[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108762096B - 一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法 - Google Patents

一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法 Download PDF

Info

Publication number
CN108762096B
CN108762096B CN201810781296.3A CN201810781296A CN108762096B CN 108762096 B CN108762096 B CN 108762096B CN 201810781296 A CN201810781296 A CN 201810781296A CN 108762096 B CN108762096 B CN 108762096B
Authority
CN
China
Prior art keywords
frame
discrete
nceso
extended state
state observer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810781296.3A
Other languages
English (en)
Other versions
CN108762096A (zh
Inventor
李海涛
宋鹏
侯林
史阳阳
崔培玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810781296.3A priority Critical patent/CN108762096B/zh
Publication of CN108762096A publication Critical patent/CN108762096A/zh
Application granted granted Critical
Publication of CN108762096B publication Critical patent/CN108762096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提出了一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法。首先建立双框架伺服系统动力学模型,并通过坐标变换转换为满足构建级联扩张状态观测器(CESO)积分链形式的系统方程,再选择合适的非线性函数构建离散型非线性级联扩张状态观测器(NCESO)得到集总干扰的估计,结合适当的滑模控制器从系统的输出通道消除集总干扰的影响。本发明提出的基于离散型非线性级联扩张状态观测器和滑模控制的复合扰动抑制方法,既解决了传统扩张状态观测器阶数较高时参数难以配置的问题,同时也提高了线性级联扩张状态观测器估计精度,实现了框架伺服系统的高精度角速率跟踪控制,可应用于存在着多种不确定干扰的工程中。

