[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108507678A - 一种等离激元多谐振机制增强的可调超光谱探测芯片 - Google Patents

一种等离激元多谐振机制增强的可调超光谱探测芯片 Download PDF

Info

Publication number
CN108507678A
CN108507678A CN201810171259.0A CN201810171259A CN108507678A CN 108507678 A CN108507678 A CN 108507678A CN 201810171259 A CN201810171259 A CN 201810171259A CN 108507678 A CN108507678 A CN 108507678A
Authority
CN
China
Prior art keywords
nano
plasmon
resonance
material layer
nail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810171259.0A
Other languages
English (en)
Inventor
张彤
苏丹
熊梦
单锋
张晓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810171259.0A priority Critical patent/CN108507678A/zh
Priority to US16/975,400 priority patent/US11060916B2/en
Priority to PCT/CN2018/088736 priority patent/WO2019165713A1/zh
Publication of CN108507678A publication Critical patent/CN108507678A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种等离激元多谐振机制增强的可调超光谱探测芯片,该探测芯片由阵列化的金属纳米钉谐振腔探测单元所组成,每个探测单元(1)包括:底电极(2)、半导体材料层(3)、间隔层(4)、纳米钉阵列(5)、调控材料层(6)、顶电极(7)、外围调控信号(8)及驱动电路(9);其位置关系由上至下依次为顶电极(7)、调控材料层(6)、纳米钉阵列(5)、间隔层(4)、半导体材料层(3)、底电极(2),其中,纳米钉阵列(5)填充于调控材料层(6)内部,外围调控信号(8)及驱动电路(9)与调控材料层(6)两侧连接。实现探测器材料的量子效率显著提升,光谱分辨率优于1纳米,实现突破半导体截止波长的光探测。

