CN108800638A - Low-temperature thermostat - Google Patents
Low-temperature thermostat Download PDFInfo
- Publication number
- CN108800638A CN108800638A CN201810206829.5A CN201810206829A CN108800638A CN 108800638 A CN108800638 A CN 108800638A CN 201810206829 A CN201810206829 A CN 201810206829A CN 108800638 A CN108800638 A CN 108800638A
- Authority
- CN
- China
- Prior art keywords
- helium
- refrigerator
- container
- temperature
- cryostat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001307 helium Substances 0.000 claims abstract description 121
- 229910052734 helium Inorganic materials 0.000 claims abstract description 121
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 121
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 4
- 230000032258 transport Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
一种低温恒温器,包括制冷机、氦气源和氦容器;所述制冷机用于提供冷量;所述氦气源与所述氦容器连通,所述氦气源用于向所述氦容器输送氦气;所述氦容器与所述制冷机的一级冷头连接,所述制冷机将所述氦容器内的氦气冷却为液氦或者超临界氦,所述氦容器和控温对象连接。上述低温恒温器,通过制冷机将氦容器内的氦气冷却为液氦或者超临界氦,此时氦容器内的氦的密度将达到100kg/m3以上,由于氦在低温下仍能保持较大的比热容(2000J/(Kg·K)以上),因此可以有效用于抑制制冷机一级冷头造成的温度波动,大大提高低温冷源的温度稳定性。上述低温恒温器,可以利用机械式制冷机实现mK量级波动的高稳定性低温温度控制的过程。
A cryostat, comprising a refrigerator, a helium source, and a helium container; the refrigerator is used to provide cooling; the helium source communicates with the helium container, and the helium source is used to supply the helium The container transports helium; the helium container is connected to the primary cold head of the refrigerator, and the refrigerator cools the helium in the helium container into liquid helium or supercritical helium, and the helium container and temperature control object connection. The above-mentioned cryostat cools the helium in the helium container to liquid helium or supercritical helium through a refrigerator, and at this time the density of the helium in the helium container will reach more than 100kg/m 3 , because helium can still maintain relatively low temperature Large specific heat capacity (more than 2000J/(Kg·K)), so it can be effectively used to suppress the temperature fluctuation caused by the first-stage cold head of the refrigerator, and greatly improve the temperature stability of the low-temperature cold source. The above-mentioned cryostat can use a mechanical refrigerator to realize the process of controlling the low-temperature temperature with high stability of fluctuations in mK order.
Description
技术领域technical field
本发明涉及低温温度控制技术领域,尤其涉及一种低温恒温器。The invention relates to the technical field of low temperature control, in particular to a low temperature thermostat.
背景技术Background technique
近年来,随着小型制冷机技术的迅速发展,特别是商用的G-M制冷机、脉管制冷机在冷量和性能方面都有了巨大的进步,以制冷机为冷源的低温系统得到了越来越广泛的应用。它们被广泛应用于低温下热物性的测量、低温下机械性能实验、小型超导磁体的冷却、红外遥感、超导电子学等领域。与以低温液体为冷源的低温系统相比,以制冷机为冷源的低温系统结构更加简单,操作方便,不需要消耗低温液体,运行成本低。然而,目前广泛使用的机械式低温制冷机采用的都是回热式制冷原理,工质气体在制冷机系统内以一定的频率往复运动,会给被冷却的样品带来较大的机械振动和温度波动(典型值达到±0.1~0.2K),无法满足物性测试、低温温度标定等领域对温度高稳定性(mK量级)的需求。In recent years, with the rapid development of small refrigerator technology, especially commercial G-M refrigerators and pulse tube refrigerators have made great progress in terms of cooling capacity and performance, and low-temperature systems using refrigerators as cold sources have achieved greater and greater progress. more and more widely used. They are widely used in the measurement of thermal properties at low temperatures, mechanical properties experiments at low temperatures, cooling of small superconducting magnets, infrared remote sensing, superconducting electronics and other fields. Compared with the cryogenic system using cryogenic liquid as a cold source, the cryogenic system using a refrigerator as a cold source has a simpler structure, is easy to operate, does not need to consume cryogenic liquid, and has low operating costs. However, the mechanical cryogenic refrigerators widely used at present all adopt the principle of regenerative refrigeration. The working medium gas reciprocates at a certain frequency in the refrigerator system, which will bring large mechanical vibration and vibration to the cooled sample. Temperature fluctuations (typical values reach ±0.1-0.2K), which cannot meet the needs of high temperature stability (mK level) in fields such as physical property testing and low temperature calibration.
