[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108505715B - 一种高导热且使用寿命长的电热瓷砖及制作方法 - Google Patents

一种高导热且使用寿命长的电热瓷砖及制作方法 Download PDF

Info

Publication number
CN108505715B
CN108505715B CN201810339192.7A CN201810339192A CN108505715B CN 108505715 B CN108505715 B CN 108505715B CN 201810339192 A CN201810339192 A CN 201810339192A CN 108505715 B CN108505715 B CN 108505715B
Authority
CN
China
Prior art keywords
ceramic
ceramic tile
conductivity
heat
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810339192.7A
Other languages
English (en)
Other versions
CN108505715A (zh
Inventor
黄惠宁
张王林
黄辛辰
张国涛
江期鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Jinyi Green New Material Science And Technology Co Ltd
Guangdong Kito Ceramics Group Co Ltd
Original Assignee
Foshan Jinyi Green New Material Science And Technology Co Ltd
Guangdong Kito Ceramics Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Jinyi Green New Material Science And Technology Co Ltd, Guangdong Kito Ceramics Group Co Ltd filed Critical Foshan Jinyi Green New Material Science And Technology Co Ltd
Priority to CN201810339192.7A priority Critical patent/CN108505715B/zh
Publication of CN108505715A publication Critical patent/CN108505715A/zh
Application granted granted Critical
Publication of CN108505715B publication Critical patent/CN108505715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/08Flooring or floor layers composed of a number of similar elements only of stone or stone-like material, e.g. ceramics, concrete; of glass or with a top layer of stone or stone-like material, e.g. ceramics, concrete or glass
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/181Insulating layers integrally formed with the flooring or the flooring elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/02Electric heating systems solely using resistance heating, e.g. underfloor heating
    • F24D13/022Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
    • F24D13/024Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements in walls, floors, ceilings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00637Uses not provided for elsewhere in C04B2111/00 as glue or binder for uniting building or structural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/02Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets
    • E04F2290/023Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets for heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Finishing Walls (AREA)

Abstract

本发明公开了一种高导热且使用寿命长的电热瓷砖,包括高导热陶瓷薄板、发热线和多孔陶瓷板,高导热陶瓷薄板和多孔陶瓷板相平行设置,多孔陶瓷板位于高导热陶瓷薄板的下方,多孔陶瓷板的表面开设有用于容置发热线的线槽,线槽位于多孔陶瓷板靠近高导热陶瓷薄板的一侧表面,高导热陶瓷薄板与多孔陶瓷板通过液体瓷砖胶层和固体瓷砖胶层粘接,液体瓷砖胶层和固体瓷砖胶层均与高导热陶瓷薄板平行设置。本发明还公开了上述高导热且使用寿命长的电热瓷砖的制作方法。该电热瓷砖具有质量轻薄、阻燃性能优异、使用寿命长、导热性能好的特点,VOC排放量忽略不计,真正做到了绿色环保。