Description

一种等离激元多谐振机制增强的可调超光谱探测芯片
技术领域
本发明属于红外探测器技术、金属纳米材料等领域,具体是一种等离激元多谐振机制增强的可调超光谱探测芯片。
背景技术
超光谱成像探测技术利用具有一定光谱分辨率的超光谱图像进行目标探测,相比传统的单一宽波段光电探测技术,它要求结合成像技术和光谱测量技术获取二维空间信息和随波长分布的光谱辐射信息。只有对目标光谱信息和目标空间影像实现高精度的分辨,才能够提高目标探测的准确性,扩展传统探测技术的功能,在目标材质识别、异常目标检测、伪装目标辨识和复杂背景抑制等目标探测技术领域满足应用需求。然而,现有的传统红外光电探测器的探测波长受半导体材料带隙的限制,无法探测到更长的波段,而且光电探测器通常采用棱镜、光栅或分布式布拉格反射镜等分立器件对红外辐射进行分光,以实现红外多光谱成像,但难以实现芯片化与集成化;另外现有的多光谱探测技术采用的工作波段较少,一般为10个至20个,光谱分辨率Δλ/λ为0.1左右,即光谱分辨率低。
本发明利用等离激元纳米颗粒的局域表面等离激元效应,针对现有红外光电探测器量子效率低、光谱分辨率低、采用分立器件分光无法实现集成化与芯片化等瓶颈问题,并结合新机理、新技术提出了一种等离激元多谐振机制增强的可调超光谱探测芯片,同时利用表面等离激元光致热载流子可以打破传统半导体探测器的探测波长受其带隙限制的瓶颈,拓展其探测波长范围;探测芯片具有探测波段可拓展、量子效率高、光谱分辨率高、芯片化、集成化及低成本等优点,可广泛应用于军事侦察、目标/背景探测、地雷探测等领域。
发明内容
技术问题:本发明的目的是解决已有红外光电探测器的探测波长受半导体带隙限制,探测范围有限、量子效率低、光谱分辨率低、采用分立器件分光难以集成化和大规模芯片化等技术问题,提出一种等离激元多谐振机制增强的可调超光谱探测芯片,利用金属纳米钉与半导体构成的异质结,基于等离激元谐振增强的热载流子效应实现突破半导体截止波长的光探测;利用金属纳米钉横向与纵向两种谐振模式竞争导致的光吸收谱线的窄化,当金属纳米钉加入到红外光电探测器中后,可提高入射到探测材料局部的光强密度,实现探测器材料的量子效率显著增加;利用等离激元纳米颗粒的表面等离激元共振与周围的介质折射率相关,在调控材料层内部填充纳米钉,通过外围调控信号改变调控材料层的分布状态,改变纳米钉周围介质的折射率,实现探测器响应波段谱峰的实时调控,光谱分辨率优于1纳米。该探测芯片具有探测波长可拓宽、量子效率高、光谱分辨率高、可集成化、成本低、制备工艺简单等优点,并能制备成阵列化的超光谱探测器。
技术方案:为解决上述技术问题,本发明提出一种等离激元多谐振机制增强的可调超光谱探测芯片,该探测芯片由阵列化的金属纳米钉谐振腔探测单元所组成,每个探测单元包括:底电极、半导体材料层、间隔层、纳米钉阵列、调控材料层、顶电极、外围调控信号及驱动电路;其位置关系由上至下依次为顶电极、调控材料层、纳米钉阵列、间隔层、半导体材料层、底电极,其中,纳米钉阵列填充于调控材料层内部,外围调控信号及驱动电路与调控材料层两侧连接。
其中,
所述探测单元的尺寸大小为200纳米至4微米,相邻探测单元之间的距离为500纳米至2微米,所述探测单元阵列为k×t二维面阵,其中k和t取值为2到10000,构成的探测芯片尺寸大小在100微米至5000微米之间。
所述底电极为多层电极,每层电极之间相互绝缘,每层电极可配合顶电极独立读出电信号。
所述底电极与顶电极为透明材料,厚度为50纳米到300纳米;底电极与顶电极供选材料包括金、银、铜、铝、钛、镍金属电极材料或氧化铟锡ITO、掺铝氧化锌AZO、掺氟氧化锡FTO、石墨烯半导体透明导电材料。所述底电极的层数为m+n,其中m取值为探测单元中纳米钉的排布方向取向数,n取值为同一探测单元中纳米钉的尺寸大小种类数。
所述半导体材料层的供选材料包括n型硅、n型砷化镓、磷化铟InP、锑化镓GaSb或碲锌镉CdZnTe,厚度为1微米至500微米。
所述间隔层的材料包括二氧化硅或氧化铝。
所述纳米钉阵列由具有多谐振增强效应的表面等离激元纳米钉结构按周期排布构成,具有多谐振增强效应的表面等离激元纳米钉包括两个部分:纳米三角板和纳米棒,所述具有多谐振增强效应的表面等离激元纳米钉同时具有红外超窄带吸收、强近程介电敏感性和强偏振选择性特点。
所述纳米钉阵列包含2到10个多谐振增强效应的表面等离激元纳米钉,纳米钉的尺寸在20纳米到1000纳米之间,纳米钉间距为10纳米到1000纳米之间。
所述多谐振增强效应的表面等离激元纳米钉的供选材料包括金、银、铜、钯、铑或半导体合金表面等离激元材料;纳米钉结构在同一波长分别对应由纳米三角板形成的表面等离激元共振峰和纳米棒形成的等离激元法布里-珀罗谐振峰,即存在表面等离激元多谐振增强效应。
所述调控材料层可为电光材料、声光材料或压光材料或折射率可调控的材料。
所述探测芯片可实现超光谱探测、偏振探测、突破衍射极限探测多功能的单片集成,器件的驱动方法如下:当光照射在探测单元上时,利用半导体材料层和纳米钉阵列之间形成的异质结,基于表面等离激元光致热载流子效应,载流子越过肖特基势垒,形成光电流。通过驱动电路在调控材料层两侧施加时间周期为5毫秒-60秒的外围调控信号,改变调控材料层的分布状态,进而改变纳米钉阵列周围的介质折射率,实现纳米钉对光的超窄带吸收的中心波长扫描,在同一周期内每隔0.01毫秒-5毫秒采集探测器阵列的顶电极与底电极输出信号进行成像,实现超光谱成像的功能;利用具有多谐振增强效应的表面等离激元纳米钉对入射光方向的偏振选择性,每个探测单元中有2至8种不同排布方向、2至4种不同尺寸大小的纳米钉结构,顶电极与排布方向相同的纳米钉结构对应的底电极相连,实现不同偏振光响应电流的独立读出;顶电极与尺寸大小相同的纳米钉结构对应的底电极相连,实现不同响应波段的拓宽;另外,所述多谐振增强效应的表面等离激元纳米钉的尺寸均小于探测波长,可实现突破衍射极限的探测功能。
有益效果:本发明与现有的技术相比具有以下的优点:
1、提出一种等离激元多谐振机制增强的可调超光谱探测芯片,利用具有多谐振增强效应的表面等离激元纳米钉结构的超窄带红外光吸收、偏振选择、亚波长光调控特性,同时实现了超光谱探测、偏振探测、突破衍射极限探测多功能的单片集成,颠覆了传统红外光电探测器采用分立器件进行分光、偏振选择,无法实现高性能探测系统集成化的问题。
2、提出一种等离激元多谐振机制增强的可调超光谱探测芯片,利用具有多谐振增强效应的表面等离激元纳米钉结构的超窄带强吸收及其谐振峰对近程介电环境的超强敏感性,实现红外波段光致热载流子机制的超光谱探测,可突破现有的红外光电探测芯片光谱分辨率低的问题,光谱分辨率优于1纳米。