发明内容Contents of the invention
鉴于此,有必要提供一种能够提高温度稳定性的低温恒温器。In view of this, it is necessary to provide a cryostat capable of improving temperature stability.
一种低温恒温器,包括制冷机、氦气源和氦容器;A cryostat comprising a refrigerator, a source of helium gas and a helium container;
所述制冷机用于提供冷量;The refrigerator is used to provide cooling capacity;
所述氦气源与所述氦容器连通,所述氦气源用于向所述氦容器输送氦气;The helium source is in communication with the helium container, and the helium source is used to deliver helium to the helium container;
所述氦容器与所述制冷机的一级冷头连接,所述制冷机将所述氦容器内的氦气冷却为液氦或者超临界氦,所述氦容器和控温对象连接。The helium container is connected with the primary cold head of the refrigerator, the refrigerator cools the helium in the helium container into liquid helium or supercritical helium, and the helium container is connected with a temperature control object.
在一个实施例中,所述氦容器内设有翅片或圆管。In one embodiment, the helium container is provided with fins or circular tubes.
在一个实施例中,还包括换热器,所述换热器设于所述制冷机的一级冷头上,所述换热器的进口和所述氦气源连接,所述换热器的出口和所述氦容器连接,所述换热器用于氦气的预冷。In one embodiment, it also includes a heat exchanger, the heat exchanger is arranged on the primary cold head of the refrigerator, the inlet of the heat exchanger is connected to the helium source, and the heat exchanger The outlet of the outlet is connected to the helium container, and the heat exchanger is used for precooling of the helium.
在一个实施例中,还包括压力控制器,所述压力控制器设于所述氦容器与所述氦气源之间。In one embodiment, a pressure controller is further included, the pressure controller is disposed between the helium container and the helium source.
在一个实施例中,还包括热阻片,所述热阻片设于所述氦容器和控温对象之间。In one embodiment, a thermal resistance sheet is also included, and the thermal resistance sheet is arranged between the helium container and the temperature control object.
在一个实施例中,还包括加热器,所述加热器设于所述控温对象上。In one embodiment, a heater is also included, and the heater is arranged on the temperature control object.
在一个实施例中,还包括第一温度计、第二温度计和第三温度计和控温系统,所述第一温度计、所述第二温度计、所述第三温度计、所述加热器均和所述控温系统连接,所述第一温度计设于所述一级冷头上,所述第二温度计设于所述氦容器的底部,所述第三温度计设于所述控温对象上。In one embodiment, it also includes a first thermometer, a second thermometer and a third thermometer and a temperature control system, the first thermometer, the second thermometer, the third thermometer, the heater are all connected with the The temperature control system is connected, the first thermometer is set on the primary cold head, the second thermometer is set on the bottom of the helium container, and the third thermometer is set on the temperature control object.
在一个实施例中,还包括第一级热防护屏,所述控温对象设于所述第一级热防护屏内。In one embodiment, it further includes a first-level heat protection shield, and the temperature control object is arranged in the first-level heat protection shield.
在一个实施例中,还包括第二级热防护屏,所述制冷机的一级冷头、所述氦容器和所述第一级热防护屏均设于所述第二级热防护屏内。In one embodiment, it also includes a second-level heat protection shield, and the primary cold head of the refrigerator, the helium container and the first-level heat protection shield are all arranged in the second-level heat protection shield .
在一个实施例中,还包括真空筒体,所述第二级热防护屏设于所述真空筒体内。In one embodiment, a vacuum cylinder is further included, and the second-stage heat protection shield is disposed in the vacuum cylinder.