Description

一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺 框架系统扰动抑制方法
技术领域
本发明属于双框架磁悬浮控制CMG框架伺服系统控制领域,具体涉及一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法,用于提高框架系统的干扰抑制能力,实现框架伺服系统的高精度角速率跟踪控制,进而实现控制力矩陀螺高精度力矩输出。
背景技术
航天器姿态控制系统一般包含姿态敏感器、姿态控制器和执行机构三个部分。航天器姿态执行机构分为推力器、环境力矩执行机构、惯性执行机构三大类。惯性执行机构通过改变高速转子角动量的大小(飞轮)或方向(控制力矩陀螺)来输出控制力矩,具有输出力矩大、精度高,无需消耗工质仅消耗电能,寿命长等特点。惯性执行机构分为惯性动量轮和控制力矩陀螺两大类。双框架磁悬浮CMG主要由磁悬浮高速转子系统和内外框架系统组成,其工作原理是:根据陀螺效应,内外框架旋转强制改变转子角动量方向从而输出陀螺力矩。框架系统的角速度精度决定了双框架磁悬浮CMG输出转矩的精度,因此提高框架伺服控制系统的角速度精度具有重要意义。
由于强大的陀螺效应,内外框架之间会产生明显的耦合力矩。耦合力矩是非线性的,并与外部框架的角位置和速度有关,这是影响框架系统角速度的主要因素之一。另外,框架伺服系统是一个非常低速的机械伺服系统,由于陀螺耦合力矩,摩擦力矩是非线性的,因此构建精确的系统模型是非常困难的,所以摩擦力矩是影响框架伺服性能的另一个主要因素。要实现框架系统高精度速率控制,必须克服耦合力矩和非线性摩擦力矩等未知不匹配干扰对框架系统伺服性能的影响。
为解决上述不匹配干扰导致框架系统角速率精度降低的问题,基于模态分离方法的简化反馈线性化控制方法可以解耦双框架磁悬浮CMG系统,但是需要一个精确的数学模型;微分几何解耦方法可以解耦双框架磁悬浮CMG系统,但是不能完全消除耦合力矩的影响;扩张状态观测器(ESO)作为一种有效的干扰估计技术,将集总干扰扩张为系统的新状态,然而如果系统状态方程的阶数大于2,则很难在实际应用中配置满足系统精度要求的ESO参数;级联ESO(CESO)将ESO的参数调整简化为两个参数的调整,而CESO又分为线性CESO和非线性CESO。在中国专利一种基于降阶级联扩张状态观测器的双框架磁悬浮CMG框架系统参数优化方法(专利号:201810420964.X)中,使用连续型线性降阶级联扩张状态观测器进行干扰估计,线性CESO设计相对简单,但是观测器的估计效果不如非线性CESO。而与连续型NCESO相比,离散型NCESO的状态跟踪效率更高,而且可以通过改变采样周期改变ESO的估计误差和稳定性。
发明内容
本发明要解决的技术问题是:克服现有方法的不足,提供了一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法,通过设计滑模控制器补偿集总干扰,该方法不仅提高了框架伺服系统的角速率跟踪性能,还提高了系统的干扰抑制能力。
本发明解决上述技术问题采用的技术方案为:一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法,包括以下步骤:
步骤(1):构建系统数学模型
内外框架系统的动力学方程和转矩平衡方程可写为:
Figure GDA0002558876670000021
其中,θx和θy分别是内外框架的角位置,Kx和Ky分别是扭矩系数,Jx和Jy是内外框架的等效转动惯量,Fx和Fy是内外框架的未建模动态,fx和fy是非线性摩擦转矩,Tx和Ty是框架电机的输出转矩,Hz是高速转子的角动量,ux和uy是框架电机的控制电压,Ix和Iy是力矩电机的电流,Rx和Ry是力矩电机的定子电阻,Lx和Ly是电感,Cex和Cey是反电动势系数。
对于内框架,将状态变量定义为
Figure GDA0002558876670000022
控制输入为ux。此外,耦合力矩
Figure GDA0002558876670000023
未建模动态Fx和非线性摩擦fx作为框架系统的主要干扰,被视为“集总干扰”。内框架系统的状态空间方程表示为:
Figure GDA0002558876670000031
Figure GDA0002558876670000032
其中,
Figure GDA0002558876670000033
从中可以看出,控制输入ux和扰动d1不在同一个通道中,从而导致了不匹配干扰问题。通过引入离散型NCESO来估计总干扰并在滑模控制器中补偿其影响,可以解决不匹配干扰问题。以上状态空间方程不符合传统ESO积分串联形式,因此先通过引入坐标变换转换为积分串联形式;