3、提出一种等离激元多谐振机制增强的可调超光谱探测芯片,利用纳米钉横向和纵向两种谐振模式的竞争机制,实现红外探测芯片光吸收谱线大幅窄化,当红外光电探测器中加入金属纳米钉等离激元多谐振结构后,入射到探测材料的局部光强密度可提升2-4个数量级,显著提高探测器的量子效率。
附图说明
图1是一种等离激元多谐振机制增强的可调超光谱探测芯片的结构示意图;
图2是一种等离激元多谐振机制增强的可调超光谱探测芯片的探测单元1结构示意图,其中,图中有:底电极2、半导体材料层3、间隔层4、纳米钉阵列5、调控材料层6、顶电极7、外围调控信号8及驱动电路9。
图3是一种等离激元多谐振机制增强的可调超光谱探测芯片的探测单元1俯视示意图,探测单元1内的纳米钉阵列5中有2种排布方向、2种尺寸大小的具有多谐振增强效应的表面等离激元纳米钉结构51。图中有:调控材料层6、纳米钉阵列5、具有多谐振增强效应的表面等离激元纳米钉结构51。
图4是纳米钉51结构示意图,图中具有多谐振增强效应的表面等离激元纳米钉结构51包括两个部分:纳米三角板52和纳米棒53。纳米三角板52和纳米棒53可以是同种金属纳米材料,也可为两种不同的金属纳米材料。
图5是具有多谐振增强效应的表面等离激元纳米钉51结构的偏振选择性示意图。
图6是具有多谐振增强效应的表面等离激元纳米钉51结构的归一化电场强度与入射波长之间的关系示意图。
具体实施方式
本发明的一种等离激元多谐振机制增强的可调超光谱探测芯片由阵列化的金属纳米钉谐振腔探测单元所组成,每个探测单元1包括:底电极2、半导体材料层3、间隔层4、纳米钉阵列5、调控材料层6、顶电极7、外围调控信号8及驱动电路9。其位置关系由上至下依次为顶电极7、调控材料层6、纳米钉阵列5、间隔层4、半导体材料层3、底电极2、外围调控信号8及驱动电路9。其中,纳米钉阵列5填充于调控材料层6内部。
所述纳米钉阵列5由多谐振增强效应的表面等离激元纳米钉51按周期排布构成,多谐振增强效应的表面等离激元纳米钉51包括两个部分:纳米三角板52和纳米棒53,所述多谐振增强效应的表面等离激元纳米钉51同时具有红外超窄带吸收、强近程介电敏感性和强偏振选择性等特点,所述驱动电路9与调控材料层6的两侧相连,所述底电极2为多层电极,每层电极之间相互绝缘,每层电极可配合顶电极7独立读出电信号。
所述探测芯片可实现超光谱探测、偏振探测、突破衍射极限探测多功能的单片集成,器件的驱动方法如下:当光照射在探测单元1上时,利用半导体材料层3和纳米钉阵列5之间形成的异质结,基于表面等离激元光致热载流子效应,载流子越过肖特基势垒,形成了光电流。通过驱动电路9在调控材料层6两侧施加时间周期为5毫秒至60秒的外围调控信号8,改变调控材料层6的分布状态,进而改变纳米钉阵列5周围的介质折射率,实现纳米钉对光的超窄带吸收的中心波长扫描,在同一周期内每隔0.01毫秒至5毫秒采集探测器阵列的顶电极7与底电极2输出信号进行成像,实现超光谱成像的功能;利用纳米钉51对入射光方向的偏振选择性,每个探测单元中有2至8种不同排布方向、2至4种不同尺寸大小的纳米钉结构,顶电极7与排布方向相同的纳米钉结构对应的底电极相连,实现不同偏振光响应电流的独立读出;顶电极7与尺寸大小相同的纳米钉结构对应的底电极2相连,实现不同响应波段的拓宽;另外,所述纳米钉51的尺寸均小于探测波长,可实现突破衍射极限的探测功能。
本发明的一种等离激元多谐振机制增强的可调超光谱探测芯片,
第一、利用同时具有横向与纵向两种等离激元谐振竞争效应的表面等离激元纳米钉结构的红外超窄带吸收,将入射到探测材料局部的光强密度提高2至4个数量级,进而利用珀赛尔效应(探测材料量子效率增强的幅度与局部光强密度的平方成正比)显著增加探测器材料的量子效率;考虑到非线性效应,当光强密度较大时,吸收系数可能随着光强的增加而减小,出现光吸收的饱和现象。此时,具有高Q值(Q值反映的是谐振腔内部存储能量的能力。)的表面等离激元纳米钉使入射光更多地局域在纳米颗粒附近,当其靠近探测器吸收层时,有效增强探测器材料的量子效率;
第二、金属纳米颗粒的局域表面等离激元共振的吸收峰对其周围介质折射率的变化非常敏感,且纳米颗粒的形貌越长、棱角越尖,对介质折射率变化的响应灵敏度越大。当红外光电探测器中加入金属纳米材料后,由于金属纳米材料的光致发光增强效应与其对折射率变化的高灵敏度响应,将更容易通过发光光谱和颜色的变化反映出折射率的变化;
第三、利用由金属构成的纳米钉与半导体构成的异质结所特有的表面等离激元光致热载流子效应,可以突破传统半导体探测器光子能量探测极限,拓展传统半导体探测器的探测波长范围;
第四、利用纳米钉对入射光方向具有偏振选择性,每个探测单元中有2至8种不同排布方向、2至4种尺寸大小不同的纳米钉结构,排布方向相同的纳米钉结构对应的顶电极、底电极相连,实现不同偏振光响应电流的独立读出;尺寸大小一样的纳米钉结构对应的顶电极、底电极相连,实现不同响应波段的拓宽。
下面通过具体实施例和对比例进一步说明本发明:
实施例:
等离激元多谐振机制增强的可调超光谱探测芯片的探测单元结构如图1所示,其中,铝电极2、n型硅3、二氧化硅层4、银纳米钉阵列5、电光调控材料层6、氧化铟锡电极7、周期性电压调控信号8、驱动电路9。其中,银纳米钉阵列5填充于电光调控材料层6内部。银纳米钉阵列5由银纳米钉51的周期性排布构成,银纳米钉51包括两个部分:银纳米三角板52和银纳米棒53,驱动电路9与电光调控材料层6的两侧相连。
当光照射在探测芯片上时,利用n型硅3和银纳米钉阵列5之间形成的异质结,基于表面等离激元光致热载流子效应,载流子越过肖特基势垒,形成光电流。通过驱动电路9在电光调控材料层6两侧施加时间周期为50毫秒的电压调控信号8,改变电光调控材料层6的分布状态,进而改变银纳米钉阵列5周围的介质折射率,实现银纳米钉对光的超窄带吸收的中心波长扫描,在同一周期内每隔0.5毫秒采集探测器阵列的氧化铟锡电极7与铝电极2输出信号进行成像,实现超光谱成像的功能;利用银纳米钉51对入射光方向的偏振选择性,每个探测单元中有2种不同排布方向、2种尺寸大小不一的纳米钉结构,氧化铟锡电极7与排布方向相同的纳米钉结构对应的铝电极2相连,实现不同偏振光响应电流的独立读出,氧化铟锡电极7与尺寸大小相同的纳米钉结构对应的铝电极2相连,实现不同响应波段的拓宽;另外,银纳米钉51的尺寸均小于探测波长,可实现突破衍射极限的探测功能。
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (10)