上述低温恒温器,通过制冷机将氦容器内的氦气冷却为液氦或者超临界氦,此时氦容器内的氦的密度将达到100kg/m3以上,由于氦在低温下仍能保持较大的比热容(2000J/(Kg·K)以上),因此可以有效用于抑制制冷机一级冷头造成的温度波动,大大提高低温冷源的温度稳定性。上述低温恒温器,可以利用机械式制冷机实现mK量级波动的高稳定性低温温度控制的过程。The above-mentioned cryostat cools the helium in the helium container to liquid helium or supercritical helium through a refrigerator, and at this time the density of the helium in the helium container will reach more than 100kg/m 3 , because helium can still maintain relatively low temperature Large specific heat capacity (more than 2000J/(Kg·K)), so it can be effectively used to suppress the temperature fluctuation caused by the first-stage cold head of the refrigerator, and greatly improve the temperature stability of the low-temperature cold source. The above-mentioned cryostat can use a mechanical refrigerator to realize the process of controlling the low-temperature temperature with high stability of fluctuations in mK order.
附图说明Description of drawings
图1为一实施方式的低温恒温器的结构示意图。FIG. 1 is a schematic structural view of a cryostat according to an embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1所示,一实施方式的低温恒温器100,包括制冷机10、氦气源20和氦容器30。As shown in FIG. 1 , a cryostat 100 according to an embodiment includes a refrigerator 10 , a helium gas source 20 and a helium container 30 .
制冷机10用于提供冷量。The refrigerator 10 is used to provide cold energy.
氦气源20与氦容器30连通,氦气源20用于向氦容器30输送氦气。The helium gas source 20 communicates with the helium container 30 , and the helium gas source 20 is used to deliver helium gas to the helium container 30 .
氦容器30与制冷机10的一级冷头12连接,制冷机10将氦容器30内的氦气冷却为液氦或者超临界氦,氦容器30和控温对象40连接。具体的,在图1所示的实施方式中,氦容器30的底部和控温对象40连接。The helium container 30 is connected to the primary cold head 12 of the refrigerator 10 , the refrigerator 10 cools the helium in the helium container 30 into liquid helium or supercritical helium, and the helium container 30 is connected to the temperature control object 40 . Specifically, in the embodiment shown in FIG. 1 , the bottom of the helium container 30 is connected to the temperature control object 40 .
上述低温恒温器100,通过制冷机10将氦容器30内的氦气冷却为液氦或者超临界氦,此时氦容器30内的氦的密度将达到100kg/m3以上,由于氦在低温下仍能保持较大的比热容(2000J/(Kg·K)以上),因此可以有效用于抑制制冷机一级冷头12造成的温度波动,大大提高低温冷源的温度稳定性。The above-mentioned cryostat 100 cools the helium in the helium container 30 to liquid helium or supercritical helium through the refrigerator 10. At this time, the density of the helium in the helium container 30 will reach more than 100 kg/m 3 . It can still maintain a large specific heat capacity (above 2000J/(Kg·K)), so it can be effectively used to suppress the temperature fluctuation caused by the first-stage cold head 12 of the refrigerator, and greatly improve the temperature stability of the low-temperature cold source.
可以理解,制冷机10为机械式低温制冷机,包括但不限于GM制冷机、脉冲管制冷机、斯特林制冷机等。制冷机10和压缩机14连通。It can be understood that the refrigerator 10 is a mechanical cryogenic refrigerator, including but not limited to a GM refrigerator, a pulse tube refrigerator, a Stirling refrigerator, and the like. The refrigerator 10 communicates with the compressor 14 .
在如图1所示的实施方式中,氦容器30内还设有翅片或圆管等抑制结构(图未示)。由于重力和对控温对象40的控温加热,超临界氦或者液氦不可避免的会产生自热对流,并因之产生低频的温度波动,通过在氦容器30内设置翅片、圆管等结构可以抑制液氦或者超临界氦的自然对流,可以对液氦的饱和蒸气压或者超临界氦的气体压力进行了稳定性控制,温度的稳定性更好。In the embodiment shown in FIG. 1 , restraining structures (not shown) such as fins or circular tubes are also provided in the helium container 30 . Due to gravity and the temperature-controlled heating of the temperature-controlled object 40, supercritical helium or liquid helium will inevitably produce self-thermal convection, and thus produce low-frequency temperature fluctuations. By setting fins, circular tubes, etc. in the helium container 30 The structure can suppress the natural convection of liquid helium or supercritical helium, can control the stability of the saturated vapor pressure of liquid helium or the gas pressure of supercritical helium, and has better temperature stability.