步骤(2):根据步骤(1)中的内框架系统的积分串联形式的方程,选择合适的非线性函数,可以设计出由三个相似的二阶非线性扩张状态观测器(ESO)级联的离散型非线性级联扩张状态观测器(NCESO)用来观测系统内部状态和集总干扰,从而简化了传统ESO的模型;
步骤(3):根据步骤(2)中的离散型非线性级联扩张状态观测器观测到的集总干扰,通过选择合适的滑模面,可以设计滑模控制器对集总干扰进行补偿,最终消除不匹配干扰。
进一步的,根据离散型NCESO观测集总干扰并设计滑模控制器的设计步骤如下:
积分串联形式的内框架方程为:
Figure GDA0002558876670000034
其中,v1=x1,v2=x2,
Figure GDA0002558876670000035
取适当的积分步长,构建内框架离散型ESO模型为:
Figure GDA0002558876670000036
其中,k=0,1,2,3,4…。z1(k),z2(k),z3(k),z4(k)分别用于估计v1(k),v2(k),v3(k),f(k),h是积分步长,g1(x),g2(x),g3(x),g4(x)是误差函数。
构建内框架离散型NCESO模型为:
Figure GDA0002558876670000041
Figure GDA0002558876670000042
Figure GDA0002558876670000043
其中,内框架离散型NCESO的状态变量定义为z(k)=[z1(k),z2(k),z3(k),z4(k),z5(k),z6(k)]T,其中z1(k),z2(k),z4(k),z6(k)分别用于估计v1(k),v2(k),v3(k),f(k)。z3(k)和z5(k)是中间变量。β1和β2是离散NCESO的参数,h是积分步长,ei(k)(i=1...6)为估计误差,定义为e1(k)=z1(k)-v1(k),e2(k)=z2(k)-v2(k),e3(k)=z3(k)-z2(k),e4(k)=z4(k)-v3(k),e5(k)=z5(k)-z4(k),e6(k)=z6(k)-f(k)。
CESO的非线性误差函数选为:
Figure GDA0002558876670000044
其中i=1,3,5。
在双框架系统中,扰动f是有界的,因此离散型NCESO的稳态误差可以通过调整β1和β2而被限制在非常小的值。
滑模面设计如下:
s(k)=c1ξ1(k)+c2ξ2(k)+ξ3(k)
其中:ξ1(k)=v1(k)-θxref(k),ξ2(k)=v2(k)-wxref(k),
Figure GDA0002558876670000045
θxref(k)是内框架参考角位置,wxref(k)是内框架参考速度,
Figure GDA0002558876670000046
是内框架参考加速度。
c1和c2被设计成使得以下多项式Hurwitz稳定:
s2+c2s+c1=0
控制律设计为:
Figure GDA0002558876670000047
其中k是切换增益。
外框架的离散型NCESO模型与内框架相同,离散型NCESO设计为:
Figure GDA0002558876670000051
Figure GDA0002558876670000052
Figure GDA0002558876670000053
其中,外框架离散型NCESO的状态变量定义为
Figure GDA0002558876670000054
其中
Figure GDA0002558876670000055
分别用于估计
Figure GDA0002558876670000056
Figure GDA0002558876670000057
是中间变量,
Figure GDA0002558876670000058
Figure GDA0002558876670000059
是离散NCESO的参数,h是积分步长,
Figure GDA00025588766700000510
为估计误差,定义为
Figure GDA00025588766700000511
Figure GDA00025588766700000512
滑模控制律设计为:
Figure GDA00025588766700000513
其中
Figure GDA00025588766700000514
是切换增益,by=Ky/JyLy
Figure GDA00025588766700000515
Figure GDA00025588766700000516
θyref(k)是外框架参考角位置,wyref(k)是外框架参考速度,
Figure GDA00025588766700000517
是外框架参考加速度。
本发明的基本原理是:本发明根据框架伺服控制系统动力学模型建立积分串联形式的方程,选择合适的非线性误差函数构建离散型非线性级联扩张状态观测器(NCESO),通过离散型NCESO估计系统内部状态和集总干扰,使用非线性误差函数的离散型CESO对集总干扰的估计更加精确,再结合滑模控制器对集总干扰的影响进行补偿,从而对系统扰动进行了抑制,实现高精度框架角速率输出。