1.一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于该探测芯片由阵列化的金属纳米钉谐振腔探测单元所组成,每个探测单元(1)包括:底电极(2)、半导体材料层(3)、间隔层(4)、纳米钉阵列(5)、调控材料层(6)、顶电极(7)、外围调控信号(8)及驱动电路(9);其位置关系由上至下依次为顶电极(7)、调控材料层(6)、纳米钉阵列(5)、间隔层(4)、半导体材料层(3)、底电极(2),其中,纳米钉阵列(5)填充于调控材料层(6)内部,外围调控信号(8)及驱动电路(9)与调控材料层(6)两侧连接。
2.根据权利要求1所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述探测单元(1)的尺寸大小为200纳米至4微米,相邻探测单元之间的距离为500纳米至2微米,所述探测单元(1)阵列为k×t二维面阵,其中k和t取值为2到10000,构成的探测芯片尺寸大小在100微米至5000微米之间。
3.根据权利要求1所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述底电极(2)为多层电极,每层电极之间相互绝缘,每层电极可配合顶电极(7)独立读出电信号。
4.根据权利要求1所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述底电极(2)与顶电极(7)为透明材料,厚度为50纳米到300纳米;底电极(2)与顶电极(7)供选材料包括金、银、铜、铝、钛、镍金属电极材料或氧化铟锡ITO、掺铝氧化锌AZO、掺氟氧化锡FTO、石墨烯半导体透明导电材料;所述底电极(2)的层数为m+n,其中m取值为探测单元(1)中纳米钉的排布方向取向数,n取值为同一探测单元(1)中纳米钉的尺寸大小种类数。
5.根据权利要求1所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述半导体材料层(3)的供选材料包括n型硅、n型砷化镓、磷化铟InP、锑化镓GaSb或碲锌镉CdZnTe,厚度为1微米至500微米。
6.根据权利要求1所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述间隔层(4)的材料包括二氧化硅或氧化铝。
7.根据权利要求1所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述纳米钉阵列(5)由具有多谐振增强效应的表面等离激元纳米钉(51)结构按周期排布构成,具有多谐振增强效应的表面等离激元纳米钉(51)包括两个部分:纳米三角板(52)和纳米棒(53),所述具有多谐振增强效应的表面等离激元纳米钉(51)同时具有红外超窄带吸收、强近程介电敏感性和强偏振选择性特点。
8.根据权利要求7所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述纳米钉阵列(5)包含2到10个多谐振增强效应的表面等离激元纳米钉(51),纳米钉的尺寸在20纳米到1000纳米之间,纳米钉间距为10纳米到1000纳米之间。
9.根据权利要求7或8所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述多谐振增强效应的表面等离激元纳米钉(51)的供选材料包括金、银、铜、钯、铑或半导体合金表面等离激元材料;纳米钉结构在同一波长分别对应由纳米三角板(52)形成的表面等离激元共振峰和纳米棒(53)形成的等离激元法布里-珀罗谐振峰,即存在表面等离激元多谐振增强效应。
10.根据权利要求1所述的一种等离激元多谐振机制增强的可调超光谱探测芯片,其特征在于,所述调控材料层(6)为电光材料、声光材料或压光材料或折射率可调控的材料。
CN201810171259.0A 2018-03-01 2018-03-01 一种等离激元多谐振机制增强的可调超光谱探测芯片 Withdrawn CN108507678A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810171259.0A CN108507678A (zh) 2018-03-01 2018-03-01 一种等离激元多谐振机制增强的可调超光谱探测芯片
US16/975,400 US11060916B2 (en) 2018-03-01 2018-05-28 Adjustable hyperspectral detection chip enhanced by multi-resonance plasmonic mechanism
PCT/CN2018/088736 WO2019165713A1 (zh) 2018-03-01 2018-05-28 一种等离激元多谐振机制增强的可调超光谱探测芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810171259.0A CN108507678A (zh) 2018-03-01 2018-03-01 一种等离激元多谐振机制增强的可调超光谱探测芯片