如图1所示的低温恒温器100还包括换热器50。换热器50设于制冷机10的一级冷头12上,换热器50的冷量来源于制冷机10的一级冷头12。换热器50的进口和氦气源20连接,换热器50的出口和氦容器30连接,换热器50用于氦气的预冷。The cryostat 100 as shown in FIG. 1 also includes a heat exchanger 50 . The heat exchanger 50 is arranged on the primary cold head 12 of the refrigerator 10 , and the cooling capacity of the heat exchanger 50 comes from the primary cold head 12 of the refrigerator 10 . The inlet of the heat exchanger 50 is connected to the helium source 20, the outlet of the heat exchanger 50 is connected to the helium container 30, and the heat exchanger 50 is used for precooling of the helium.
在一个实施方式中,低温恒温器100还包括压力控制器60,压力控制器60设于氦容器30与氦气源20之间。如图1所示的低温恒温器100中,压力控制器60设于换热器50和氦气源20之间。超临界氦的状态介于气态与液态之间,其压力的波动变化会影响氦容器30的底部的控温对象的温度变化,液氦的温度与其饱和蒸气压的大小相关,压力的波动直接会造成液氦温度的变化,也会影响氦容器30的底部的控温对象40的温度变化。因此,通过采用压力控制器60对氦容器30内的压力进行控制,可以进一步减少温度波动的幅值。In one embodiment, the cryostat 100 further includes a pressure controller 60 disposed between the helium vessel 30 and the helium source 20 . In the cryostat 100 shown in FIG. 1 , the pressure controller 60 is disposed between the heat exchanger 50 and the helium source 20 . The state of supercritical helium is between the gaseous state and the liquid state, and its pressure fluctuation will affect the temperature change of the temperature control object at the bottom of the helium container 30. The temperature of liquid helium is related to its saturated vapor pressure, and the pressure fluctuation will directly affect The temperature change of the liquid helium will also affect the temperature change of the temperature control object 40 at the bottom of the helium container 30 . Therefore, by using the pressure controller 60 to control the pressure in the helium container 30, the amplitude of the temperature fluctuation can be further reduced.
如图1所示的低温恒温器还包括加热器70,加热器70设于控温对象40上。The cryostat as shown in FIG. 1 further includes a heater 70 disposed on the temperature control object 40 .
如图1所示的低温恒温器还包括第一温度计72、第二温度计74和第三温度计76和控温系统(图未示)。第一温度计72、第二温度计74、第三温度计76、加热器70均和控温系统连接。第一温度计72设于一级冷头12上,第二温度计74设于氦容器30的底部,第三温度计76设于控温对象40上。其中第一温度计72用于测量和监控制冷机一级冷头12的温度,第二温度计74用于测量和监控氦容器底部的温度。通过第三温度计76检测控温对象40的温度,通过比较控温对象40的温度和目标温度之间的差值,采用控温系统控制调节加热器70对控温对象40的加热量,从而调节控温对象40的温度,在控温对象40获得目标温度的同时,可以进一步提高控温对象40的温度稳定性。控温系统可以为PID控制器。The cryostat as shown in FIG. 1 also includes a first thermometer 72 , a second thermometer 74 and a third thermometer 76 and a temperature control system (not shown). The first thermometer 72, the second thermometer 74, the third thermometer 76, and the heater 70 are all connected to the temperature control system. The first thermometer 72 is set on the primary cold head 12 , the second thermometer 74 is set on the bottom of the helium container 30 , and the third thermometer 76 is set on the temperature control object 40 . The first thermometer 72 is used to measure and monitor the temperature of the primary cold head 12 of the refrigerator, and the second thermometer 74 is used to measure and monitor the temperature at the bottom of the helium container. The temperature of the temperature control object 40 is detected by the third thermometer 76, and by comparing the difference between the temperature of the temperature control object 40 and the target temperature, the temperature control system is used to control and adjust the heating amount of the heater 70 to the temperature control object 40, thereby adjusting The temperature of the temperature control object 40 can further improve the temperature stability of the temperature control object 40 while the temperature control object 40 obtains the target temperature. The temperature control system may be a PID controller.