Description

一种高导热且使用寿命长的电热瓷砖及制作方法
技术领域
本发明涉及建筑装饰材料技术领域,尤其涉及一种高导热且使用寿命长的电热瓷砖及制作方法。
背景技术
电热瓷砖已经广泛应用于家庭采暖、保暖房等空间,通常多采用电热丝、碳纤维或者电热膜作为发热元件,以有机聚氨酯类板材或者发泡陶瓷作为底部保温隔热材料。
如中国专利CN 105135507 A《一种发泡陶瓷复合地暖砖及其制备方法》,提出以0.2~0.8比重的发泡陶瓷作为基板,在发泡陶瓷表面开槽内设碳纤维加热丝且以迂回方式布线,陶瓷砖与发泡陶瓷粘合层为快凝水泥,该工艺存在的问题为:1、泡沫陶瓷表面为多孔状,以快凝水泥作为粘合剂,水泥、陶瓷砖和发泡陶瓷三者皆为刚性材料,粘合性不够,无缓冲易出现脱胶现象,影响使用寿命;2、发泡陶瓷的导热率较传统聚氨酯类有机物板材高,是聚氨酯保温材料的4-5倍,电热损耗较大。
中国专利CN 105025598 A《一种电热复合陶瓷砖及其制备方法》采用电热膜作为发热元件,其中组分中含有55—75wt%的有机粘结剂如环氧树脂、聚氨酯树脂或者改性硅树脂等,这些有机物在加热过程中易出现挥发气体。
上述的中国专利中采用普通瓷砖作为上层装饰层,普通瓷砖的导热系数在1.5~1.7W/m·K。当电热瓷砖的上层装饰板的导热系数较低时,电热瓷砖内部发热丝产生的热量则难以穿过该上层装饰板散发出来,造成能源的浪费。
因此,目前的发热瓷砖存在瓷砖与基板粘结耐疲劳性差、有效电热转化率低、产品阻燃性差和VOC释放绿色环保等问题。
发明内容
本发明的目的在于提出一种高导热且使用寿命长的电热瓷砖,具有高导热和使用寿命长的特点。
本发明的目的在于提出一种高导热且使用寿命长的电热瓷砖的制备方法,获得的电热瓷砖具有高导热和使用寿命长的特点。
为达此目的,本发明采用以下技术方案:
一种高导热且使用寿命长的电热瓷砖,包括高导热陶瓷薄板、发热线和多孔陶瓷板,高导热陶瓷薄板和多孔陶瓷板相平行设置,多孔陶瓷板位于高导热陶瓷薄板的下方,多孔陶瓷板的表面开设有用于容置发热线的线槽,线槽位于多孔陶瓷板靠近高导热陶瓷薄板的一侧表面,高导热陶瓷薄板与多孔陶瓷板通过液体瓷砖胶层和固体瓷砖胶层粘接,液体瓷砖胶层和固体瓷砖胶层均与高导热陶瓷薄板平行设置;
高导热陶瓷的化学成分为:氧化硅61~63%、氧化铝29~31%、氧化铁1~1.5%、氧化钛0.85~0.9%、氧化钙0.27~0.31%、氧化镁1.1~1.15%、氧化钾2.1~2.35%、氧化钠1.75~2%、氧化锂0.4~0.6%;
高导热陶瓷薄板的导热系数为2.5~3.5W/m·K。
多孔陶瓷板可以是泡沫陶瓷、蜂窝陶瓷或粒状陶瓷结体,均为高温烧制硅酸盐类陶瓷材料。采用多孔陶瓷板作为基板使得该电热瓷砖质量轻薄及阻燃性能优异。采用液体瓷砖胶和固体瓷砖胶对高导热陶瓷薄板和多孔陶瓷板进行粘接,液体瓷砖胶层和固体瓷砖胶层形成缓冲结合,使得两陶瓷板的结合性和抗老化性能更强,从而提高电热瓷砖的使用寿命。同时,该电热瓷砖多采用无机材料,VOC排放量忽略不计,真正做到了绿色环保。采用高导热陶瓷薄板,提高导热性能,提高能源利用率。
进一步的,高导热陶瓷薄板的底面和多孔陶瓷板的顶面均涂覆有液体瓷砖胶层,固体瓷砖胶层位于两液体瓷砖胶层之间。固体瓷砖胶层的上下两面分别通过液体瓷砖胶层与两陶瓷板形成缓冲结合层,进一步提高两陶瓷板的粘合行和耐老化性能。
进一步的,线槽内壁涂覆有保温隔热层,发热线置于保温隔热层上,保温隔热层是纳米气凝胶二氧化硅涂层。保温隔热涂层还可以在多孔陶瓷板的顶面大面积涂覆。保温隔热层的设置能够有效阻止热量向下散发,促使热量向上传递,提高该电热瓷砖的有效热转化率,进而可节省能源。纳米气凝胶二氧化硅涂层具有高比表面积及高孔隙率,热导率低,有优异的隔热性能。
进一步的,保温隔热层20℃温度下热导率为0.04±0.005w/(m·K)。保温隔热层有很低的导热系数,具有优异的隔热性能。
进一步的,固体瓷砖胶中添加有碳纤维、类石墨烯或石墨烯。当固体瓷砖胶中添加个导热材料后能够提高固体瓷砖胶的高热率,进而提高电热瓷砖的热效率。
进一步的,高导热瓷砖的坯体原料包括以重量百分比计的:台山中温砂2~4%、莲塘中温砂2~4%、新丰砂8~12%、中山石粉7~9%、北海石粉18~22%、四会泥7~9%、新会泥13~17%、滑石粉2~4%、铝矾土19~23%、锂辉石8~10%。
一种上述高导热且使用寿命长的电热瓷砖的制备方法,包括以下步骤:
在多孔陶瓷板的顶面开设线槽,将发热线置于线槽内;
采用液体瓷砖胶和固体瓷砖胶将高导热陶瓷薄板和多孔陶瓷板粘接,使高导热陶瓷薄板和多孔陶瓷板相平行设置,并且高导热陶瓷薄板位于多孔陶瓷板的上方。
进一步的,采用液体瓷砖胶和固体瓷砖胶将高导热陶瓷薄板和多孔陶瓷板粘接时,在瓷砖薄板的底面和多孔陶瓷板的顶面分别涂覆液体瓷砖胶,当液体瓷砖胶干燥后,通过固体瓷砖胶将瓷砖薄板和多孔陶瓷板粘接,即固体瓷砖胶位于两层液体瓷砖胶之间。
进一步的,在发热线置于线槽之前,在线槽中均匀涂覆保温隔热材料,干燥形成保温隔热层;将发热线置于保温隔热层上,保温隔热层为纳米气凝胶二氧化硅涂层。