Publications (1)

Publication Number Publication Date
CN108507678A true CN108507678A (zh) 2018-09-07

Family

ID=63377186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810171259.0A Withdrawn CN108507678A (zh) 2018-03-01 2018-03-01 一种等离激元多谐振机制增强的可调超光谱探测芯片

Country Status (3)

Country Link
US (1) US11060916B2 (zh)
CN (1) CN108507678A (zh)
WO (1) WO2019165713A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087004A (zh) * 2019-04-23 2019-08-02 Oppo广东移动通信有限公司 一种单色偏振式cis及图像处理方法、存储介质
CN110087005A (zh) * 2019-04-23 2019-08-02 Oppo广东移动通信有限公司 一种彩色偏振式cis及图像处理方法、存储介质
CN110312088A (zh) * 2019-06-10 2019-10-08 Oppo广东移动通信有限公司 一种像素单元电路及图像处理方法、存储介质
CN110336964A (zh) * 2019-06-11 2019-10-15 Oppo广东移动通信有限公司 一种cmos图像传感器及图像处理方法、存储介质
CN110426864A (zh) * 2019-07-26 2019-11-08 南京邮电大学 基于表面等离子体激元波导结构的微驱动器
CN111223957A (zh) * 2020-02-24 2020-06-02 电子科技大学 一种法布罗共振近红外热电子光电探测器及其制备方法
CN111290078A (zh) * 2020-02-25 2020-06-16 东南大学 一种表面等离激元波长、偏振解复用器件
CN113447123A (zh) * 2020-03-26 2021-09-28 中国工程物理研究院激光聚变研究中心 一种连续分布集成超表面微型光谱传感系统
CN114068762A (zh) * 2021-11-18 2022-02-18 中国科学院长春光学精密机械与物理研究所 具有分光结构的光电探测器的制备方法
CN116895704A (zh) * 2023-09-11 2023-10-17 长春理工大学 一种能够探测和识别手性光场的探测器及其制备方法
CN117848504A (zh) * 2023-12-26 2024-04-09 中国人民解放军军事科学院系统工程研究院 一种小型化偏振光谱成像装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11302836B2 (en) 2020-01-14 2022-04-12 Hoon Kim Plasmonic field-enhanced photodetector and image sensor using light absorbing layer having split conduction band and valence band
CN112505021B (zh) * 2020-11-11 2024-10-25 温州医科大学 一种纳米等离子体光谱成像方法、装置及仪器
CN114758232B (zh) * 2022-04-07 2024-11-08 西安邮电大学 最优组合策略的高光谱波段选择方法、系统、计算机存储介质及设备