本发明与现有技术相比的优点在于:
1、选择合适的非线性误差函数构建离散型NCESO,既解决了传统扩张状态观测器(ESO)阶数较高时参数难以配置的问题,同时也提高了线性级联扩张状态观测器(LCESO)的估计精度。
2、选择合适的滑模面,设计离散型滑模控制器从系统的输出通道消除集总干扰的影响,滑模控制器的开关增益只需要设计的比干扰的估计误差大,从而缓解了抖振问题。
附图说明
图1为框架角速率伺服系统控制算法流程图;
图2为DGMSCMG框架系统结构图,其中,1为第一框架轴承,2为第二框架轴承,3为第三框架轴承,4为力矩电机,5为高速转子系统,6为旋转变压器;
图3为本发明内框架的离散型NCESO示意图;
图4为本发明内框架的离散型NCESO结构图;
图5为本发明外框架的离散型NCESO示意图;
图6为本发明外框架的离散型NCESO结构图;
图7为基于离散型NCESO的框架角速率伺服系统整体控制算法结构图。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
如图1所示,一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法的流程图,首先对框架伺服控制系统进行动力学建模,根据动力学模型建立积分串联形式的状态方程;根据积分串联形式的系统方程和选择的合适的非线性误差函数构建离散型非线性级联扩张状态观测器;根据离散型非线性级联扩张状态观测器估计系统的集总干扰和选择的适当滑模面,设计离散型滑模控制器对集总干扰的影响进行补偿,从而对系统扰动进行了抑制,实现高精度框架角速率输出。
本发明的具体实施方式如下:
(1)建立双框架伺服系统动力学模型
从图2所示的系统结构可以看出,DGMSCMG由内外框架系统和高速转子系统组成,外框架的定子部分固定在基座上。另外,两个旋转变压器分别用于测量内外框架的角位置,角速度由角位置计算。
内外框架系统的动力学方程和转矩平衡方程可写为:
Figure GDA0002558876670000061
其中,θx和θy分别是内外框架的角位置,Kx和Ky分别是扭矩系数,Jx和Jy是内外框架的等效转动惯量,Fx和Fy是内外框架的未建模动态,fx和fy是非线性摩擦转矩,Tx和Ty是框架电机的输出转矩,Hz是高速转子的角动量,ux和uy是框架电机的控制电压,Ix和Iy是力矩电机的电流,Rx和Ry是力矩电机的定子电阻,Lx和Ly是电感,Cex和Cey是反电动势系数。
由于内外框架结构相似,我们以内框架为例,将状态变量定义为
Figure GDA0002558876670000071
控制输入为ux。此外,耦合力矩
Figure GDA0002558876670000072
未建模动态Fx和非线性摩擦fx作为框架系统的主要干扰,被视为“集总干扰”。内框架系统的状态空间方程表示为:
Figure GDA0002558876670000073
其中,
Figure GDA0002558876670000074
(2)建立积分串联形式的方程并构建离散型ESO
从(2)中可以看出,控制输入ux和扰动d1不在同一个通道中,从而导致了不匹配的问题。通过引入CESO来估计总干扰并在控制器中补偿它的影响,可以解决不匹配的问题。但是,(2)不符合传统的CESO积分串联形式,因此需要引入坐标变换。新坐标被定义为v=[v1,v2,v3]T,其中,
Figure GDA0002558876670000075
积分串联形式的内框架方程为:
Figure GDA0002558876670000076
其中,
Figure GDA0002558876670000077
取适当的积分步长,构建内框架离散型ESO模型为:
Figure GDA0002558876670000078
其中,k=0,1,2,3,4…。z1(k),z2(k),z3(k),z4(k)分别用于估计v1(k),v2(k),v3(k),f(k),h是积分步长,g1(x),g2(x),g3(x),g4(x)是误差函数。
实际系统中,框架参考角速度有界且可微,干扰估计误差也是有界的。
(3)选择适当的非线性误差函数构建离散型非线性级联扩张状态观测器
对于一个三阶系统,如果我们将角位置v1(k)作为CESO的参考输入,那么非线性CESO将由三个具有相同参数的相似二阶ESO级联,内框架离散型NCESO的结构如图3所示。离散型NCESO的状态变量定义为z(k)=[z1(k),z2(k),z3(k),z4(k),z5(k),z6(k)]T,其中z1(k)用于估计v1(k),z2(k)用于估计v2(k),z4(k)用于估计v3(k),z6(k)用于估计f(k),并且z3(k)和z5(k)是中间变量。估计误差定义为e1(k)=z1(k)-v1(k),e2(k)=z2(k)-v2(k),e3(k)=z3(k)-z2(k),e4(k)=z4(k)-v3(k),e5(k)=z5(k)-z4(k),e6(k)=z6(k)-f(k)。β1和β2是离散型NCESO的两个参数,h是积分步长。如图4所示,内框架离散型NCESO的模型构建如下:
Figure GDA0002558876670000081
CESO的非线性误差函数选为:
Figure GDA0002558876670000082
其中i=1,3,5。
在双框架系统中,扰动f是有界的,因此NCESO的稳态误差可以通过调整β1和β2而被限制在非常小的值。
(4)滑模控制器的设计
滑模面设计如下:
s(k)=c1ξ1(k)+c2ξ2(k)+ξ3(k) (7)
其中:ξ1(k)=v1(k)-θxref(k),ξ2(k)=v2(k)-wxref(k),
Figure GDA0002558876670000083
θxref(k)是内框架参考角位置,wxref(k)是内框架参考速度,
Figure GDA0002558876670000084
是内框架参考加速度。
c1和c2被设计成使得以下多项式Hurwitz稳定:
s2+c2s+c1=0 (8)
控制律设计为:
Figure GDA0002558876670000091
其中k是切换增益。
以上通过选择适当的非线性误差函数构建离散型非线性级联扩张状态观测器对集总干扰进行估计,结合(9)式的滑模控制器对内框架集总干扰的影响进行补偿(外框架类似),从而实现系统的扰动抑制,实现高精度框架角速度输出。
外框架离散型NCESO的结构如图5所示。外框架离散型NCESO的状态变量定义为
Figure GDA0002558876670000092
其中
Figure GDA0002558876670000093
用于估计
Figure GDA0002558876670000094
用于估计
Figure GDA0002558876670000095
Figure GDA0002558876670000096
用于估计
Figure GDA0002558876670000097
用于估计
Figure GDA0002558876670000098
并且
Figure GDA0002558876670000099
Figure GDA00025588766700000910
是中间变量。估计误差定义为
Figure GDA00025588766700000911
Figure GDA00025588766700000912
Figure GDA00025588766700000913
Figure GDA00025588766700000914
是离散NCESO的两个参数。如图6所示,外框架离散型NCESO的模型构建如下:
Figure GDA00025588766700000915
滑模控制律设计为:
Figure GDA00025588766700000916
其中
Figure GDA00025588766700000917
是切换增益,by=Ky/JyLy
Figure GDA00025588766700000918
Figure GDA00025588766700000919
θyref(k)是外框架参考角位置,wyref(k)是外框架参考速度,
Figure GDA00025588766700000920
是外框架参考加速度。
基于离散型NCESO和滑模控制的双框架控制力矩陀螺框架系统控制结构图如图7所示。
(5)离散型NCESO参数配置方法设计及仿真分析
从式(5)和(9)可以看出,内框架系统中有5个参数需要设计(外框架与之类似),即离散NCESO的参数β1,β2,控制器参数c1,c2,k。控制器参数与控制器带宽wc有关,并按照极点配置方式进行配置,控制器带宽wc与框架角速度带宽有关。观测器带宽wc应该满足w0=(2~5)*wc。具体参数配置如表1所示。
表格1 内框架控制器参数
Figure GDA0002558876670000101
为了验证本文提出的方法在DGMSCMG系统中的干扰估计和抑制性能的有效性和优越性,将其与LCESO的方法进行了比较仿真。在仿真中将内外框架设置为初始正交且静止,因为在这种情况下耦合力矩达到最大。此外,在仿真中使用Stribeck摩擦模型(工程中最常用的摩擦模型之一),来模拟框架系统中非线性摩擦的影响。按照DGMSCMG样机参数进行仿真设置,其参数在表2中给出。
表格2 框架设计参数
Figure GDA0002558876670000102
经仿真验证,在角速度参考指令是5°/s时,本发明的系统输出角速率波动仅为0.0099°/s,和中国专利一种基于降阶级联扩张状态观测器的双框架磁悬浮CMG框架系统参数优化方法(专利号:201810420964.X)相比,本发明的系统输出角速率精度提升了23.8%。