进一步的,固体瓷砖胶中添加有碳纤维、类石墨烯或石墨烯。
本发明的有益效果为:
1、采多孔陶瓷作为基板,使得该电热瓷砖质量轻薄及阻燃性能优异;2、液体瓷砖胶和固体瓷砖胶联合使用,使得两陶瓷板的结合性和抗老化性能更强,从而提高电热瓷砖的使用寿命;3、该电热瓷砖多采用无机材料,VOC排放量忽略不计,真正做到了绿色环保;4、采用纳米气凝胶二氧化硅涂层作为保温隔热层,有效提高该电热瓷砖的有效热转化率;5、在固体瓷砖胶中添加高导热材料,能提高固体瓷砖胶的导热性能,进而提高电热瓷砖的热效率;6、采用高导热陶瓷薄板,提高导热性能,提高能源利用率。
因此,本发明的高导热且使用寿命长的电热瓷砖具有结构简单、安装便捷、质量轻薄、单向传热率高、节能安全的特点。该电热瓷砖的制备方法工艺简单易操作。
附图说明
图1是本发明一个实施例的高导热且使用寿命长的电热瓷砖的分解示意图;
图2是图1所示高导热且使用寿命长的电热瓷砖显示液体瓷砖胶层与固体瓷砖胶层的剖面图。
图3是对比例1的电热瓷砖的分解示意图;
图4是对比例2的电热瓷砖的分解示意图。
其中,高导热陶瓷薄板1、液体瓷砖胶层2、固体瓷砖胶层3、保护带4、发热线5、保温隔热层6、多孔陶瓷板7、线槽71、瓷砖层11、快凝水泥层12、发泡陶瓷板13、陶瓷砖基底21、电热涂层22、绝缘封装防水层23、发泡陶瓷层24。
具体实施方式
下面结合附图及具体实施方式进一步说明本发明的技术方案。
如图1所示,一种高导热且使用寿命长的电热瓷砖,包括高导热陶瓷薄板1、发热线5和多孔陶瓷板7,高导热陶瓷薄板1和多孔陶瓷板7相平行设置,多孔陶瓷板7位于高导热陶瓷薄板1的下方,多孔陶瓷板7的表面开设有用于容置发热线的线槽71,线槽71位于多孔陶瓷板7靠近高导热陶瓷薄板1的一侧表面,高导热陶瓷薄板1与多孔陶瓷板7通过液体瓷砖胶层2和固体瓷砖胶层3粘接,液体瓷砖胶层2和固体瓷砖胶层3均与高导热陶瓷薄板1平行设置。
高导热陶瓷的化学成分为:氧化硅61~63%、氧化铝29~31%、氧化铁1~1.5%、氧化钛0.85~0.9%、氧化钙0.27~0.31%、氧化镁1.1~1.15%、氧化钾2.1~2.35%、氧化钠1.75~2%、氧化锂0.4~0.6%;高导热陶瓷薄板的导热系数为2.5~3.5W/m·K。
该高导热陶瓷中的金属氧化物含量较高,使得瓷砖具有较高的导热系数,当该高导热陶瓷应用于电热瓷砖时,能提高热量传导速度,节省能源。
优选的,高导热陶瓷薄板的坯体原料包括以重量百分比计的:台山中温砂2~4%、莲塘中温砂2~4%、新丰砂8~12%、中山石粉7~9%、北海石粉18~22%、四会泥7~9%、新会泥13~17%、滑石粉2~4%、铝矾土19~23%、锂辉石8~10%。
经检测,高导热陶瓷薄板的各坯体原料的化学成分百分比如表1所示,其中L.O.I是指烧失量。
Figure GDA0002246416070000061
通过在配方中添加铝矾土来调整坯体中铝含量,当瓷砖中铝含量提高时,瓷砖有较高的导热性能。
通过添加锂辉石作为强助融剂,在烧成过程中能够在较低的温度下发生晶相转变,产生莫来石晶相,烧成后的高导热陶瓷中玻璃相存在较少,结构致密,有较高的导热系数。
在该高导热陶瓷薄板的坯体配方中,石粉采用原矿形式,未经过预煅烧等工艺处理,采用多个产地的石粉能够相互弥补成分波动,稳定生产,还可以改善烧成温度的波动,还能够降低原料成本和工艺成本。在该高导热陶瓷薄板的坯体配方中,还采用了多个产地的砂和粘土,能够相互弥补成分波动,稳定生产,还可以改善烧成温度的波动,还能够降低原料成本和工艺成本。其中,四会泥和新会泥为粘土。
上述的高导热陶瓷薄板的制备方法,包括以下步骤:
将高导热陶瓷薄板的坯体原料按比例混合均匀,压制成为坯体,坯体压制成型的工艺参数为:250~500MPa,4~6次/min;
将坯体入辊道窑烧制,烧制过程中各阶段温度及时间依次为:100~500℃需时8~12min、500~1185℃需时23~27min、1185℃保温8~12min,之后冷却至出窑的时间13~17min;获得成品。
在上述的制备方法中坯体的烧成温度为1185℃,烧成时间为1小时左右,有较低的烧成温度和较短的烧成时间,降低生产成本,生产过程易控。
需要说明的是,在实际生产应用中,可根据需要增加设置装饰层的步骤,提高该电热瓷砖的装饰效果。设置装饰层步骤可以是施釉和/或印花。
发热线5为碳纤维或金属发热线。高导热陶瓷薄板1的厚度为6~7mm,高导热陶瓷薄板吸水率为<0.5%。高导热陶瓷薄板1可采用现有的原料配方和工艺制成,但要求厚度小于现有瓷砖的厚度,以实现热量的快速传导。多孔陶瓷板7可以是泡沫陶瓷、蜂窝陶瓷或粒状陶瓷结体,均为高温烧制硅酸盐类陶瓷材料,具有耐高温、防火、耐老化、强度较高、不易产生体积变形,有较好的抗压承载性且绝缘防。多孔陶瓷板7的导热系数≤0.15W/(m·K)。泡沫陶瓷的气孔率为80~90%,蜂窝陶瓷的气孔率为70%,粒状陶瓷结体的气孔率为30~50%,其中,气孔率是指陶瓷材料的开口孔道体积占材料总体积的百分比。