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673533B1 (en) * 1995-03-10 2004-01-06 Meso Scale Technologies, Llc. Multi-array multi-specific electrochemiluminescence testing
US6721083B2 (en) * 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US6040936A (en) * 1998-10-08 2000-03-21 Nec Research Institute, Inc. Optical transmission control apparatus utilizing metal films perforated with subwavelength-diameter holes
JP3502062B2 (ja) 2001-05-23 2004-03-02 勝開科技股▲ふん▼有限公司 イメージセンサのスタックパッケージ構造
US20050285128A1 (en) * 2004-02-10 2005-12-29 California Institute Of Technology Surface plasmon light emitter structure and method of manufacture
US7019391B2 (en) * 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
KR20080014727A (ko) * 2004-12-27 2008-02-14 퀀덤 페이퍼, 인크. 어드레스 가능 및 프린트 가능 발광 디스플레이
US10540704B2 (en) * 2007-09-06 2020-01-21 Mohammad A. Mazed System and method for machine learning based user application
US9697556B2 (en) * 2007-09-06 2017-07-04 Mohammad A. Mazed System and method of machine learning based user applications
US9823737B2 (en) * 2008-04-07 2017-11-21 Mohammad A Mazed Augmented reality personal assistant apparatus
US9923124B2 (en) * 2011-01-31 2018-03-20 Mohammad A Mazed Display device
US10529003B2 (en) * 2008-04-07 2020-01-07 Mohammad A. Mazed Optical biomodule for detection of diseases at an early onset
US8097926B2 (en) * 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US20100126567A1 (en) * 2008-11-21 2010-05-27 Lightwave Power, Inc. Surface plasmon energy conversion device
US9184410B2 (en) * 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US8045107B2 (en) * 2009-11-06 2011-10-25 Sharp Laboratories Of America, Inc. Color-tunable plasmonic device with a partially modulated refractive index
US9063353B2 (en) * 2012-12-13 2015-06-23 Sharp Laboratories Of America, Inc. Air stable, color tunable plasmonic structures for ultraviolet (UV) and visible wavelength applications
US9372283B2 (en) * 2009-11-13 2016-06-21 Babak NIKOOBAKHT Nanoengineered devices based on electro-optical modulation of the electrical and optical properties of plasmonic nanoparticles
WO2011065358A1 (ja) * 2009-11-27 2011-06-03 国立大学法人大阪大学 有機電界発光素子、および有機電界発光素子の製造方法
US20110166045A1 (en) * 2009-12-01 2011-07-07 Anuj Dhawan Wafer scale plasmonics-active metallic nanostructures and methods of fabricating same
JP2013525863A (ja) * 2010-04-27 2013-06-20 ザ リージェンツ オブ ユニバーシティー オブ ミシガン プラズモン・カラー・フィルタ及び光起電力能力を有するディスプレイ・デバイス
US20130327928A1 (en) * 2010-07-30 2013-12-12 Gary Leach Apparatus for Manipulating Plasmons
WO2012019081A2 (en) * 2010-08-06 2012-02-09 Immunolight, Llc Color enhancement utilizing up converters and down converters
WO2012021460A2 (en) * 2010-08-07 2012-02-16 Michael Eugene Young Device components with surface-embedded additives and related manufacturing methods
US8932671B2 (en) * 2010-12-01 2015-01-13 The University Of Houston System Polymer nanocomposite precursors with carbon nanotubes and/or graphene and related thin films and patterning
US9765934B2 (en) * 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
WO2012166686A2 (en) * 2011-05-27 2012-12-06 Mc10, Inc. Electronic, optical and/or mechanical apparatus and systems and methods for fabricating same
US20130118906A1 (en) * 2011-11-16 2013-05-16 University Of Southern California Method and system for enhancing catalytic and photocatalytic processes
EP2786644B1 (en) * 2011-12-01 2019-04-10 The Board of Trustees of the University of Illionis Transient devices designed to undergo programmable transformations
KR20130069035A (ko) * 2011-12-16 2013-06-26 삼성전자주식회사 그래핀상의 하이브리드 나노구조체 형성 방법
CA2863626A1 (en) * 2012-02-21 2013-08-29 Massachusetts Institute Of Technology Spectrometer devices
CN102901715A (zh) * 2012-11-07 2013-01-30 吉林大学 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法
TWI602901B (zh) * 2012-12-11 2017-10-21 半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置,與照明裝置
US9244268B2 (en) * 2013-02-14 2016-01-26 The United States Of America, As Represented By The Secretary Of The Navy Actively tunable polar-dielectric optical devices
US9537027B2 (en) * 2013-03-28 2017-01-03 University Of Massachusetts Backside configured surface plasmonic structure for infrared photodetector and imaging focal plane array enhancement
US10446700B2 (en) * 2013-05-22 2019-10-15 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices
TWI472059B (zh) * 2013-10-09 2015-02-01 Cheng Sheng Tsung A method of forming a surface plasma using a microstructure
CN103558206B (zh) 2013-11-19 2015-12-30 中国科学院电子学研究所 等离激元增强拉曼光谱检测芯片及应用其的检测装置
US9791760B2 (en) * 2014-11-14 2017-10-17 Heliotrope Technologies, Inc. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material
CN107078145B (zh) * 2014-11-18 2019-05-07 王士原 经微结构增强吸收的光敏器件
PT3259386T (pt) * 2015-02-16 2019-12-18 Univ Michigan Regents Sistemas e métodos para desempenho de imunoensaios
WO2016134191A1 (en) * 2015-02-18 2016-08-25 Singular Bio, Inc. Assays for single molecule detection and use thereof
US10023971B2 (en) * 2015-03-03 2018-07-17 The Trustees Of Boston College Aluminum nanowire arrays and methods of preparation and use thereof
US9817250B2 (en) * 2015-07-21 2017-11-14 Samsung Electronics Co., Ltd. Optical modulator including nanostructure
EP3341787A1 (en) * 2015-08-25 2018-07-04 ABL IP Holding LLC Enhancements for use of a display in a software configurable lighting device
CN108027313B (zh) * 2015-08-26 2021-01-29 光子系统有限责任公司 谐振周期性结构以及使用它们作为滤光器和传感器的方法
US9971071B2 (en) * 2016-01-29 2018-05-15 The United States Of America, As Represented By The Secretary Of The Navy Frequency- and amplitude- modulated narrow-band infrared emitters
WO2017132429A1 (en) * 2016-01-29 2017-08-03 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Frequency-and amplitude-modulated narrow-band infrared emitters
CN105810704B (zh) 2016-03-15 2018-06-12 华中科技大学 一种广谱成像探测芯片
US10725290B2 (en) * 2016-04-29 2020-07-28 The Board Of Trustees Of The Leland Stanford Junior University Device components formed of geometric structures
CN105926042B (zh) 2016-06-13 2018-06-26 安徽医科大学第一附属医院 一种三维基因树生物芯片及其制备方法
US10217235B2 (en) * 2016-07-11 2019-02-26 Nri R&D Patent Licensing, Llc Advanced lensless light-field imaging systems and methods for enabling a wide range of entirely new applications
US11428690B2 (en) * 2017-01-30 2022-08-30 University Of Miami Portable plasmonic system for disease detection
US20190189840A1 (en) * 2017-12-18 2019-06-20 National Cheng Kung University Method of transferring nanostructures and device having the nanostructures