如图1所示的低温恒温器还包括热阻片80,热阻片80设于氦容器30和控温对象40之间。通过设置热阻片80将低温冷源与控温对象40隔开,可以利用热阻对低温温度波动的抑制作用。The cryostat as shown in FIG. 1 further includes a thermal resistance sheet 80 disposed between the helium container 30 and the temperature control object 40 . By arranging the thermal resistance sheet 80 to separate the low temperature cold source from the temperature control object 40, the suppression effect of the thermal resistance on the low temperature fluctuation can be utilized.
如图1所示的低温恒温器100还包括第一级热防护屏92,控温对象40设于第一级热防护屏92内。第一级防护屏92可以减少控温对象40的漏冷损失,提高控温对象40的温度稳定性。The cryostat 100 shown in FIG. 1 also includes a first-level heat protection shield 92 , and the temperature control object 40 is disposed inside the first-level heat protection shield 92 . The first-level protective screen 92 can reduce leakage cooling loss of the temperature control object 40 and improve the temperature stability of the temperature control object 40 .
进一步的,低温恒温器100还包括第二级热防护屏94,制冷机10的一级冷头12、氦容器30和第一级热防护屏92均设于第二级热防护屏94内。第二级防护屏94可以减少制冷机10的一级冷头12、氦容器30和第一级热防护屏92的漏冷损失,进一步提高控温对象40的温度稳定性。Further, the cryostat 100 also includes a second-stage heat protection shield 94 , and the primary cold head 12 of the refrigerator 10 , the helium container 30 and the first-stage heat protection shield 92 are all arranged inside the second-stage heat protection shield 94 . The second-stage protective screen 94 can reduce the leakage loss of the primary cold head 12 of the refrigerator 10 , the helium container 30 and the first-stage thermal protection screen 92 , and further improve the temperature stability of the temperature control object 40 .
更进一步的,低温恒温器100还包括真空筒体96,第二级热防护94屏设于真空筒体96内。真空筒体96和抽真空系统98连接。抽真空系统98用于给真空筒体96抽真空。真空筒体96可以进一步降低漏冷损失,提高控温对象40的温度稳定性。Further, the cryostat 100 also includes a vacuum cylinder 96 , and the second-stage thermal protection 94 is shielded inside the vacuum cylinder 96 . The vacuum cylinder 96 is connected to a vacuum system 98 . The vacuum system 98 is used to vacuum the vacuum cylinder 96 . The vacuum cylinder 96 can further reduce leakage cooling loss and improve the temperature stability of the temperature control object 40 .
上述低温恒温器100相较于液氦系统,系统结构简单,少了很多控制阀门及管道。成本低廉,除了在该过程中需要一定的电力供应外,没有其他成本输入。而液氦系统,液氦消耗量大,成本很高。相较于纯粹利用热阻片抑制温度波动的机械式制冷机恒温系统,上述低温恒温器100制冷量损失较小,控温范围较大,且冷源温度分布更为均匀。相较于纯粹的机械式制冷机液化系统,由于采用了自然对流的抑制装置,同时对液氦的饱和蒸气压或者超临界氦的气体压力进行了稳定性控制,温度的稳定性更好。运行稳定,可实现自动控制。Compared with the liquid helium system, the above-mentioned cryostat 100 has a simpler system structure and fewer control valves and pipelines. The cost is low, and there is no other cost input except that a certain power supply is required in the process. However, in the liquid helium system, the consumption of liquid helium is large and the cost is high. Compared with a mechanical refrigerator constant temperature system that purely uses thermal resistance plates to suppress temperature fluctuations, the cryostat 100 has less cooling capacity loss, a larger temperature control range, and a more uniform temperature distribution of the cold source. Compared with a purely mechanical refrigerator liquefaction system, due to the use of a natural convection suppression device and the stability control of the saturated vapor pressure of liquid helium or the gas pressure of supercritical helium, the temperature stability is better. The operation is stable and automatic control can be realized.