采用多孔陶瓷板7作为基板使得该电热瓷砖质量轻薄及阻燃性能优异。采用液体瓷砖胶和固体瓷砖胶对高导热陶瓷薄板和多孔陶瓷板进行粘接,液体瓷砖胶层2和固体瓷砖胶层3形成缓冲结合,使得两陶瓷板的结合性和抗老化性能更强,从而提高电热瓷砖的使用寿命。同时,该电热瓷砖多采用无机材料,VOC排放量忽略不计,真正做到了绿色环保。
优选的,液体瓷砖胶的配方原料包括以重量百分比计的:水溶性酚醛树脂胶10~18%、聚醋酸乙烯共聚物55~65%、有机硅改性环氧树脂2~3%、氟改性环氧树3~4%、聚丙烯酸类增稠剂0.2%、聚醚改性硅氧烷0.3%、对羟基苯甲酸0.1%、醇酯十二0.4%、石英粉5%、去离子水14%。采用上述配方的液体瓷砖胶具有很好的耐热性能、流平性能、与基板的粘结性能以及抗压性。
进一步优选的,液体瓷砖胶可以采用配方1~3,具体的,配方1:水溶性酚醛树脂胶14%、聚醋酸乙烯共聚物60%、有机硅改性环氧树脂3%、氟改性环氧树脂3%、聚丙烯酸类增稠剂0.2%、聚醚改性硅氧烷0.3%、对羟基苯甲酸0.1%、醇酯十二0.4%、石英粉5%、去离子水14%;
配方2:水溶性酚醛树脂胶18%、聚醋酸乙烯共聚物55%、有机硅改性环氧树脂3%、氟改性环氧树脂4%、聚丙烯酸类增稠剂0.2%、聚醚改性硅氧烷0.3%、对羟基苯甲酸0.1%、醇酯十二0.4%、石英粉5%、去离子水14%;
配方3:水溶性酚醛树脂胶10%、聚醋酸乙烯共聚物65%、有机硅改性环氧树脂2%、氟改性环氧树脂3%、聚丙烯酸类增稠剂0.2%、聚醚改性硅氧烷0.3%、对羟基苯甲酸0.1%、醇酯十二0.4%、石英粉5%、去离子水14%。
液体瓷砖胶形成一层膜,且对吸水率低的玻化砖有粘结性,从而大大降低了瓷砖空鼓、脱落的风险。液体瓷砖胶热老化后的压缩剪切胶粘强度为0.2MPa,加长晾置时间30min拉伸胶粘强度0.2MPa,符合JC/T547-2005标准。液体瓷砖胶需符合国标GB18582-2008《室内装饰装修材料、胶粘剂有害物质限量》。液体瓷砖胶可以采用佛山新石界有限公司的博匠精工品牌。
优选的,固体瓷砖胶的配方原料包括:普通硅酸水泥55%、石英砂25%、重钙10%、可再分散乳胶粉4~6%、氟改性环氧树脂1~3%、有机硅改性环氧树脂0.5~1.5%、羟丙基甲基纤维素0.5~1.5%、羧甲基淀粉醚0.4~0.6%、聚醚改性硅氧烷0.4~0.6%。采用上述配方的固体瓷砖胶具有更好的流平性能和粘结性能。
进一步优选的:固体瓷砖胶可以采用配方1~3,具体的,配方1:普通硅酸水泥55%、石英砂25%、重钙10%、可再分散乳胶粉5%、氟改性环氧树脂2%、有机硅改性环氧树脂1%、羟丙基甲基纤维素1%、羧甲基淀粉醚0.5%、聚醚改性硅氧烷0.5%;
配方2:普通硅酸水泥55%、石英砂25%、重钙10%、可再分散乳胶粉4%、氟改性环氧树脂3%、有机硅改性环氧树脂0.5%、羟丙基甲基纤维素1.5%、羧甲基淀粉醚0.6%、聚醚改性硅氧烷0.4%;
配方3:普通硅酸水泥55%、石英砂25%、重钙10%、可再分散乳胶粉6%、氟改性环氧树脂1%、有机硅改性环氧树脂1.5%、羟丙基甲基纤维素0.5%、羧甲基淀粉醚0.4%、聚醚改性硅氧烷0.6%。
固体瓷砖胶是粉末状,使用时加水调和成粘稠状。固体瓷砖胶拉伸粘结强度≥0.5MPa(含浸水粘结强度、热老化、晾置20min后粘结强度),符合JC/T547-2005中C1标准。固体瓷砖胶也可以采用立邦品牌。
在其他实施方式中,固体瓷砖胶中添加高导热材料,用以提高固体瓷砖胶的导热效率,使得发热线产生的热量能够更快速更多的传递至高导热陶瓷薄板。高导热材料可以是碳纤维、类石墨烯或石墨烯。
优选的,高导热陶瓷薄板1的底面和多孔陶瓷板7的顶面均涂覆有液体瓷砖胶层2,固体瓷砖胶层3位于两液体瓷砖胶层2之间。固体瓷砖胶层3的上下两面分别通过液体瓷砖胶层2与两陶瓷板形成缓冲结合层,进一步提高两陶瓷板的粘合行和耐老化性能。
线槽71内壁涂覆有保温隔热层6,发热线置于保温隔热层6上,保温隔热层6是纳米气凝胶二氧化硅涂层。保温隔热涂层6还可以在多孔陶瓷板7的顶面大面积涂覆。保温隔热层6的设置能够有效阻止热量向下散发,促使热量向上传递,提高该电热瓷砖的有效热转化率,进而可节省能源。纳米气凝胶二氧化硅涂层具有高比表面积及高孔隙率,热导率低,有优异的隔热性能。
保温隔热层6在20℃温度下热导率为0.04±0.005w/(m·K)。保温隔热层的浆料密度0.55-0.65g/cm3,干膜密度0.35-0.45g/cm3,粘度4000-45000mPa.s。
优选的,线槽71呈回型设置。发热线5安装在回型的线槽内,使得电热瓷砖表面的发热温度更加均匀。
线槽71上覆盖有用于保护发热线5的保护带4,保护带4为铝箔纸。将发热线5放置在线槽71内后,将保护带4覆盖在线槽71上,铝箔纸不仅能够保护发热线5,且具有很好的导热性能。
一种上述高导热且使用寿命长的电热瓷砖的制备方法,包括步骤(1)~(4):
步骤(1)、在多孔陶瓷板7的顶面开设线槽71,在线槽71内涂覆保温隔热材料,或在多孔陶瓷板7的顶面包括线槽在内大面积涂覆保温隔热材料,保温隔热材料干燥形成保温隔热层6,保温隔热层6为纳米气凝胶二氧化硅涂层。