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087004B (zh) * 2019-04-23 2021-07-13 Oppo广东移动通信有限公司 一种单色偏振式cis及图像处理方法、存储介质
CN110087005A (zh) * 2019-04-23 2019-08-02 Oppo广东移动通信有限公司 一种彩色偏振式cis及图像处理方法、存储介质
CN110087004A (zh) * 2019-04-23 2019-08-02 Oppo广东移动通信有限公司 一种单色偏振式cis及图像处理方法、存储介质
CN110312088A (zh) * 2019-06-10 2019-10-08 Oppo广东移动通信有限公司 一种像素单元电路及图像处理方法、存储介质
CN110336964A (zh) * 2019-06-11 2019-10-15 Oppo广东移动通信有限公司 一种cmos图像传感器及图像处理方法、存储介质
CN110336964B (zh) * 2019-06-11 2022-03-25 Oppo广东移动通信有限公司 一种cmos图像传感器及图像处理方法、存储介质
CN110426864A (zh) * 2019-07-26 2019-11-08 南京邮电大学 基于表面等离子体激元波导结构的微驱动器
CN111223957B (zh) * 2020-02-24 2023-03-24 电子科技大学 一种法布罗共振近红外热电子光电探测器及其制备方法
CN111223957A (zh) * 2020-02-24 2020-06-02 电子科技大学 一种法布罗共振近红外热电子光电探测器及其制备方法
CN111290078A (zh) * 2020-02-25 2020-06-16 东南大学 一种表面等离激元波长、偏振解复用器件
CN111290078B (zh) * 2020-02-25 2022-05-17 东南大学 一种表面等离激元波长、偏振解复用器件
CN113447123A (zh) * 2020-03-26 2021-09-28 中国工程物理研究院激光聚变研究中心 一种连续分布集成超表面微型光谱传感系统
CN113447123B (zh) * 2020-03-26 2023-12-22 中国工程物理研究院激光聚变研究中心 一种连续分布集成超表面微型光谱传感系统
CN114068762A (zh) * 2021-11-18 2022-02-18 中国科学院长春光学精密机械与物理研究所 具有分光结构的光电探测器的制备方法
CN114068762B (zh) * 2021-11-18 2024-01-12 中国科学院长春光学精密机械与物理研究所 具有分光结构的光电探测器的制备方法
CN116895704A (zh) * 2023-09-11 2023-10-17 长春理工大学 一种能够探测和识别手性光场的探测器及其制备方法
CN116895704B (zh) * 2023-09-11 2023-11-24 长春理工大学 一种能够探测和识别手性光场的探测器及其制备方法
CN117848504A (zh) * 2023-12-26 2024-04-09 中国人民解放军军事科学院系统工程研究院 一种小型化偏振光谱成像装置及方法
CN117848504B (zh) * 2023-12-26 2024-08-27 中国人民解放军军事科学院系统工程研究院 一种小型化偏振光谱成像装置及方法