上述低温恒温器100,可以利用机械式制冷机实现mK量级波动的高稳定性低温温度控制的过程。The above-mentioned cryostat 100 can utilize a mechanical refrigerator to realize the process of high-stability low-temperature temperature control with mK level fluctuations.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be considered Be the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810206829.5A CN108800638A (en) | 2018-03-13 | 2018-03-13 | Low-temperature thermostat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810206829.5A CN108800638A (en) | 2018-03-13 | 2018-03-13 | Low-temperature thermostat |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108800638A true CN108800638A (en) | 2018-11-13 |
Family
ID=64095156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810206829.5A Pending CN108800638A (en) | 2018-03-13 | 2018-03-13 | Low-temperature thermostat |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108800638A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109585116A (en) * | 2018-12-24 | 2019-04-05 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) | A kind of low-temperature helium cooling back installation |
CN110118451A (en) * | 2019-04-09 | 2019-08-13 | 上海交通大学 | The profound hypothermia high accuracy temperature control device of thermal capacitance thermal resistance economic benefits and social benefits coupling |
CN111425689A (en) * | 2020-03-06 | 2020-07-17 | 西安交通大学 | Structure for realizing suppression of low-temperature pipeline pressure fluctuation |
CN113227675A (en) * | 2019-02-07 | 2021-08-06 | 苏黎世大学 | Cryostat operated with liquid helium and method of operation thereof |
CN113324345A (en) * | 2021-06-18 | 2021-08-31 | 中国科学院兰州化学物理研究所 | 1.5K ultralow temperature implementation system and method of liquid helium-free low-temperature system |
CN114405572A (en) * | 2021-12-10 | 2022-04-29 | 核工业西南物理研究院 | A kind of helium low temperature experimental test platform and method in multi-condition operation mode |
CN114963826A (en) * | 2022-05-23 | 2022-08-30 | 西安交通大学 | Freezing target and micro-fin heat capacity device for freezing target ice layer preparation experiment |
CN117053438A (en) * | 2023-07-31 | 2023-11-14 | 南方科技大学 | Shower head type liquid helium evaporator and refrigerator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140202174A1 (en) * | 2013-01-24 | 2014-07-24 | Cryomech, Inc. | Closed Cycle 1 K Refrigeration System |
CN105571190A (en) * | 2016-01-06 | 2016-05-11 | 复旦大学 | Mechanical vibration isolation liquid-helium-consumption-free extremely-low-temperature refrigerating system |
CN105675381A (en) * | 2016-03-16 | 2016-06-15 | 安徽万瑞冷电科技有限公司 | Super-low-vibration helium cold accumulation system and control method thereof |
CN106325063A (en) * | 2016-08-30 | 2017-01-11 | 中国科学院理化技术研究所 | A method and device for rapid cooling |
-
2018
- 2018-03-13 CN CN201810206829.5A patent/CN108800638A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140202174A1 (en) * | 2013-01-24 | 2014-07-24 | Cryomech, Inc. | Closed Cycle 1 K Refrigeration System |
CN105571190A (en) * | 2016-01-06 | 2016-05-11 | 复旦大学 | Mechanical vibration isolation liquid-helium-consumption-free extremely-low-temperature refrigerating system |
CN105675381A (en) * | 2016-03-16 | 2016-06-15 | 安徽万瑞冷电科技有限公司 | Super-low-vibration helium cold accumulation system and control method thereof |
CN106325063A (en) * | 2016-08-30 | 2017-01-11 | 中国科学院理化技术研究所 | A method and device for rapid cooling |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109585116B (en) * | 2018-12-24 | 2020-10-02 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | Low-temperature helium gas circulating cooling device |
CN109585116A (en) * | 2018-12-24 | 2019-04-05 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) | A kind of low-temperature helium cooling back installation |
CN113227675B (en) * | 2019-02-07 | 2024-03-01 | 苏黎世大学 | Cryostat operated with liquid helium and method of operating the same |