步骤(2)、将发热线5放置在线槽71内后,将保护带4覆盖在线槽上。发热线5安装时,使发热线的接头伸出多孔陶瓷板7外,以便于进行电源连接。
步骤(3)、采用液体瓷砖胶和固体瓷砖胶将高导热陶瓷薄板1和多孔陶瓷板7粘接,使高导热陶瓷薄板1和多孔陶瓷板7相平行设置,并且高导热陶瓷薄板1位于多孔陶瓷板7的上方。
优选的,在瓷砖薄板1的底面和多孔陶瓷板7的顶面分别涂覆液体瓷砖胶,当液体瓷砖胶干燥后,通过固体瓷砖胶将瓷砖薄板和多孔陶瓷板粘接,即固体瓷砖胶位于两层液体瓷砖胶之间。
在其他实施方式中,固体瓷砖胶中可添加高导热材料,用以提高固体瓷砖胶的导热效率,使得发热线产生的热量能够更快速更多的传递至高导热陶瓷薄板。高导热材料可以是碳纤维、类石墨烯或石墨烯。
涂覆液体瓷砖胶时,用毛刷在瓷砖薄板1的底面和多孔陶瓷板7的顶面分别涂覆一层液体瓷砖胶,静置10~15min,待液体瓷砖胶干透后,使用调和成粘稠状的固体瓷砖胶将瓷砖薄板和多孔陶瓷板粘合,之后静置24小时。
液体瓷砖胶可充分渗入瓷砖薄板和多孔陶瓷板,与固体瓷砖胶形成缓冲结合层,两中瓷砖胶相互结合,电热瓷砖产品粘合性和耐老化性能更强。
步骤(4)、在复合后的瓷砖薄板和多孔陶瓷板的四个侧面各层接缝处用瓷砖胶填缝,特别是发热元件接线处做密封防水工作,防止电线松动。
经过上述步骤(1)~(4)获得的电热瓷砖厚度为22~28mm,优选的为25mm。该电热瓷砖可安装温度控制系统,最高发热温度可调至50℃,接电5min后电热瓷砖表面温度可达到设定温度要求。
对比例1
如图3所示,该对比例的电热瓷砖由上至下依次为瓷砖层11、快凝水泥层12和发泡陶瓷板13。瓷砖层11和发泡陶瓷板13仅通过快凝水泥层12粘结,发泡陶瓷板13上设置有碳纤维加热丝。
对比例2
如图4所示,该对比例的电热瓷砖由上至下依次为陶瓷砖基底21、电热涂层22、绝缘封装防水层23和发泡陶瓷层24。陶瓷砖基底21的厚度为10mm。电热涂层22涂覆在陶瓷砖基底21的底面。电热涂层22的原料为:碳发热材料、粘结剂、溶剂和助剂。绝缘封装防水层23可以采用无机粘结剂,即水泥砂浆。
下表是本发明的电热瓷砖与对比例的电热瓷砖的比较。
Figure GDA0002246416070000111
由上述对比可以看出:
本发明的电热瓷砖联合使用液体瓷砖胶和固体瓷砖胶对高导热陶瓷薄板和多孔陶瓷板进行粘合,使得两陶瓷板的结合性和抗老化性能更强,从而提高电热瓷砖的使用寿命;本发明的电热瓷砖设置保温隔热涂层,保温隔热涂层采用纳米气凝胶二氧化硅涂层,使得发热丝产生的热量向上散发,实现热量的单向传导,提高电热瓷砖的热效率。
以下为本发明电热瓷砖中的高导热陶瓷薄板的实施方式,以下实施方式中的高导热陶瓷薄板均能够满足电热瓷砖的要求。
实施方式1
本实施例中高导热陶瓷薄板的坯体配方为:
原料 台山中温砂 莲塘中温砂 新丰砂 中山石粉 北海石粉
重量百分比 2 2 12 7 22
原料 四会泥 新会泥 滑石粉 铝矾土 锂辉石
重量百分比 9 13 4 19 10
本实施例中高导热陶瓷薄板的化学成分为:
化学成分 氧化硅 氧化铝 氧化铁 氧化钛 氧化钙
百分比 62.44 28.61 1.2 0.84 0.3
化学成分 氧化镁 氧化钾 氧化钠 氧化锂 杂质
百分比 1.29 2.24 1.85 0.6 余量
该高导热瓷砖的导热系数为3.5W/m·K,该高导热陶瓷薄板的厚度为6~7mm。高导热瓷砖烧成后成品强度47~52MPa。高导热瓷砖烧成后成品吸水率0.01%。
上述高导热瓷砖的制备方法为:
将高导热瓷砖的坯体原料按比例混合均匀,压制成为坯体,坯体压制成型的工艺参数为:250MPa,6次/min;
将坯体入辊道窑烧制,烧制过程中各阶段温度及时间依次为:100~500℃需时8min、500~1185℃需时23min、1185℃保温8min,之后冷却至出窑的时间13min;获得成品。
实施方式2
本实施方式中高导热陶瓷薄板的坯体配方为:
原料 台山中温砂 莲塘中温砂 新丰砂 中山石粉 北海石粉
重量百分比 2.5 2.5 11 7.5 21
原料 四会泥 新会泥 滑石粉 铝矾土 锂辉石
重量百分比 7.5 16 2.5 20 9.5
本实施方式中高导热陶瓷薄板的化学成分为:
化学成分 氧化硅 氧化铝 氧化铁 氧化钛 氧化钙
百分比 62.5 29.55 1.23 0.85 0.28
化学成分 氧化镁 氧化钾 氧化钠 氧化锂 杂质
百分比 0.94 2.21 1.88 0.55 余量
该高导热陶瓷薄板的导热系数为3W/m·K。该高导热陶瓷薄板的厚度为6~7mm。高导热陶瓷薄板烧成后成品强度47~52MPa。高导热陶瓷薄板烧成后成品吸水率0.01%。
上述高导热陶瓷薄板的制备方法为:
将高导热陶瓷薄板的坯体原料按比例混合均匀,压制成为坯体,坯体压制成型的工艺参数为:300MPa,6次/min;
将坯体入辊道窑烧制,烧制过程中各阶段温度及时间依次为:100~500℃需时9min、500~1185℃需时24min、1185℃保温9min,之后冷却至出窑的时间14min;获得成品。
实施方式3
本实施方式中高导热陶瓷薄板的坯体配方为:
原料 台山中温砂 莲塘中温砂 新丰砂 中山石粉 北海石粉
重量百分比 3 3 10 8 20
原料 四会泥 新会泥 滑石粉 铝矾土 锂辉石
重量百分比 8 15 3 21 9
本实施方式中高导热陶瓷薄板的化学成分为:
化学成分 氧化硅 氧化铝 氧化铁 氧化钛 氧化钙
百分比 61.99 29.9 1.25 0.87 0.29
化学成分 氧化镁 氧化钾 氧化钠 氧化锂 杂质
百分比 1.06 2.27 1.86 0.5 余量
该高导热陶瓷薄板的导热系数为3W/m·K。该高导热陶瓷薄板的厚度为6~7mm。高导热陶瓷薄板烧成后成品强度47~52MPa。高导热陶瓷薄板烧成后成品吸水率0.01%。
上述高导热陶瓷薄板的制备方法为:
将高导热陶瓷薄板的坯体原料按比例混合均匀,压制成为坯体,坯体压制成型的工艺参数为:400MPa,5次/min;
将坯体入辊道窑烧制,烧制过程中各阶段温度及时间依次为:100~500℃需时10min、500~1185℃需时25min、1185℃保温10min,之后冷却至出窑的时间15min。
实施方式4
本实施方式中高导热陶瓷薄板的坯体配方为:
原料 台山中温砂 莲塘中温砂 新丰砂 中山石粉 北海石粉
重量百分比 3.5 3.5 9 8.5 19
原料 四会泥 新会泥 滑石粉 铝矾土 锂辉石
重量百分比 8.5 14 3.5 22 8.5
本实施方式中高导热陶瓷薄板的化学成分为:
化学成分 氧化硅 氧化铝 氧化铁 氧化钛 氧化钙
百分比 61.5 3.02 1.27 0.89 0.3
化学成分 氧化镁 氧化钾 氧化钠 氧化锂 杂质
百分比 1.17 2.28 1.87 0.45 余量
该高导热陶瓷薄板的导热系数为2.5W/m·K。该高导热陶瓷薄板的厚度为6~7mm。高导热陶瓷薄板烧成后成品强度47~52MPa。高导热陶瓷薄板烧成后成品吸水率0.01%。
上述高导热陶瓷薄板的制备方法为:
将高导热陶瓷薄板的坯体原料按比例混合均匀,压制成为坯体,坯体压制成型的工艺参数为:450MPa,4次/min;
将坯体入辊道窑烧制,烧制过程中各阶段温度及时间依次为:100~500℃需时11min、500~1185℃需时26min、1185℃保温11min,之后冷却至出窑的时间16min;获得成品。
实施方式5
本实施方式中高导热陶瓷薄板的坯体配方为:
原料 台山中温砂 莲塘中温砂 新丰砂 中山石粉 北海石粉
重量百分比 4 4 8 9 18
原料 四会泥 新会泥 滑石粉 铝矾土 锂辉石
重量百分比 7 17 2 23 8
本实施方式中高导热陶瓷薄板的化学成分为:
化学成分 氧化硅 氧化铝 氧化铁 氧化钛 氧化钙
百分比 61.57 30.5 1.3 0.91 0.28
化学成分 氧化镁 氧化钾 氧化钠 氧化锂 杂质
百分比 0.81 2.3 2.3 0.4 余量
该高导热陶瓷薄板的导热系数为2.5W/m·K。该高导热陶瓷薄板的厚度为6~7mm。高导热陶瓷薄板烧成后成品强度47~52MPa。高导热陶瓷薄板烧成后成品吸水率0.01%。
上述高导热陶瓷薄板的制备方法为:
将高导热陶瓷薄板的坯体原料按比例混合均匀,压制成为坯体,坯体压制成型的工艺参数为:500MPa,4次/min;
将坯体入辊道窑烧制,烧制过程中各阶段温度及时间依次为:100~500℃需时12min、500~1185℃需时27min、1185℃保温12min,之后冷却至出窑的时间17min;获得成品。
陶瓷薄板对比例
本对比例中的瓷砖坯体配方为:
原料 石英砂 粘土 长石
重量百分比 30 40 30
该瓷砖为普通地板砖,厚度为12~18mm,导热系数为1.3~1.5W/m·K,吸水率为0.5%。
该瓷砖的生产工艺为:将坯体原料按配方比例混合均匀,压制成为坯体,体压制成型的工艺参数为:700MPa,4次/min;烧成温度为1250℃,烧成周期为90min。
下表是本发明高导热陶瓷薄板与对比例普通瓷砖的产品性能和工艺对比。
项目 导热系数 成品厚度 成品强度 吸水率 烧成周期 烧成温度
实施方式1 3.5W/m·K 6~7mm ≥27MPa 0.01% 52min 1185℃
实施方式2 3W/m·K 6~7mm ≥27MPa 0.01% 56min 1185℃
实施方式3 3W/m·K 6~7mm ≥27MPa 0.01% 60min 1185℃
实施方式4 2.5W/m·K 6~7mm ≥27MPa 0.01% 64min 1185℃
实施方式5 2.5W/m·K 6~7mm ≥27MPa 0.01% 68min 1185℃
对比例 1.3~1.5W/m·K 12~18mm ≥27MPa 0.5% 90min 1250℃
根据上述对比可以看出:
本发明的高导热陶瓷薄板的导热系数为2.5~3.5W/m·K,具有较高的高热性能;成品的厚度小,更加能提高热量传导的速度;成品强度47~52MPa满足国家标准中的≥27MPa;成品结构致密,吸水率低;烧成周期较短、烧成时间短,使得烧制工艺易控,烧制成本低。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (10)