Also Published As

Publication number Publication date
WO2019165713A1 (zh) 2019-09-06
US11060916B2 (en) 2021-07-13
US20210033462A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN108507678A (zh) 一种等离激元多谐振机制增强的可调超光谱探测芯片
Xue et al. Narrowband perovskite photodetector-based image array for potential application in artificial vision
CN109755331B (zh) 一种基于等离激元-光子模式耦合的窄带光电探测器
US10763382B2 (en) Backside configured surface plasmonic structure for infrared photodetector and imaging focal plane array enhancement
CN104570402B (zh) 基于超颖材料结构的空间光调制器及其制备方法
CN107942540B (zh) 一种基于相变材料的具有动态色彩显示的光调制器件及其制备方法
KR102546336B1 (ko) 깊이 이미징 및 다른 응용을 위한 전자흡수 변조기
US8969850B2 (en) Nano-structure arrays for EMR imaging
US6580089B2 (en) Multi-quantum-well infrared sensor array in spatially-separated multi-band configuration
JP5094385B2 (ja) 高応答性高帯域金属−半導体−金属光電デバイス
CN105161564B (zh) 适用于高光谱成像的波段选择性增强量子阱红外焦平面
Forbes Texturing, reflectivity, diffuse scattering and light trapping in silicon solar cells
KR102568796B1 (ko) 광변조 소자 및 이를 포함하는 장치
Huang et al. Ultrasensitive and tunable multi-narrowband metamaterial absorber
US8884271B2 (en) Photodetection device
CN117038756A (zh) 一种同时具有光谱及偏振选择性的量子点探测器
CN109686806A (zh) 一种可见光至近红外集成的光谱探测器装置及制备方法
EP4209802A2 (en) Distance information acquisition apparatus and electronic apparatus including the same
CN205039169U (zh) 一种用于高光谱成像的波段选择性增强量子阱红外焦平面
CN205621733U (zh) 一种广谱成像探测芯片
CN207068893U (zh) 一种带相位光栅和背面金反射层的超导单光子探测器
WO2008011152A9 (en) Longwave infrared photodetector
CN109916513B (zh) 可调谐高光谱红外探测器及探测功能结构、高光谱成像设备
US7701025B2 (en) Method and device for concentrating light in optoelectronic devices using resonant cavity modes
KR102497712B1 (ko) 다중분광 스텔스 소자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180907

WW01 Invention patent application withdrawn after publication