层材料,LiF/Al作电子注入层/阴极材料。In the production of the organic electroluminescent device in this embodiment, a glass substrate is selected, ITO is used as the anode material, HIL02 is used as the hole injection layer, EM1 is used as the main material of the organic light-emitting layer, TAZ is used as the electron transport layer material, and LiF/Al is used as the electron injection layer. layer/cathode material.
本实施例中的有机电致发光器件制备过程如下:The preparation process of the organic electroluminescent device in this embodiment is as follows:
将涂布了ITO透明导电层(作为阳极)的玻璃基板在清洗剂中进行超声处理,然后在去离子水中冲洗,再在丙酮与乙醇混合溶剂中超声除油,再在洁净环境下烘烤至完全除水,用紫外光和臭氧清洗,并用低能阳离子束轰击表面,以改善表面的性质,提高与空穴传输层的结合能力。The glass substrate coated with the ITO transparent conductive layer (as the anode) is ultrasonically treated in a cleaning agent, then rinsed in deionized water, then ultrasonically degreased in acetone and ethanol mixed solvent, and then baked in a clean environment until Completely remove water, clean with ultraviolet light and ozone, and bombard the surface with low-energy cation beams to improve the properties of the surface and improve the binding ability with the hole transport layer.
将上述玻璃基板置于真空腔内,抽真空至1×10-5-9×10-3Pa,在阳极上真空蒸镀HIL02作为空穴注入层,蒸镀速率0.1nm/s,蒸镀膜厚为100nm。Place the above-mentioned glass substrate in a vacuum chamber, evacuate to 1×10 -5 -9×10 -3 Pa, vacuum-deposit HIL02 on the anode as a hole injection layer, the evaporation rate is 0.1nm/s, and the evaporation film thickness is 100nm.
在空穴注入层上真空蒸镀空穴传输层,蒸镀速率为0.1nm/s,蒸镀膜厚为40nm。The hole transport layer was vacuum evaporated on the hole injection layer, the evaporation rate was 0.1 nm/s, and the evaporation film thickness was 40 nm.
在空穴传输层之上真空蒸镀EM1作为器件的有机发光层,蒸镀速率为0.1nm/s,蒸镀总膜厚为30nm。On top of the hole transport layer, EM1 was vacuum evaporated as the organic light-emitting layer of the device. The evaporation rate was 0.1 nm/s, and the total film thickness was 30 nm.
在有机发光层之上真空蒸镀TAZ作为有机电致发光器件的电子传输层;其蒸镀速率为0.1nm/s,蒸镀总膜厚为20nm。TAZ is vacuum-deposited on the organic light-emitting layer as the electron transport layer of the organic electroluminescent device; the evaporation rate is 0.1nm/s, and the total film thickness of the evaporation is 20nm.
在电子传输层(ETL)上真空蒸镀0.5nm的LiF作为电子注入层;Vacuum-evaporated 0.5nm LiF on the electron transport layer (ETL) as the electron injection layer;
在电子注入层之上真空蒸镀150nm的铝(Al)作为阴极。150 nm of aluminum (Al) was vacuum-deposited as a cathode on the electron injection layer.
有机电致发光器件性能见表1:The properties of organic electroluminescent devices are shown in Table 1:
表1Table 1
由上表可以看到,利用本发明的化合物作为空穴传输层可以提高有机电致发光器件的发光效率,降低有机电致发光器件的驱动电压。It can be seen from the above table that using the compound of the present invention as the hole transport layer can improve the luminous efficiency of the organic electroluminescent device and reduce the driving voltage of the organic electroluminescent device.
实施例6Example 6
以本发明的化合物作为有机电致发光器件中的空穴注入材料,作为对比的有机电致发光器件,空穴注入材料选用HIL02。The compound of the present invention is used as the hole injection material in the organic electroluminescence device, and HIL02 is selected as the hole injection material in the organic electroluminescence device for comparison.
有机电致发光器件结构为:ITO/HIL(100nm)/HTL(40nm)/EM1(30nm)/ETL(20nm)/LiF(0.5nm)/Al(150nm)。The structure of the organic electroluminescence device is: ITO/HIL (100nm)/HTL (40nm)/EM1 (30nm)/ETL (20nm)/LiF (0.5nm)/Al (150nm).
本实施例中的有机电致发光器件制作中选用玻璃基板,ITO作阳极材料,NPB作空穴传输层,EM1作有机发光层的主体材料,TAZ作为电子传输层材料,LiF/Al作电子注入层/阴极材料。In the production of the organic electroluminescent device in this embodiment, a glass substrate is selected, ITO is used as the anode material, NPB is used as the hole transport layer, EM1 is used as the main material of the organic light-emitting layer, TAZ is used as the electron transport layer material, and LiF/Al is used as the electron injection layer/cathode material.
本实施例中的有机电致发光器件制备过程如下:The preparation process of the organic electroluminescent device in this embodiment is as follows:
将涂布了ITO透明导电层(作为阳极)的玻璃基板在清洗剂中进行超声处理,然后在去离子水中冲洗,再在丙酮与乙醇混合溶剂中超声除油,再在洁净环境下烘烤至完全除水,用紫外光和臭氧清洗,并用低能阳离子束轰击表面,以改善表面的性质,提高与空穴传输层的结合能力。The glass substrate coated with the ITO transparent conductive layer (as the anode) is ultrasonically treated in a cleaning agent, then rinsed in deionized water, then ultrasonically degreased in acetone and ethanol mixed solvent, and then baked in a clean environment until Completely remove water, clean with ultraviolet light and ozone, and bombard the surface with low-energy cation beams to improve the properties of the surface and improve the binding ability with the hole transport layer.
将上述玻璃基板置于真空腔内,在阳极上真空蒸镀空穴注入层,蒸镀速率0.1nm/s,蒸镀膜厚为100nm。The above glass substrate was placed in a vacuum chamber, and a hole injection layer was vacuum evaporated on the anode with an evaporation rate of 0.1 nm/s and an evaporation film thickness of 100 nm.
在空穴注入层上真空蒸镀NPB作为空穴传输层,蒸镀速率为0.1nm/s,蒸镀膜厚为40nm。NPB was vacuum evaporated on the hole injection layer as the hole transport layer, the evaporation rate was 0.1 nm/s, and the evaporation film thickness was 40 nm.
在空穴传输层之上真空蒸镀EM1作为器件的有机发光层,蒸镀速率为0.1nm/s,蒸镀总膜厚为30nm。On top of the hole transport layer, EM1 was vacuum evaporated as the organic light-emitting layer of the device. The evaporation rate was 0.1 nm/s, and the total film thickness was 30 nm.
在有机发光层之上真空蒸镀TAZ作为有机电致发光器件的电子传输层;其蒸镀速率为0.1nm/s,蒸镀总膜厚为20nm。TAZ is vacuum-deposited on the organic light-emitting layer as the electron transport layer of the organic electroluminescent device; the evaporation rate is 0.1nm/s, and the total film thickness of the evaporation is 20nm.
在电子传输层(ETL)上真空蒸镀0.5nm的LiF作为电子注入层;Vacuum-evaporated 0.5nm LiF on the electron transport layer (ETL) as the electron injection layer;
在电子注入层之上真空蒸镀150nm的铝(Al)作为阴极。150 nm of aluminum (Al) was vacuum-deposited as a cathode on the electron injection layer.
有机电致发光器件性能见表2:The performance of the organic electroluminescent device is shown in Table 2:
表2Table 2
由上表可以看到,利用本发明的化合物作为空穴注入层可以提高有机电致发光器件的发光效率,降低有机电致发光器件的驱动电压。It can be seen from the above table that using the compound of the present invention as the hole injection layer can improve the luminous efficiency of the organic electroluminescent device and reduce the driving voltage of the organic electroluminescent device.
实施例7Example 7
本发明的化合物作为红色磷光OLED有机电致发光器件中的主体材料:Compounds of the present invention are used as host materials in red phosphorescent OLED organic electroluminescent devices:
有机电致发光器件结构为:The organic electroluminescent device structure is:
ITO/NPB(20nm)/红光主体材料(30nm):Ir(piq)3[5%]/TPBI(10nm)/Alq3(15nm)/LiF(0.5nm)/Al(150nm)。ITO/NPB (20nm)/Red host material (30nm): Ir(piq)3[5%]/TPBI(10nm)/Alq3(15nm)/LiF(0.5nm)/Al(150nm).
其中一个为对比有机电致发光器件,红光主体材料选用CBP,其它7个有机电致发光器件选用本发明的材料。One of them is a comparative organic electroluminescent device, the red light host material is selected from CBP, and the other seven organic electroluminescent devices are selected from the material of the present invention.