1.一种高导热且使用寿命长的电热瓷砖,其特征在于,包括高导热陶瓷薄板、发热线和多孔陶瓷板,所述高导热陶瓷薄板和多孔陶瓷板相平行设置,所述多孔陶瓷板位于高导热陶瓷薄板的下方,所述多孔陶瓷板的表面开设有用于容置发热线的线槽,所述线槽位于多孔陶瓷板靠近高导热陶瓷薄板的一侧表面;
所述高导热陶瓷薄板与多孔陶瓷板通过液体瓷砖胶层和固体瓷砖胶层粘接,所述液体瓷砖胶层和固体瓷砖胶层均与高导热陶瓷薄板平行设置;
所述高导热陶瓷的化学成分为:氧化硅61~63%、氧化铝29~31%、氧化铁1~1.5%、氧化钛0.85~0.9%、氧化钙0.27~0.31%、氧化镁1.1~1.15%、氧化钾2.1~2.35%、氧化钠1.75~2%、氧化锂0.4~0.6%;
所述高导热陶瓷薄板的导热系数为2.5~3.5W/m·K。
2.根据权利要求1所述的高导热且使用寿命长的电热瓷砖,其特征在于,所述高导热陶瓷薄板的底面和多孔陶瓷板的顶面均涂覆有液体瓷砖胶层,所述固体瓷砖胶层位于两液体瓷砖胶层之间。
3.根据权利要求1所述的高导热且使用寿命长的电热瓷砖,其特征在于,所述线槽内壁涂覆有保温隔热层,所述发热线置于保温隔热层上,所述保温隔热层是纳米气凝胶二氧化硅涂层。
4.根据权利要求3所述的高导热且使用寿命长的电热瓷砖,其特征在于,所述保温隔热层在20℃温度下热导率为0.04±0.005w/(m·K)。
5.根据权利要求1所述的高导热且使用寿命长的电热瓷砖,其特征在于,所述固体瓷砖胶中添加有碳纤维、类石墨烯或石墨烯。
6.根据权利要求1所述的高导热且使用寿命长的电热瓷砖,其特征在于,所述高导热瓷砖的坯体原料包括以重量百分比计的:台山中温砂2~4%、莲塘中温砂2~4%、新丰砂8~12%、中山石粉7~9%、北海石粉18~22%、四会泥7~9%、新会泥13~17%、滑石粉2~4%、铝矾土19~23%、锂辉石8~10%。
7.一种权利要求1所述的高导热且使用寿命长的电热瓷砖的制备方法,其特征在于,包括以下步骤:
在所述多孔陶瓷板的顶面开设线槽,将所述发热线置于线槽内;
采用液体瓷砖胶和固体瓷砖胶将高导热陶瓷薄板和多孔陶瓷板粘接,使所述高导热陶瓷薄板和多孔陶瓷板相平行设置,并且所述高导热陶瓷薄板位于多孔陶瓷板的上方。
8.根据权利要求7所述的高导热且使用寿命长的电热瓷砖的制备方法,其特征在于,采用液体瓷砖胶和固体瓷砖胶将高导热陶瓷薄板和多孔陶瓷板粘接时,在所述瓷砖薄板的底面和多孔陶瓷板的顶面分别涂覆液体瓷砖胶,当液体瓷砖胶干燥后,通过固体瓷砖胶将瓷砖薄板和多孔陶瓷板粘接,即固体瓷砖胶位于两层液体瓷砖胶之间。
9.根据权利要求7所述的高导热且使用寿命长的电热瓷砖的制备方法,其特征在于,在发热线置于线槽之前,在所述线槽中均匀涂覆保温隔热材料,干燥形成保温隔热层;将所述发热线置于保温隔热层上,所述保温隔热层为纳米气凝胶二氧化硅涂层。
10.根据权利要求7所述的高导热且使用寿命长的电热瓷砖的制备方法,其特征在于,所述固体瓷砖胶中添加有碳纤维、类石墨烯或石墨烯。
CN201810339192.7A 2018-04-16 2018-04-16 一种高导热且使用寿命长的电热瓷砖及制作方法 Active CN108505715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810339192.7A CN108505715B (zh) 2018-04-16 2018-04-16 一种高导热且使用寿命长的电热瓷砖及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810339192.7A CN108505715B (zh) 2018-04-16 2018-04-16 一种高导热且使用寿命长的电热瓷砖及制作方法