Claims (1)

1.一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法,其特征在于,包括以下步骤:
步骤(1):构建系统数学模型
内外框架系统的动力学方程和转矩平衡方程可写为:
Figure FDA0002591689210000011
其中,θx和θy分别是内外框架的角位置,Kx和Ky分别是扭矩系数,Jx和Jy是内外框架的等效转动惯量,Fx和Fy是内外框架的未建模动态,fx和fy是非线性摩擦转矩,Tx和Ty是框架电机的输出转矩,Hz是高速转子的角动量,ux和uy是框架电机的控制电压,Ix和Iy是力矩电机的电流,Rx和Ry是力矩电机的定子电阻,Lx和Ly是电感,Cex和Cey是反电动势系数;
对于内框架,将状态变量定义为
Figure FDA0002591689210000012
控制输入为ux,耦合力矩
Figure FDA0002591689210000013
未建模动态Fx和非线性摩擦fx作为框架系统的主要干扰,被视为“集总干扰”,内框架系统的状态空间方程表示为:
Figure FDA0002591689210000014
Figure FDA0002591689210000015
其中,
Figure FDA0002591689210000016
控制输入ux和扰动d1不在同一个通道中,从而导致了不匹配干扰问题,通过引入离散型NCESO来估计总干扰并在滑模控制器中补偿其影响,可以解决不匹配干扰问题,以上状态空间方程不符合传统ESO积分串联形式,因此先通过引入坐标变换转换为积分串联形式;
步骤(2):根据步骤(1)中的内框架系统的积分串联形式的方程,选择合适的非线性函数,可以设计出由三个相似的二阶非线性扩张状态观测器ESO级联的离散型非线性级联扩张状态观测器NCESO用来观测系统内部状态和集总干扰,从而简化了传统ESO的模型;
步骤(3):根据步骤(2)中的离散型非线性级联扩张状态观测器观测到的集总干扰,通过选择合适的滑模面,设计滑模控制器对集总干扰进行补偿,最终消除不匹配干扰;
通过离散型NCESO观测到的集总干扰并设计滑模控制器的设计步骤如下:
积分串联形式的内框架方程为:
Figure FDA0002591689210000021
其中,v1=x1,v2=x2,
Figure FDA0002591689210000022
取适当的积分步长,构建内框架离散型ESO模型为:
Figure FDA0002591689210000023
其中,k=0,1,2,3,4…;z1(k),z2(k),z4(k),z6(k)分别用于估计v1(k),v2(k),v3(k),f(k),h是积分步长,g1(x),g2(x),g3(x),g4(x)是误差函数;
构建内框架离散型NCESO模型为:
Figure FDA0002591689210000024
Figure FDA0002591689210000025
Figure FDA0002591689210000026
其中,内框架离散型NCESO的状态变量定义为z(k)=[z1(k),z2(k),z3(k),z4(k),z5(k),z6(k)]T,其中z1(k),z2(k),z4(k),z6(k)分别用于估计v1(k),v2(k),v3(k),f(k),z3(k)和z5(k)是中间变量,β1和β2是离散NCESO的参数,h是积分步长,ei(k),i=1...6为估计误差,定义为e1(k)=z1(k)-v1(k),e2(k)=z2(k)-v2(k),e3(k)=z3(k)-z2(k),e4(k)=z4(k)-v3(k),e5(k)=z5(k)-z4(k),e6(k)=z6(k)-f(k);
CESO的非线性误差函数选为:
Figure FDA0002591689210000031
其中i=1,3,5;
在双框架系统中,扰动f是有界的,因此离散型NCESO的稳态误差可以通过调整β1和β2而被限制在非常小的值;
滑模面设计如下:
s(k)=c1ξ1(k)+c2ξ2(k)+ξ3(k)
其中:ξ1(k)=v1(k)-θxref(k),ξ2(k)=v2(k)-wxref(k),
Figure FDA0002591689210000032
θxref(k)是内框架参考角位置,wxref(k)是内框架参考速度,
Figure FDA0002591689210000033
是内框架参考加速度;
c1和c2被设计成使得以下多项式Hurwitz稳定:
s2+c2s+c1=0
控制律设计为:
Figure FDA0002591689210000034
其中k是切换增益;
外框架的离散NCESO模型与内框架相似,离散型NCESO设计为:
Figure FDA0002591689210000035
Figure FDA0002591689210000036
Figure FDA0002591689210000037
其中,外框架离散型NCESO的状态变量定义为
Figure FDA0002591689210000038
其中
Figure FDA0002591689210000039
分别用于估计
Figure FDA00025916892100000310
Figure FDA00025916892100000311
是中间变量,
Figure FDA00025916892100000312
Figure FDA00025916892100000313
是离散NCESO的参数,h是积分步长,
Figure FDA00025916892100000314
为估计误差,定义为
Figure FDA00025916892100000315
Figure FDA00025916892100000316
滑模控制律设计为:
Figure FDA0002591689210000041
其中
Figure FDA0002591689210000042
是切换增益,by=Ky/JyLy
Figure FDA0002591689210000043
θyref(k)是外框架参考角位置,wyref(k)是外框架参考速度,
Figure FDA0002591689210000044
是外框架参考加速度。
CN201810781296.3A 2018-07-17 2018-07-17 一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法 Active CN108762096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810781296.3A CN108762096B (zh) 2018-07-17 2018-07-17 一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810781296.3A CN108762096B (zh) 2018-07-17 2018-07-17 一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法