有机电致发光器件制备过程如下:将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;The preparation process of the organic electroluminescent device is as follows: the glass plate coated with the ITO transparent conductive layer is ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreased in acetone: ethanol mixed solvent, and baked in a clean environment. Baked until completely dehydrated, cleaned with UV light and ozone, and bombarded with a beam of low-energy cations;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5~9×10-3Pa,在上述阳极层膜上真空蒸镀空穴传输层NPB,蒸镀速率为0.1nm/s,蒸镀膜厚为20nm;Put the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5~9×10-3Pa, and vacuum-deposit the hole-transport layer NPB on the above-mentioned anode layer film, and the evaporation rate is 0.1 nm/s, the evaporated film thickness is 20nm;
在空穴传输层之上真空蒸镀发光主体材料和染料,作为有机电致发光器件的发光层,蒸镀速率为0.1nm/s,蒸镀总膜厚为30nm;On the hole transport layer, the luminescent host material and dye are vacuum-deposited as the light-emitting layer of the organic electroluminescence device, the evaporation rate is 0.1nm/s, and the total film thickness of the evaporation is 30nm;
在发光层之上依次真空蒸镀电子传输层TPBI和Alq3,其蒸镀速率均为0.1nm/s,蒸镀膜厚分别为10nm和15nm;On the light-emitting layer, the electron transport layer TPBI and Alq3 were vacuum-evaporated sequentially, the evaporation rate was 0.1nm/s, and the evaporation film thickness was 10nm and 15nm respectively;
在电子传输层上真空蒸镀0.5nm的LiF,150nm的Al作为阴极。0.5nm LiF was vacuum-deposited on the electron transport layer, and 150nm Al was used as a cathode.
有机电致发光器件性能见表3:The properties of organic electroluminescent devices are shown in Table 3:
表3table 3
由上表可以看到,采用本发明化合作为磷光主体的有机电致发光器件相对于采用CBP作为主体的有机电致发光器件获得了较好的效果,获得了更高的电流效率和较低的驱动电压。As can be seen from the above table, the organic electroluminescent device using the chemical composition of the present invention as the phosphorescent main body has obtained a better effect than the organic electroluminescent device using CBP as the main body, and has obtained higher current efficiency and lower the drive voltage.
实施例8:Embodiment 8:
本发明的化合物作为绿色磷光OLED有机电致发光器件中的主体材料:Compounds of the present invention are used as host materials in green phosphorescent OLED organic electroluminescent devices:
共制备9个有机电致发光器件,有机电致发光器件结构为:A total of 9 organic electroluminescent devices were prepared, and the structure of the organic electroluminescent device was as follows:
ITO/NPB(20nm)/绿光主体材料(30nm):Ir(ppy)3[7%]/TPBI(10nm)/Alq3(15nm)/LiF(0.5nm)/Al(150nm)。ITO/NPB (20nm)/green host material (30nm): Ir(ppy)3[7%]/TPBI(10nm)/Alq3(15nm)/LiF(0.5nm)/Al(150nm).
其中一个为对比有机电致发光器件,绿光主体材料选用CBP,其它8个有机电致发光器件选用本发明的材料。One of them is a comparative organic electroluminescent device, the main material of the green light is CBP, and the other eight organic electroluminescent devices are selected from the material of the present invention.
有机电致发光器件制备过程如下:将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;The preparation process of the organic electroluminescent device is as follows: the glass plate coated with the ITO transparent conductive layer is ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreased in acetone: ethanol mixed solvent, and baked in a clean environment. Baked until completely dehydrated, cleaned with UV light and ozone, and bombarded with a beam of low-energy cations;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5~9×10-3Pa,在上述阳极层膜上真空蒸镀空穴传输层NPB,蒸镀速率为0.1nm/s,蒸镀膜厚为20nm;Put the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5~9×10-3Pa, and vacuum-deposit the hole-transport layer NPB on the above-mentioned anode layer film, and the evaporation rate is 0.1 nm/s, the evaporated film thickness is 20nm;
在空穴传输层之上真空蒸镀发光主体材料和染料,作为有机电致发光器件的发光层,蒸镀速率为0.1nm/s,蒸镀总膜厚为30nm;On the hole transport layer, the luminescent host material and dye are vacuum-deposited as the light-emitting layer of the organic electroluminescence device, the evaporation rate is 0.1nm/s, and the total film thickness of the evaporation is 30nm;
在发光层之上依次真空蒸镀电子传输层TPBI和Alq3,其蒸镀速率均为0.1nm/s,蒸镀膜厚分别为10nm和15nm;On the light-emitting layer, the electron transport layer TPBI and Alq3 were vacuum-evaporated sequentially, the evaporation rate was 0.1nm/s, and the evaporation film thickness was 10nm and 15nm respectively;
在电子传输层上真空蒸镀0.5nm的LiF,150nm的Al作为电子注入层和阴极。0.5nm LiF was vacuum evaporated on the electron transport layer, and 150nm Al was used as the electron injection layer and cathode.
有机电致发光器件性能见表4:The performance of the organic electroluminescent device is shown in Table 4:
表4Table 4
由上表可以看到,采用本发明化合作为磷光主体的有机电致发光器件相对于采用CBP作为主体的有机电致发光器件获得了较好的效果,获得了更高的电流效率和较低的驱动电压。As can be seen from the above table, the organic electroluminescent device using the chemical composition of the present invention as the phosphorescent main body has obtained a better effect than the organic electroluminescent device using CBP as the main body, and has obtained higher current efficiency and lower the drive voltage.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and equivalent technologies thereof, the present invention also intends to include these modifications and variations.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810646906.9A CN108863896A (en) | 2018-06-21 | 2018-06-21 | Biindolyl class material, organic electroluminescence device and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810646906.9A CN108863896A (en) | 2018-06-21 | 2018-06-21 | Biindolyl class material, organic electroluminescence device and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108863896A true CN108863896A (en) | 2018-11-23 |
Family
ID=64340828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810646906.9A Withdrawn CN108863896A (en) | 2018-06-21 | 2018-06-21 | Biindolyl class material, organic electroluminescence device and display device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108863896A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021000455A1 (en) * | 2019-07-04 | 2021-01-07 | 武汉华星光电半导体显示技术有限公司 | Hole transport material, preparation method therefor and electroluminescent device |
US20220213124A1 (en) * | 2019-11-05 | 2022-07-07 | Shaanxi Lighte Optoelectronics Material Co., Ltd. | Nitrogen-containing compound, electronic element, and electronic device |
-
2018
- 2018-06-21 CN CN201810646906.9A patent/CN108863896A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021000455A1 (en) * | 2019-07-04 | 2021-01-07 | 武汉华星光电半导体显示技术有限公司 | Hole transport material, preparation method therefor and electroluminescent device |
US11527724B2 (en) * | 2019-07-04 | 2022-12-13 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Hole transporting material, method for preparing same, and electroluminescent device |
US20220213124A1 (en) * | 2019-11-05 | 2022-07-07 | Shaanxi Lighte Optoelectronics Material Co., Ltd. | Nitrogen-containing compound, electronic element, and electronic device |
US11524970B2 (en) * | 2019-11-05 | 2022-12-13 | Shaanxi Lighte Optoelectronics Material Co., Ltd. | Nitrogen-containing compound, electronic element, and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104513247B (en) | A kind of benzo [ c ] benzo [ 3,4 ] carbazole and carbazole derivates and application | |
CN108863896A (en) | Biindolyl class material, organic electroluminescence device and display device | |
CN108922987A (en) | Biindolyl class material, organic electroluminescence device and display device | |
CN109503487B (en) | Dihydrobenzandazole compound, organic electroluminescent device and display device | |
CN108329254A (en) | Dihydroanthracene compound, organic electroluminescence device and display device | |
CN107311934A (en) | A kind of biphenyl compound, organic electroluminescence device and display device | |
CN109535130B (en) | Dihydrobenzandazole compound, organic electroluminescent device and display device | |
CN108586317A (en) | A kind of biindolyl class material | |
CN107325035A (en) | A kind of biphenyl compound, organic electroluminescence device and display device | |
CN108586314A (en) | Dihydroanthracene compound, organic electroluminescence device and display device | |
CN108623515A (en) | Contain unsaturated nitrogenous heterocyclic dihydroanthracene compound, organic electroluminescence device and display device | |
CN108997318A (en) | Biindolyl class electroluminescent organic material | |
CN109678799B (en) | Dihydrobenzandazole compound, organic electroluminescent device and display device | |
CN108997191A (en) | A kind of organic electroluminescence device and display device | |
CN108822016A (en) | A kind of synthetic method of biindolyl class material | |
CN106170477B (en) | 2- amino-metadiazine compound, organic electroluminescence device and display device | |
CN108840817A (en) | Biindolyl class material, organic electroluminescence device and display device | |
CN108822087A (en) | Biindolyl class material, organic electroluminescence device and display device | |
CN107382908A (en) | A kind of biphenyl compound, organic electroluminescence device and display device | |
CN108586316A (en) | Dihydroanthracene compound, organic electroluminescence device and display device | |
CN107337655A (en) | A kind of biphenyl compound, organic electroluminescence device and display device | |
CN108658840A (en) | A kind of organic electroluminescence device and display device | |
CN108976199A (en) | A kind of organic electroluminescence device and display device | |
CN108997317A (en) | A kind of organic electroluminescence device and display device | |
CN108658965A (en) | Biindolyl class electroluminescent organic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20181123 |