Publications (2)

Publication Number Publication Date
CN108505715A CN108505715A (zh) 2018-09-07
CN108505715B true CN108505715B (zh) 2020-01-17

Family

ID=63381983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810339192.7A Active CN108505715B (zh) 2018-04-16 2018-04-16 一种高导热且使用寿命长的电热瓷砖及制作方法

Country Status (1)

Country Link
CN (1) CN108505715B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11825570B2 (en) 2018-11-16 2023-11-21 Industrial Technology Research Institute Heater package
TWI717051B (zh) * 2018-11-16 2021-01-21 財團法人工業技術研究院 加熱器封裝體
CN109400134A (zh) * 2018-11-20 2019-03-01 武汉纺织大学 高导热电绝缘一体成型镀银碳纤维电热陶瓷板的制备方法
CN109516823A (zh) * 2018-11-20 2019-03-26 武汉纺织大学 一体压胚与烧结成型碳纤维/铜丝复合智能电热陶瓷板的制备方法
CN109516824A (zh) * 2018-12-12 2019-03-26 武汉纺织大学 一体烧结成型棉纤维基碳丝电热陶瓷的制备方法
CN110117765B (zh) * 2019-05-17 2022-07-29 广东省科学院新材料研究所 一种TiO2基电热涂层及其制备方法
CN110590966B (zh) * 2019-10-28 2020-10-23 山东一滕新材料股份有限公司 一种提升瓷砖胶滑移性能的改性淀粉醚的制备方法
CN112538944A (zh) * 2020-11-10 2021-03-23 东莞市唯美陶瓷工业园有限公司 一种发热瓷砖、瓷砖结构及发热瓷砖的制备方法
CN113931404B (zh) * 2021-05-26 2023-03-28 重庆重铝新材料科技有限公司 一种具有防划伤效果的自发热烤瓷铝单板
CN113816730A (zh) * 2021-11-06 2021-12-21 何祥林 电热陶瓷材料的配方、电热陶瓷胚体的制备方法和发热件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4036848A1 (de) * 1990-11-19 1992-05-21 Buchtal Gmbh Beheizbarer belag aus keramischen deckplatten
CN2931648Y (zh) * 2006-02-27 2007-08-08 佛山欧神诺陶瓷有限公司 一种复合陶瓷砖
CN201373491Y (zh) * 2009-02-20 2009-12-30 王开颜 一种干式地暖供热系统
CN104276815A (zh) * 2013-07-09 2015-01-14 上海敬开德精密陶瓷有限公司 一种高导热氧化物陶瓷材料及其制备方法
CN104848343A (zh) * 2015-06-08 2015-08-19 四川省新万兴瓷业有限公司 一种地暖砖及其制作方法
CN106869432A (zh) * 2017-03-06 2017-06-20 山东电盾科技股份有限公司 发热瓷砖
CN107311457A (zh) * 2017-07-21 2017-11-03 广东金意陶陶瓷集团有限公司 防滑耐磨陶瓷砖
CN107513168A (zh) * 2017-08-22 2017-12-26 江苏泛亚微透科技股份有限公司 具有导热、隔热、导电、电磁屏蔽等功能的膨体聚四氟乙烯膜涂层复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4036848A1 (de) * 1990-11-19 1992-05-21 Buchtal Gmbh Beheizbarer belag aus keramischen deckplatten
CN2931648Y (zh) * 2006-02-27 2007-08-08 佛山欧神诺陶瓷有限公司 一种复合陶瓷砖
CN201373491Y (zh) * 2009-02-20 2009-12-30 王开颜 一种干式地暖供热系统
CN104276815A (zh) * 2013-07-09 2015-01-14 上海敬开德精密陶瓷有限公司 一种高导热氧化物陶瓷材料及其制备方法
CN104848343A (zh) * 2015-06-08 2015-08-19 四川省新万兴瓷业有限公司 一种地暖砖及其制作方法
CN106869432A (zh) * 2017-03-06 2017-06-20 山东电盾科技股份有限公司 发热瓷砖
CN107311457A (zh) * 2017-07-21 2017-11-03 广东金意陶陶瓷集团有限公司 防滑耐磨陶瓷砖
CN107513168A (zh) * 2017-08-22 2017-12-26 江苏泛亚微透科技股份有限公司 具有导热、隔热、导电、电磁屏蔽等功能的膨体聚四氟乙烯膜涂层复合材料及其制备方法

Also Published As

Publication number Publication date
CN108505715A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
CN108505715B (zh) 一种高导热且使用寿命长的电热瓷砖及制作方法
CN108516809B (zh) 一种节能电热瓷砖及制作方法
CN102311274B (zh) 一种轻质保温蜂窝陶瓷及其制备方法
WO2013107242A1 (zh) 一种无机防火保温材料及其制品
CN109094175B (zh) 聚苯乙烯彩钢夹芯板及其制备方法
CN107337409A (zh) 泡沫玻璃保温系统专用胶粘剂及其制备方法和使用方法
CN108530021A (zh) 一种高导热的电热瓷砖及制作方法
CN105175007B (zh) 一种轻质保温砖
CN102887667B (zh) 无机纤维防火保温板
CN108590098B (zh) 一种高导热且均匀发热的电热瓷砖及制作方法
CN208668870U (zh) 一种均匀发热的电热瓷砖
CN107188469A (zh) 一种阻燃防水保温材料及其制备方法
CN108947392A (zh) 一种低碳环保高弹模精家装装饰砂浆及其制备方法
CN203034628U (zh) 挤塑聚苯板外保温防火隔热层
CN108360789B (zh) 一种使用寿命长的电热瓷砖及制作方法
CN109133862A (zh) 利用铁尾矿制备的多孔保温装饰材料及其制备方法
CN108301596B (zh) 一种均匀发热的电热瓷砖及制作方法
CN109336542B (zh) 一种用于地暖模块散热面的导热涂料及制备方法
CN103626437B (zh) 一种保温板及其制备方法
CN105236932B (zh) 一种轻质保温砖的制备方法
CN108996990A (zh) 一种发泡陶瓷轻质板材的隧道窑叠烧方法
CN101081744B (zh) 氧化铝纤维贴面模块及其制法
CN103669607A (zh) 一种新型胶粉聚苯颗粒保温系统
CN202416765U (zh) 发泡陶瓷保温装饰一体板
CN208056543U (zh) 一种单向传热效率高的电热瓷砖

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 528000 No. 1-3, Liyuan 2nd Road, Geely Industrial Park, Nanzhuang Town, Chancheng District, Foshan City, Guangdong Province (residence declaration)

Patentee after: GUANGDONG KITO CERAMICS GROUP Co.,Ltd.

Patentee after: FOSHAN JINYI GREEN ENERGY NEW MATERIAL TECHNOLOGY Co.,Ltd.

Address before: 528000 zuotan Private Development Zone, southwest Street, Sanshui District, Foshan City, Guangdong Province (F6)

Patentee before: GUANGDONG KITO CERAMICS GROUP Co.,Ltd.

Patentee before: FOSHAN JINYI GREEN ENERGY NEW MATERIAL TECHNOLOGY Co.,Ltd.

CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 528000, Floor 3, Building 5, No. 3 Jiaxue Road, Nanzhuang Town, Chancheng District, Foshan City, Guangdong Province (Residence application)

Patentee after: GUANGDONG KITO CERAMICS GROUP Co.,Ltd.

Patentee after: FOSHAN JINYI GREEN ENERGY NEW MATERIAL TECHNOLOGY Co.,Ltd.

Address before: 528000 No. 1-3, Liyuan 2nd Road, Geely Industrial Park, Nanzhuang Town, Chancheng District, Foshan City, Guangdong Province (residence declaration)

Patentee before: GUANGDONG KITO CERAMICS GROUP Co.,Ltd.

Patentee before: FOSHAN JINYI GREEN ENERGY NEW MATERIAL TECHNOLOGY Co.,Ltd.