Publications (2)

Publication Number Publication Date
CN108762096A CN108762096A (zh) 2018-11-06
CN108762096B true CN108762096B (zh) 2020-09-08

Family

ID=63974055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810781296.3A Active CN108762096B (zh) 2018-07-17 2018-07-17 一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法

Country Status (1)

Country Link
CN (1) CN108762096B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412867B (zh) * 2019-05-17 2020-08-11 北京航空航天大学 一种磁悬浮控制力矩陀螺框架系统高精度角速率控制方法
CN110304135B (zh) * 2019-07-10 2021-08-06 上海交通大学 一种基于扩张干扰观测器的线控转向系统齿条力估计方法
CN110456630B (zh) * 2019-08-22 2020-07-24 北京航空航天大学 一种控制力矩陀螺框架伺服系统抗干扰控制方法
CN110672121B (zh) * 2019-09-19 2020-11-20 北京控制工程研究所 一种控制力矩陀螺框架动态响应测试方法及系统
CN110879553B (zh) * 2019-12-12 2021-02-19 山东大学 一种基于输出状态可用的微陀螺仪的控制方法及系统
CN112256048B (zh) * 2020-10-13 2022-02-11 北京航空航天大学 一种混合灵敏度优化的cmg框架系统速度调节方法
CN112462611B (zh) * 2020-11-30 2022-05-20 华中科技大学 一种精密机电系统滑动摩擦建模方法
CN112859612B (zh) * 2021-01-20 2022-03-08 北京航空航天大学 一种超低速控制力矩陀螺框架伺服系统高精度控制器
CN113031435B (zh) * 2021-02-03 2022-07-12 北京航空航天大学 数字式双频扩张状态观测器及扰动观测方法
CN113625214B (zh) * 2021-08-10 2023-08-29 广东工业大学 一种磁力计电磁干扰诊断滤波方法及系统
CN113794422B (zh) * 2021-09-22 2024-05-28 北京理工大学 非线性传输力矩模型建模方法及齿轮波扰动力矩抑制方法
CN114465546A (zh) * 2021-12-20 2022-05-10 北京航空航天大学 一种基于信号重构和离散eso的角位置获取方法
CN115276120B (zh) * 2022-08-23 2023-05-30 山东大学 一种功率转换器的无模型预测控制方法及系统
CN118466225B (zh) * 2024-07-15 2024-09-13 北京易动宇航科技有限公司 适用于控制力矩陀螺的扰动力矩抑制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301934A (zh) * 2008-04-22 2008-11-12 北京航空航天大学 一种双框架磁悬浮控制力矩陀螺控制系统
JP2014133600A (ja) * 2013-01-08 2014-07-24 Fuji It Co Ltd 吊荷姿勢制御装置
CN105116934A (zh) * 2015-08-14 2015-12-02 北京航空航天大学 基于自适应滑模补偿的双框架mscmg框架系统高精度控制方法
CN105159083A (zh) * 2015-09-06 2015-12-16 北京航空航天大学 一种双框架磁悬浮cmg框架系统的高精度摩擦补偿控制方法
CN105763119A (zh) * 2016-04-20 2016-07-13 北京控制工程研究所 一种cmg框架永磁同步电机的控制系统及控制方法
CN105786036A (zh) * 2016-04-05 2016-07-20 北京控制工程研究所 一种抑制转子动不平衡扰动的控制力矩陀螺框架控制系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627404B2 (en) * 2007-04-13 2009-12-01 The Boeing Company Singularity escape and avoidance using a virtual array rotation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301934A (zh) * 2008-04-22 2008-11-12 北京航空航天大学 一种双框架磁悬浮控制力矩陀螺控制系统
JP2014133600A (ja) * 2013-01-08 2014-07-24 Fuji It Co Ltd 吊荷姿勢制御装置
CN105116934A (zh) * 2015-08-14 2015-12-02 北京航空航天大学 基于自适应滑模补偿的双框架mscmg框架系统高精度控制方法
CN105159083A (zh) * 2015-09-06 2015-12-16 北京航空航天大学 一种双框架磁悬浮cmg框架系统的高精度摩擦补偿控制方法
CN105786036A (zh) * 2016-04-05 2016-07-20 北京控制工程研究所 一种抑制转子动不平衡扰动的控制力矩陀螺框架控制系统及方法
CN105763119A (zh) * 2016-04-20 2016-07-13 北京控制工程研究所 一种cmg框架永磁同步电机的控制系统及控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Composite Decoupling Control of Gimbal Servo System in Double-Gimbaled Variable Speed CMG Via Disturbance Observer;李海涛等;《IEEE/ASME TRANSACTIONS ON MECHATRONICS》;20170228;第22卷(第1期);第312-320页 *
Precise Control for Gimbal System of Double Gimbal Control Moment Gyro Based on Cascade Extended State Observer;李海涛等;《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》;20170630;第64卷(第6期);第4653-4661页 *
基于干扰观测器的双框架变速率控制力矩陀螺解耦控制;宁欣等;《机械工程学报》;20170531;第53卷(第10期);第52-59页 *
基于扩张状态观测器的DGMSCMG框架;李海涛等;《航空学报》;20100630;第31卷(第6期);第1213-1219页 *