CN113227675A (en) * | 2019-02-07 | 2021-08-06 | 苏黎世大学 | Cryostat operated with liquid helium and method of operation thereof |
CN110118451A (en) * | 2019-04-09 | 2019-08-13 | 上海交通大学 | The profound hypothermia high accuracy temperature control device of thermal capacitance thermal resistance economic benefits and social benefits coupling |
CN111425689A (en) * | 2020-03-06 | 2020-07-17 | 西安交通大学 | Structure for realizing suppression of low-temperature pipeline pressure fluctuation |
CN111425689B (en) * | 2020-03-06 | 2021-03-26 | 西安交通大学 | Structure for realizing suppression of low-temperature pipeline pressure fluctuation |
CN113324345A (en) * | 2021-06-18 | 2021-08-31 | 中国科学院兰州化学物理研究所 | 1.5K ultralow temperature implementation system and method of liquid helium-free low-temperature system |
CN114405572B (en) * | 2021-12-10 | 2023-04-14 | 核工业西南物理研究院 | A Helium Low Temperature Experimental Test Platform and Method in Multi-working Condition Operation Mode |
CN114405572A (en) * | 2021-12-10 | 2022-04-29 | 核工业西南物理研究院 | A kind of helium low temperature experimental test platform and method in multi-condition operation mode |
CN114963826A (en) * | 2022-05-23 | 2022-08-30 | 西安交通大学 | Freezing target and micro-fin heat capacity device for freezing target ice layer preparation experiment |
CN114963826B (en) * | 2022-05-23 | 2024-05-07 | 西安交通大学 | A freezing target and a micro-fin heat capacity device for a freezing target ice layer preparation experiment |
CN117053438A (en) * | 2023-07-31 | 2023-11-14 | 南方科技大学 | Shower head type liquid helium evaporator and refrigerator |
CN117053438B (en) * | 2023-07-31 | 2024-04-30 | 南方科技大学 | A shower type liquid helium evaporator and refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108800638A (en) | Low-temperature thermostat | |
WO2017118241A1 (en) | Mechanical vibration-isolated, liquid helium consumption-free and extremely low temperature refrigerating system | |
CN103234661B (en) | Calibrating device with independent vacuum chamber | |
JP6502422B2 (en) | System and method for improving liquefaction rate in cryogenic gas liquefier of low temperature refrigerator | |
CN103853203A (en) | Cooling device | |
CN112547153A (en) | Liquid helium-free ultralow-temperature testing device with temperature of 1K | |
Guo et al. | Supercritical startup strategy of cryogenic loop heat pipe with different working fluids | |
CN115585606A (en) | Low-temperature system for testing liquid-helium-free closed cycle sample | |
Giboni et al. | Xenon recirculation-purification with a heat exchanger | |
Aprile et al. | Performance of a cryogenic system prototype for the XENON1T Detector | |
Chapman et al. | Cryogen-free cryostat for neutron scattering sample environment | |
CN103245434B (en) | Thermometer indexing device | |
CN214974127U (en) | Liquid helium-free ultralow-temperature testing device with temperature of 1K | |
CN203274962U (en) | Thermometer indexing device | |
Wang et al. | Advances on a cryogen-free Vuilleumier type pulse tube cryocooler | |
JP6164409B2 (en) | NMR system | |
Prouvé et al. | Pulse-tube dilution refrigeration below 10 mK | |
Li et al. | Design and construction of a 1.8 K superfluid 4He system with a GM cryocooler | |
Cipri et al. | Experimental analysis of a pulse tube based new prototype for cells cryopreservation | |
Biswas et al. | Experimental and numerical investigation on performance of a double inlet type cryogenic pulse tube refrigerator | |
Hata et al. | Development and comparison of two types of cryogen-free dilution refrigerator | |
Kirichek et al. | Top loading cryogen free cryostat for low temperature sample environment | |
Uhlig | Dry dilution refrigerator with He-4 precool loop | |
CN201497669U (en) | Cooling device based on G-M refrigerator | |
Shimazaki et al. | Realization of the 3 He Vapor-Pressure Temperature Scale and Development of a Liquid-He-Free Calibration Apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181113 |
|
RJ01 | Rejection of invention patent application after publication |