CN108855267B - A microfluidic platform for micromanipulation of biological micro-nanoparticles - Google Patents
A microfluidic platform for micromanipulation of biological micro-nanoparticles Download PDFInfo
- Publication number
- CN108855267B CN108855267B CN201810820387.3A CN201810820387A CN108855267B CN 108855267 B CN108855267 B CN 108855267B CN 201810820387 A CN201810820387 A CN 201810820387A CN 108855267 B CN108855267 B CN 108855267B
- Authority
- CN
- China
- Prior art keywords
- micro
- channel
- manipulation
- conical
- nano particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 27
- 239000006059 cover glass Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 9
- 238000004026 adhesive bonding Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 238000010146 3D printing Methods 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000004557 technical material Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012576 optical tweezer Methods 0.000 description 4
- 239000000306 component Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 206010013710 Drug interaction Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明公开了一种用于生物微纳粒子微操控的微流道平台,该平台能够实现对生物微纳粒子的位置和流速约束;该平台包括:单通道注射泵、锥形管道、管道架、盖玻片、微流道和底座;其中,所述单通道注射泵和锥形管道连通;所述锥形管道固定在管道架上,锥形管道的锥角为6‑12°,锥形管道的锥口对准微流道的流道口;所述管道架和盖玻片固定在底座上,底座为插片式结构;所述微流道固定在盖玻片上,微流道为两边宽中间窄的对称双圆弧结构,对称双圆弧结构的曲率半径为10‑20mm,两圆弧最近点距离为50‑200μm。本发明具有操控便利、自由度高、成本低、可量产的特点。
The invention discloses a micro-channel platform for micro-manipulation of biological micro-nano particles, which can realize the position and flow rate constraints of biological micro-nano particles; the platform comprises: a single-channel syringe pump, a conical pipe, and a pipe rack , a cover glass, a microfluidic channel and a base; wherein, the single-channel syringe pump is communicated with the conical pipe; the conical pipe is fixed on the pipe rack, the taper angle of the conical pipe is 6-12°, and the conical pipe is The conical mouth of the pipe is aligned with the flow channel mouth of the micro flow channel; the pipe rack and the cover glass are fixed on the base, and the base is a plug-in structure; the micro flow channel is fixed on the cover glass, and the micro flow channel is wide on both sides A symmetrical double-arc structure with a narrow middle, the radius of curvature of the symmetrical double-arc structure is 10-20mm, and the distance between the closest points of the two arcs is 50-200μm. The invention has the characteristics of convenient operation, high degree of freedom, low cost and mass production.
Description
技术领域technical field
本发明涉及一种微流道结构设计的装置,尤其涉及一种用于生物微纳粒子微操控的微流道平台。The invention relates to a device for designing a micro-channel structure, in particular to a micro-channel platform for micro-manipulation of biological micro-nano particles.
背景技术Background technique
在过去的十年中,微纳米尺度的生物对象(biological object)的微操控(micromanipulation)已成为生物纳米技术领域的一个重要课题。根据应用过程的复杂性和规模,微操控包括三维空间的俘获,平移/旋转,收集或分离,活细胞手术/微注入等一系列日益精细化的操控。在尺度上,已经更多从细胞层面进入亚细胞过程的操控。在几个相互竞争的3D微操控技术中(包括电泳,磁力,机械等),显微光镊技术作为几乎无创(non-invasive)的一种方法,突出优点是可以在绝大部分细胞和亚细胞组分的尺度范围里施加可调节的10-14-10-8N的控制力,用于实现微操控过程。使用光镊对生物对象操控目前分为直接和间接操控(即激光是否直接作用于生物对象)。在未来的生物工程中,应该尽可能避免使用直接的激光束进行细胞捕获或微操控,以消除激光对生物对象的不良影响。由此,细胞和亚细胞对象的间接微操控(indirect micromanipulation)将成为生物工程中一个极为重要的工具和研究课题。In the past decade, the micromanipulation of biological objects at the micro-nano scale has become an important topic in the field of bio-nanotechnology. Depending on the complexity and scale of the application process, micromanipulation includes a series of increasingly refined manipulations such as three-dimensional capture, translation/rotation, collection or separation, and live cell surgery/microinjection. At scale, there has been more manipulation from the cellular level into subcellular processes. Among several competing 3D micromanipulation techniques (including electrophoresis, magnetic force, mechanics, etc.), microscopic optical tweezers, as an almost non-invasive method, has the outstanding advantage that it can be used in most cells and subtypes. An adjustable control force of 10 -14 -10 -8 N is applied in the scale range of cellular components for the realization of the micromanipulation process. The manipulation of biological objects using optical tweezers is currently divided into direct and indirect manipulation (ie, whether the laser directly acts on the biological object). In future bioengineering, the use of direct laser beams for cell trapping or micromanipulation should be avoided as much as possible to eliminate the adverse effects of laser light on biological objects. Therefore, indirect micromanipulation of cells and subcellular objects will become an extremely important tool and research topic in bioengineering.
在不受激光直接光照影响情况下,间接微操控完成生物对象的定位、运输、分选等过程控制,在医学研究上可以通过这些过程研究诊断,治疗,药物传递,将使从不同学科的研究人员在活细胞和亚细胞尺度进行基础和应用研究,从而进行高度准确的细胞和药物相互作用判别,开发新药物和新诊断方法,在非常早期阶段检测到致命疾病的发病,是具有重大创新意义的基础研究工作,并且有巨大的生物医学应用价值和市场潜力。Without being affected by direct laser light, indirect micro-manipulation can complete the process control of biological object positioning, transportation, sorting, etc. In medical research, diagnosis, treatment, and drug delivery can be studied through these processes, which will enable research from different disciplines. It is of great innovation to perform basic and applied research at the living cell and subcellular scales to enable highly accurate discrimination of cell and drug interactions, to develop new drugs and diagnostics, and to detect the onset of deadly diseases at very early stages. basic research work, and has huge biomedical application value and market potential.
在间接微操控方面,近年来国际上投入大量资源对这一课题进行研究。为了实现间接操控生物对象,光镊被取而代之的用来捕捉电介质微球(如乳胶,聚苯乙烯,二氧化硅等),并由这些微球连接到生物对象的两端或边界面上,用以驱动生物对象的各种空间运动。与磁力或电泳操控技术不同,光镊可以通过同时使用数个激光光束实现多个操控而不相互干扰,此特点给间接微操控提供了很好的条件。随着间接操控的发展,间接操控的微流道设计需求也日益增多,在满足操控的条件下还要考虑到对生物微纳粒子的显微移动转动,进而实现对稀有细胞的操控分类。In terms of indirect micro-manipulation, a lot of resources have been invested in this topic in the world in recent years. In order to achieve indirect manipulation of biological objects, optical tweezers are used instead to capture dielectric microspheres (such as latex, polystyrene, silica, etc.), and these microspheres are connected to the ends or boundary surfaces of biological objects. to drive various spatial motions of biological objects. Different from magnetic or electrophoretic manipulation techniques, optical tweezers can achieve multiple manipulations without interfering with each other by using several laser beams at the same time. This feature provides good conditions for indirect micromanipulation. With the development of indirect manipulation, the demand for indirect manipulation of micro-channel design is also increasing. Under the conditions of manipulation, the micro-movement and rotation of biological micro-nano particles must be taken into account, so as to realize the manipulation and classification of rare cells.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有技术的不足,提供一种用于生物微纳粒子微操控的微流道平台的装置。The purpose of the present invention is to provide a device for a micro-fluidic platform for micro-manipulation of biological micro-nano particles in view of the deficiencies of the prior art.
本发明的目的是通过以下技术方案来实现的:一种用于生物微纳粒子微操控的微流道平台,该平台能够实现对生物微纳粒子的位置和流速约束,进而实现对稀有细胞的操控分类;该平台包括:单通道注射泵、锥形管道、管道架、盖玻片、微流道和底座;其中,所述单通道注射泵和锥形管道连通;所述锥形管道固定在管道架上,锥形管道的锥角为6-12°,锥形管道的锥口对准微流道的流道口;所述管道架和盖玻片固定在底座上,底座为插片式结构;所述微流道固定在盖玻片上,微流道为两边宽中间窄的对称双圆弧结构,对称双圆弧结构的曲率半径为10-20mm,两圆弧最近点距离为50-200μm。The object of the present invention is achieved through the following technical solutions: a micro-channel platform for micro-manipulation of biological micro-nano particles, which can realize the position and flow rate constraints of biological micro-nano particles, and then realize the control of rare cells. Manipulation classification; the platform includes: a single-channel syringe pump, a conical pipe, a pipe rack, a cover glass, a microfluidic channel and a base; wherein, the single-channel syringe pump is communicated with the conical pipe; the conical pipe is fixed on the On the pipe rack, the taper angle of the conical pipe is 6-12°, and the conical mouth of the conical pipe is aligned with the flow channel mouth of the microchannel; the pipe rack and the cover glass are fixed on the base, and the base is a plug-in structure The microchannel is fixed on the cover glass, and the microchannel is a symmetrical double-arc structure with wide sides on both sides and narrow in the middle. The radius of curvature of the symmetrical double-arc structure is 10-20mm, and the distance between the closest points of the two arcs is 50-200μm .
进一步地,所述单通道注射泵的注射速度在0.1-1ml/h。Further, the injection speed of the single-channel syringe pump is 0.1-1 ml/h.
进一步地,所述单通道注射泵和锥形管道通过软管连通,所述软管固定在X型金属架上,通过旋进X型金属架尾端螺丝减小软管中液体流速,实现对流速的微调节。Further, the single-channel syringe pump and the conical pipeline are communicated through a hose, the hose is fixed on the X-shaped metal frame, and the liquid flow rate in the hose is reduced by screwing in the end screw of the X-shaped metal frame, so as to realize the Micro-adjustment of flow rate.
进一步地,所述锥形管道的材质为玻璃,通过电线圈加热法制作锥角。Further, the material of the tapered pipe is glass, and the tapered angle is produced by an electric coil heating method.
进一步地,所述管道架的斜坡倾斜角度与锥形管道的锥角保持一致,以便于液体向前流入微流道中。Further, the inclination angle of the slope of the pipe rack is consistent with the taper angle of the conical pipe, so that the liquid flows forward into the microfluidic channel.
进一步地,所述管道架及底座为一体形成,采用3D打印技术实现。Further, the pipe rack and the base are integrally formed and realized by 3D printing technology.
进一步地,所述3D打印技术材料为ABS或PBS。Further, the 3D printing technology material is ABS or PBS.
进一步地,所述盖玻片、微流道、底座三者间的胶合及锥形管道、管道架间的胶合具体为:采用uv胶胶合,实现各组件的连接及固定。Further, the gluing between the cover glass, the micro-channel and the base and the gluing between the tapered pipes and the pipe racks are specifically: using UV glue to connect and fix the components.
本发明的有益效果是:The beneficial effects of the present invention are:
1.本发明具有成本低的特点,其插片式结构为批量生产提供了可能,具有一次性可替换的特点。1. The present invention has the characteristics of low cost, and its plug-in structure provides the possibility of mass production, and has the characteristics of one-time replacement.
2.本发明具有商品化小型化潜力,可与微流控芯片相结合实现Lab-on-a-chip集成。2. The present invention has the potential of commercial miniaturization, and can be combined with a microfluidic chip to realize Lab-on-a-chip integration.
3.本发明中微流道的对称双圆弧结构便于液体流动观测,流动速度及锥角的选择减少了液体表面张力的影响,提高对生物微纳粒子的位置和流速约束的精确度。3. The symmetrical double-arc structure of the micro flow channel in the present invention facilitates the observation of liquid flow, and the selection of flow velocity and cone angle reduces the influence of liquid surface tension and improves the accuracy of the position and flow rate constraints of biological micro-nano particles.
4.本发明具有间接操控微纳粒子显微移动和转动,对稀有细胞的操控检测分离等功能的发展潜力,是纳米粒子微操控的核心部件。4. The present invention has the development potential of indirectly manipulating the micro-movement and rotation of micro-nano particles, manipulating, detecting, and separating rare cells, and is the core component of nano-particle micro-manipulation.
附图说明Description of drawings
图1为本发明用于生物微纳粒子微操控的微流道平台整体结构示意图;Fig. 1 is a schematic diagram of the overall structure of the micro-channel platform used for the micro-manipulation of biological micro-nano particles according to the present invention;
图2为微流道平台的锥形管道示意图;Fig. 2 is the tapered pipe schematic diagram of the microfluidic platform;
图3为利用本发明微流道平台进行生物微纳粒子的位置和流速约束的微操控系统示意图;3 is a schematic diagram of a micro-manipulation system that utilizes the micro-channel platform of the present invention to constrain the position and flow rate of biological micro-nano particles;
图4为微流道平台装配图;Figure 4 is an assembly diagram of a microchannel platform;
图5为微流道平台爆炸图;Figure 5 is an exploded view of the microchannel platform;
图中,单通道注射泵1、软管2、锥形管道3、管道架4、盖玻片5、微流道6、底座7、光纤操作架8、微流道平台9、显微物镜10、光纤11。In the figure, single-
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
本发明的工作原理如下:The working principle of the present invention is as follows:
根据微流体流动力学中的连续性方程、Navier-stokes运动方程、能量守恒方程及流变本构方程分析流道截面形状对流体的影响:According to the continuity equation, Navier-stokes equation of motion, energy conservation equation and rheological constitutive equation in microfluidic fluid dynamics, the influence of the cross-sectional shape of the flow channel on the fluid is analyzed:
根据Navier-stokes运动方程可知:当流体在流道中处于稳定层流状态时,流体的压力损失为:其中λ为沿程阻力系数;v为流体动力粘度;ρ为流体密度;d为流道直径;l为流道长度;Re为雷诺数。According to Navier-stokes equation of motion It can be seen that when the fluid is in a stable laminar flow state in the flow channel, the pressure loss of the fluid is: Where λ is the resistance coefficient along the way; v is the fluid dynamic viscosity; ρ is the fluid density; d is the diameter of the flow channel; l is the length of the flow channel; Re is the Reynolds number.
在微流体流动过程中,由于微尺度效应作用,表面力作用增强,粘性力远远超过惯性力,流道直径减小导致微流体雷诺数减小,沿程阻力系数增大,且微流道的长泾比增大。由压力损失公式可以看出:微流道直径越小,微流体在流动过程中的压力损失越大,流体的流动性越差;In the process of microfluidic flow, due to the microscale effect, the surface force is enhanced, the viscous force far exceeds the inertial force, the reduction of the diameter of the flow channel leads to the reduction of the microfluidic Reynolds number, the increase of the resistance coefficient along the path, and the microfluidic channel The length-to-jing ratio increases. It can be seen from the pressure loss formula: the smaller the diameter of the microfluidic channel, the greater the pressure loss of the microfluid during the flow process, and the worse the fluidity of the fluid;
所以微流体在微流道中流动长度与流道截面的比表面积(截面周长与截面面积的比值)成反比,当微流道的比表面积较小时,流体温度与注射压力对流动长度影响大。Therefore, the flow length of the microfluid in the microfluidic channel is inversely proportional to the specific surface area of the channel section (the ratio of the perimeter of the section to the cross-sectional area). When the specific surface area of the microfluidic channel is small, the fluid temperature and injection pressure have a great influence on the flow length.
具体来说,本发明提供的一种用于生物微纳粒子微操控的微流道平台,如图1、2所示,该平台能够实现对生物微纳粒子的位置和流速约束,进而实现对稀有细胞的操控分类;该平台包括:单通道注射泵1、锥形管道3、管道架4、盖玻片5、微流道6和底座7;其中,所述单通道注射泵1和锥形管道3连通;所述锥形管道3固定在管道架4上,锥形管道3的锥角为6-12°,锥形管道3的锥口对准微流道6的流道口;所述管道架4和盖玻片5固定在底座7上,底座7为插片式结构;所述微流道6固定在盖玻片5上,微流道6为两边宽中间窄的对称双圆弧结构便于观察液体流动并操控,对称双圆弧结构的曲率半径为10-20mm,两圆弧最近点距离为50-200μm。Specifically, the present invention provides a micro-channel platform for micro-manipulation of biological micro-nano particles, as shown in Figures 1 and 2, the platform can realize the position and flow rate constraints of biological micro-nano particles, and then realize the control of biological micro-nano particles. Manipulation and classification of rare cells; the platform includes: a single-
进一步地,所述单通道注射泵1的注射速度在0.1-1ml/h。Further, the injection speed of the single-
进一步地,所述单通道注射泵1和锥形管道3通过软管2连通,所述软管2固定在X型金属架上,通过旋进X型金属架尾端螺丝减小软管2中液体流速,实现对流速的微调节。Further, the single-
进一步地,所述锥形管道3的材质为玻璃,通过电线圈加热法制作锥角。Further, the material of the tapered pipe 3 is glass, and the tapered angle is produced by an electric coil heating method.
进一步地,所述管道架4的斜坡倾斜角度与锥形管道3的锥角保持一致,以便于液体向前流入微流道6中。Further, the inclination angle of the slope of the pipe rack 4 is consistent with the taper angle of the conical pipe 3 , so that the liquid can flow forward into the
进一步地,所述管道架4及底座7为一体形成,采用3D打印技术实现。Further, the pipe frame 4 and the
进一步地,所述3D打印技术材料为ABS或PBS。Further, the 3D printing technology material is ABS or PBS.
进一步地,所述盖玻片5、微流道6、底座7三者间的胶合及锥形管道3、管道架4间的胶合具体为:采用uv胶胶合,实现各组件的连接及固定。Further, the gluing between the
如图3所示,利用本发明微流道平台进行生物微纳粒子的位置和流速约束的微操控系统中,通过光纤操作架8操控光纤11使其光斑对焦在微流道平面上,通过微流道平台9约束生物微纳粒子的流动位置和速度,以便光斑对准生物微纳粒子实现操控俘获。通过显微物镜10观测记录实验现象。其中微流道插片式结构直接插入图4、5中的凹槽内。As shown in FIG. 3 , in the micro-manipulation system using the micro-channel platform of the present invention to constrain the position and flow rate of biological micro-nano particles, the
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The above-mentioned embodiments are used to explain the present invention, rather than limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modifications and changes made to the present invention all fall into the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810820387.3A CN108855267B (en) | 2018-07-24 | 2018-07-24 | A microfluidic platform for micromanipulation of biological micro-nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810820387.3A CN108855267B (en) | 2018-07-24 | 2018-07-24 | A microfluidic platform for micromanipulation of biological micro-nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108855267A CN108855267A (en) | 2018-11-23 |
CN108855267B true CN108855267B (en) | 2020-01-07 |
Family
ID=64304689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810820387.3A Expired - Fee Related CN108855267B (en) | 2018-07-24 | 2018-07-24 | A microfluidic platform for micromanipulation of biological micro-nanoparticles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108855267B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202465675U (en) * | 2012-03-16 | 2012-10-03 | 大连理工大学 | Microfluidics shearing device of flow method controlling two dynamic biochemical signals to fast switch stimulus |
CN106238111A (en) * | 2016-07-28 | 2016-12-21 | 南京理工大学 | A kind of microcapsule preparation method based on micro-fluidic chip shear flow |
CN106732839A (en) * | 2016-12-30 | 2017-05-31 | 天津禄浩科技股份有限公司 | A kind of cellular fat particle detections chip and its detection reagent |
CN106902906A (en) * | 2017-04-28 | 2017-06-30 | 清华大学 | A kind of method that micro-fluid chip and its focusing are focused on without sheath fluid formula particle three-dimensional |
CN107099456A (en) * | 2017-06-08 | 2017-08-29 | 北京工业大学 | A kind of digital pcr droplet preparation method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7250139B2 (en) * | 2003-03-19 | 2007-07-31 | Northwestern University | Nanotipped device and method |
-
2018
- 2018-07-24 CN CN201810820387.3A patent/CN108855267B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202465675U (en) * | 2012-03-16 | 2012-10-03 | 大连理工大学 | Microfluidics shearing device of flow method controlling two dynamic biochemical signals to fast switch stimulus |
CN106238111A (en) * | 2016-07-28 | 2016-12-21 | 南京理工大学 | A kind of microcapsule preparation method based on micro-fluidic chip shear flow |
CN106732839A (en) * | 2016-12-30 | 2017-05-31 | 天津禄浩科技股份有限公司 | A kind of cellular fat particle detections chip and its detection reagent |
CN106902906A (en) * | 2017-04-28 | 2017-06-30 | 清华大学 | A kind of method that micro-fluid chip and its focusing are focused on without sheath fluid formula particle three-dimensional |
CN107099456A (en) * | 2017-06-08 | 2017-08-29 | 北京工业大学 | A kind of digital pcr droplet preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN108855267A (en) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Salafi et al. | A review on deterministic lateral displacement for particle separation and detection | |
Chen et al. | A simplified microfluidic device for particle separation with two consecutive steps: induced charge electro-osmotic prefocusing and dielectrophoretic separation | |
Oakey et al. | Particle focusing in staged inertial microfluidic devices for flow cytometry | |
Zhou et al. | Enhanced size-dependent trapping of particles using microvortices | |
CN102782502B (en) | Microchip and microparticle analysis device | |
Nam et al. | Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow | |
JP2010025911A (en) | Microchip and flow sending method of microchip | |
Zhang et al. | Design of a single-layer microchannel for continuous sheathless single-stream particle inertial focusing | |
CN108380254A (en) | Microfluidic chip liquid drop generating means | |
CN105772116B (en) | The system and method for separation micro-nano granules and cell is focused on based on nonNewtonian percolation | |
Zhao et al. | Optical gradient flow focusing | |
Yang et al. | A hydrodynamic focusing microchannel based on micro-weir shear lift force | |
Zhang et al. | Efficient micro/nanoparticle concentration using direct current-induced thermal buoyancy convection for multiple liquid media | |
Fu et al. | A high‐discernment microflow cytometer with microweir structure | |
Fan et al. | High-throughput, single-stream microparticle focusing using a microchannel with asymmetric sharp corners | |
JP5897681B2 (en) | Microchip and fine particle analyzer | |
Shen et al. | Continuous 3D particles manipulation based on cooling thermal convection | |
CN108855267B (en) | A microfluidic platform for micromanipulation of biological micro-nanoparticles | |
Arakawa et al. | Three-dimensional sheath flow sorting microsystem using thermosensitive hydrogel | |
CN104971788B (en) | A kind of optofluidic chip utilizing percussion flow and optical scattering power and for sorting the purposes of micro-nano particle | |
Kim et al. | Numerical simulation on the opto-electro-kinetic patterning for rapid concentration of particles in a microchannel | |
Feng et al. | Multiple-streams focusing-based cell separation in high viscoelasticity flow | |
CN108073743A (en) | The system and method for separation sub-micron nano particle is focused on based on nonNewtonian percolation | |
Lin et al. | Glass capillary assembled microfluidic three-dimensional hydrodynamic focusing device for fluorescent particle detection | |
JP6509759B2 (en) | Microchip and microparticle analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200107 |