Also Published As

Publication number Publication date
CN108762096A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108762096B (zh) 一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法
CN108536185B (zh) 一种基于降阶级联扩张状态观测器的双框架磁悬浮cmg框架系统参数优化方法
CN110716506B (zh) 一种基于混合滑模控制的伺服系统位置跟踪控制方法
Yu et al. Approximation-based discrete-time adaptive position tracking control for interior permanent magnet synchronous motors
CN104242769A (zh) 基于连续终端滑模技术的永磁同步电机速度复合控制方法
CN110412867B (zh) 一种磁悬浮控制力矩陀螺框架系统高精度角速率控制方法
CN109062043B (zh) 考虑网络传输以及执行器饱和的航天器自抗扰控制方法
CN107121932B (zh) 电机伺服系统误差符号积分鲁棒自适应控制方法
CN106774373A (zh) 一种四旋翼无人机有限时间姿态跟踪控制方法
CN112223275B (zh) 基于有限时间跟踪控制的协作机器人控制方法
CN110116409B (zh) 一种基于扰动观测器的四通道遥操作双边控制方法
CN108155833B (zh) 考虑电气特性的电机伺服系统渐近稳定控制方法
CN107168072B (zh) 一种基于干扰观测器的非匹配干扰系统自抗扰控制方法
Lungu Control of double gimbal control moment gyro systems using the backstepping control method and a nonlinear disturbance observer
CN105182984A (zh) 飞行器俯仰姿态的线性自抗扰控制器设计与参数整定
WO2024037394A1 (zh) 一种龙门机床动梁交叉耦合控制方法
CN104166345A (zh) 一种磁悬浮控制力矩陀螺转子系统解耦和扰动抑制方法
CN106200380A (zh) 基于非线性观测的磁悬浮系统跟踪控制方法
CN112769364B (zh) 一种直流电机伺服系统的快速自适应抗扰控制方法
CN116317794A (zh) 航空发动机电动执行机构高精度控制方法
CN114280944B (zh) 一种具有输出约束的pmsm系统有限时间动态面控制方法
Cheng et al. Robust proximate time-optimal servomechanism with speed constraint for rapid motion control
Gu et al. Data-driven model-free adaptive sliding mode control for electromagnetic linear actuator
CN101710808B (zh) 一种磁悬浮控制力矩陀螺转子系统径向的解耦方法
CN105404157A (zh) 一种基于规定性能参数估计的自适应控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant