CN108488038B - 一种风力发电机组的偏航控制方法 - Google Patents
一种风力发电机组的偏航控制方法 Download PDFInfo
- Publication number
- CN108488038B CN108488038B CN201810259908.2A CN201810259908A CN108488038B CN 108488038 B CN108488038 B CN 108488038B CN 201810259908 A CN201810259908 A CN 201810259908A CN 108488038 B CN108488038 B CN 108488038B
- Authority
- CN
- China
- Prior art keywords
- wind
- wind speed
- data
- yaw
- wind direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 162
- 239000013598 vector Substances 0.000 claims description 59
- 230000014509 gene expression Effects 0.000 claims description 30
- 238000005311 autocorrelation function Methods 0.000 claims description 17
- 230000009466 transformation Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 238000011217 control strategy Methods 0.000 abstract description 22
- 238000010586 diagram Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 15
- 238000005259 measurement Methods 0.000 description 8
- 238000005314 correlation function Methods 0.000 description 7
- 238000010248 power generation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000004800 variational method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0236—Adjusting aerodynamic properties of the blades by changing the active surface of the wind engaging parts, e.g. reefing or furling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
- F03D7/043—Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/321—Wind directions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/329—Azimuth or yaw angle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
一种风力发电机组的偏航控制方法,其包括:步骤一、根据获取到的风速和风向分别计算预设时长内的风速平均值和风向平均值,得到历史风速数据和历史风向数据,根据历史风速数据和历史风向数据预测下一时刻的风速数据和风向数据;步骤二、根据下一时刻的风速数据确定控制参数,并利用控制参数和风向数据对风力发电机组进行偏航控制。相较于传统偏航控制方法,本方法的偏航次数相对于传统控制策略有所提高,但提高的次数主要集中在中高风速区,因此功率损失系数显著减小。本方法能够有效减小中高风速区的偏航误差,从而减小了功率损失系数(即提高了风能的利用率)。
Description
技术领域
本发明涉及风力发电技术领域,具体地说,涉及一种风力发电机组的偏航控制方法。
背景技术
当前,随着传统化石燃料的消耗殆尽和对能源需求的日益增大,人们越来越注重可再生的绿色清洁能源的开发和利用。风力发电作为绿色可再生能源的发电方式之一,受到各国工业和学术界的重视,风力发电技术日臻成熟,在可再生能源中成本相对较低,因此有着广阔的发展前景。
偏航调节器是风力发电机组的对风调节装置,它使得风机的风轮轴线始终与风向一致,而调解器的控制精度对风力发电机组的发电性能具有显著的影响。现代大型风力发电机组是在偏航误差存在的前提下运行的。
一方面,偏航误差的存在将导致风能获取量的降低,根据相关资料显示,偏航误差引起的年平均能量损失为2.7%,而当偏航误差为20°时,年损失量可达11%。另一方面,偏航误差的存在还会引起部件载荷的增加,这将导致偏航不稳从而引起发电机组震荡造成停机。
随着现代风机叶片的逐渐增大,偏航调节器所带来的影响也逐渐凸显。相关资料显示偏航系统引起的故障率占12.5%,而由偏航故障所引起的故障停机时间占13.3%。因此,有必要对大型风力发电机组的主动偏航的控制装置和控制策略进行深入研究。
发明内容
为解决上述问题,本发明提供了一种风力发电机组的偏航控制方法,所述偏航控制方法包括:
步骤一、根据获取到的风速和风向分别计算预设时长内的风速平均值和风向平均值,得到历史风速数据和历史风向数据,根据所述历史风速数据和历史风向数据预测下一时刻的风速数据和风向数据;
步骤二、根据所述下一时刻的风速数据确定控制参数,并利用所述控制参数和风向数据对风力发电机组进行偏航控制。
根据本发明的一个实施例,在所述步骤一中,所述预设时长为10s、30s或60s。
根据本发明的一个实施例,在所述步骤一中,预测下一时刻的风速数据和风向数据的步骤包括:
根据所述历史风速数据和历史风向数据对风矢量进行分解,得到历史风矢量横坐标数据和历史风矢量纵坐标数据;
利用ARMA模型来根据所述历史风矢量横坐标数据和历史风矢量纵坐标数据确定下一时刻的风矢量横坐标数据和风矢量纵坐标数据;
根据下一时刻的风矢量横坐标数据和风矢量纵坐标数据分别确定下一时刻的风速数据和风向数据。
根据本发明的一个实施例,根据如下表达式对风矢量进行分解:
其中,和分别表示t时刻的风矢量横坐标数据和风矢量纵坐标数据,表示风速数据,表示t时刻的风向数据。
根据本发明的一个实施例,根据如下表达式确定下一时刻的风速数据:
其中,表示t+1时刻的风速数据,和分别表示t+1时刻的风矢量横坐标数据和风矢量纵坐标数据。
根据本发明的一个实施例,根据如下表达式确定下一时刻的风向数据:
其中,表示t+1时刻的风向数据,和分别表示t+1时刻的风矢量横坐标数据和风矢量纵坐标数据。
根据本发明的一个实施例,在所述步骤一中,预测下一时刻的风向数据的步骤包括:
对所述历史风向数据进行圆形变量变换,得到历史风向数据的正弦值和余弦值;
利用ARMA模型根据历史风向数据的正弦值和余弦值确定下一时刻的风向数据的正弦值和余弦值,并根据所述下一时刻的风向数据的正弦值和余弦值确定下一时刻的风向数据。
根据本发明的一个实施例,根据如下表达式对所述历史风向数据进行圆形变量变换:
其中,和分别表示t时刻的风向数据的正弦值和余弦值,表示t时刻的风向数据。
根据本发明的一个实施例,根据如下表达式确定所述下一时刻的风向数据:
其中,表示t+1时刻的风向数据,和分别表示t+1时刻的风向数据的正弦值和余弦值。
根据本发明的一个实施例,在所述步骤一中,利用ARMA模型根据历史风向数据确定下一时刻的风向数据。
根据本发明的一个实施例,在所述步骤一中,利用ARMA模型根据历史风速数据确定下一时刻的风速数据。
根据本发明的一个实施例,确定下一时刻的风速数据的步骤包括:
步骤a、对所述历史风速数据进行去趋势化处理,得到去趋势化风速数据;
步骤b、根据所述去趋势化风速数据的自相关函数和偏自相关函数,确定拖尾截尾模式;
步骤c、基于所述拖尾截尾模式,利用预设准则对所述ARMA模型进行定阶,确定自动回归阶数、滑动平均数阶数和差分阶数;
步骤d、基于所述ARMA模型,利用所述自动回归阶数、滑动平均数阶数和差分阶数根据所述去趋势化风速数据计算下一时刻的风速数据。
根据本发明的一个实施例,在所述步骤二中,确定所述下一时刻的风速数据所属风速区间,并根据所属风速区间确定所述控制参数。
根据本发明的一个实施例,在所述步骤二中,如果所述下一时刻的风速数据小于预设切入风速,则控制风力发电机组处于停机状态。
根据本发明的一个实施例,在所述步骤二中,如果所述下一时刻的风向数据大于或等于预设切出风速,则控制风力发电机组偏航至下风向位置并处于停机状态。
根据本发明的一个实施例,在所述步骤二中,
如果所述下一时刻的风速数据大于或等于预设切入风速且小于第一预设风速阈值,则保持所述控制参数为原始控制参数不变;
且/或,如果所述下一时刻的风速数据大于或等于所述第一预设风速阈值且小于预设切出风速,则将所述原始控制参数减小特定值得到所需要的控制参数。
根据本发明的一个实施例,在所述步骤二中,所述第一预设风速阈值与所述预设额定风速之间包括若干风速区间,其中,对于这些风速区间来说,其风速越大,风速区间所对应的控制参数则越小。
根据本发明的一个实施例,在所述步骤二中,如果所述下一时刻的风速数据大于或等于预设额定风速且小于预设切出风速,则根据所述下一时刻的风向数据对所述风力发电机组进行偏航控制以使得所述风力发电机组的偏航误差处于预设误差范围内。
相较于传统偏航控制方法,本发明所提供的偏航控制方法的偏航次数相对于传统控制策略有所提高,但提高的次数主要集中在中高风速区,因此功率损失系数显著减小。本发明所提供的分区的预测控制方法能够有效减小中高风速区的偏航误差,从而减小了功率损失系数(即提高了风能的利用率)。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图做简单的介绍:
图1是带有主动偏航调节器的风力发电机组的结构示意图;
图2是偏航系统驱动电机正转使得风力机机舱顺时针调向的示意图;
图3是偏航系统驱动电机正转使得风力机机舱逆时针调向的示意图;
图4是现有的偏航逻辑控制算法的实现流程示意图;
图5~图7示出了南方某风电场的风速与风向之间的分布关系图;
图8~图10是传统偏航控制策略下的实际运行结果示意图;
图11是根据本发明一个实施例的风速独立预测方法的实现流程示意图;
图12和图13根据本发明一个实施例的风速序列10s平均值的自相关函数和偏相关函数示意图;
图14是根据本发明一个实施例的风速风向预测方法的实现流程示意图;
图15是根据本发明一个实施例的风速风向预测方法的实现流程示意图;
图16示出了本发明一个实施例的原始风向以及不同时长下的平均风向的示意图;
图17示出了本发明一个实施例的原始风速以及不同时长下的平均风速的示意图;
图18和图19分别示出了本发明一个实施例的不同预测方法所得到的10s风向预测结果和风速预测结果示意图;
图20和图21分别示出了本发明一个实施例的不同预测方法所得到的30s风向预测结果和风速预测结果示意图;
图22和图23分别示出了本发明一个实施例的不同预测方法所得到的60s风向预测结果和风速预测结果示意图;
图24示出了本发明一个实施例的风力发电机组的偏航控制方法的实现流程示意图;
图25示出了本发明一个实施例的风力发电机组的理想运行功率曲线图;
图26示出了本发明一个实施例的不同控制策略下的机舱位置图;
图27至图30分别示出了本发明一个实施例的不同控制策略下不同风速区间内的偏航误差分布图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
同时,在以下说明中,出于解释的目的而阐述了许多具体细节,以提供对本发明实施例的彻底理解。然而,对本领域的技术人员来说显而易见的是,本发明可以不用这里的具体细节或者所描述的特定方式来实施。
另外,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
当前偏航系统的控制主要集中在功率控制方面,如最大功率点追踪(maximumpower point tracking,简称为MPPT)控制。由于早期受到测量技术的限制,偏航控制多采用爬山法。但由于风机的MPP不仅与风向有关,而且与风速大小有关,无法准确定位MPP,因此该方法在工业界仍存有争议。
随着测量技术的发展,有学者提出将PID和模糊控制相结合的偏航控制方法以及逻辑控制方法,这些方法是采用基于风向测量的主动偏航控制,这也是目前工业上普遍采用的偏航控制方法。但是因为风向的测量总是夹杂着干扰噪声和异常值,同时,风向又是不断变化的,与未来风向不同。因此,这种基于风向反馈的主动偏航控制不能显著改善偏航系统的控制性能。
近年来,有学者提出借助激光雷达检测叶轮正前方150m处的风速风向,并基于此提出了偏航系统的预测控制。这种基于先进测量技术的偏航控制策略能够提高风能获取量,并减小了某些极端风向下的载荷。但是,由于这种测风技术成本高昂,目前仍处于试验阶段。
风向对风力发电机组获取最大功率也至关重要,基于风向预测的偏航控制为风机轴线与风向保持一致从而为获得最大功率输出提供可能。Bao等人提出了一种基于圆形回归和贝叶斯平均的方法对天气预报模型所得到的预测数据进行偏差校正。Ergin Erdem等人提出了基于ARMA的风速和风向组合的预测方法。Kalsuner等人提出了一种基于“相似日”来预测风矢量的方法。风速和风向的预测对于风能的获取率都至关重要,而风速和风向又是两个截然不同的属性,如今对于如何同时预测多个风属性以及将预测用于偏航系统控制的研究却很少。
本文在原有的基于ARMA的风速和风向独立预测方法基础上,提出了新的基于ARMA模型的风速和风向预测方法。
图1是带有主动偏航调节器的风力发电机组的结构示意图。
如图1所示风力发电机组包括:电机模块101、桨距控制模块102、空气动力系统模块103、变频器控制模块104、偏航控制模块105以及塔架和传动模块。空气中的风通过空气动力系统模块103中的风力机桨叶旋转将风能转化为机械能来驱动电机模块101中的发电机转子转动,再应用空间矢量控制技术通过变频控制模块104将由发电机所产生的可变频率、可变电压转换为电网能够接受的固定频率、固定电压。
由空气动力学中的贝兹理论可知,风力发电机组能够从风中获得并输出的功率Pa为:
Ve=V0cos(θe)=V0cos(θw-θnp) (2)
其中,ρ表示空气密度,Ar表示风轮扫略的面积,Cp表示风力机的风能利用系数,Ve表示为有效风速,V0表示自由流风速,θe表示偏航误差,θw和θnp分别表示风向和风力机机舱的对北角度。
根据表达式(1)和表达式(2)可知,风力机捕获的功率Pa与风速有效值Ve的3次方成正比,这表明偏航误差θe越大风力机捕获的功率Pa就越小。
主动偏航系统就是主动地将机舱的轴线与风向对齐,即根据计算得到的风向标检测到的一段时间内的风向平均值通过偏航调向装置将风轮调至迎风位置。当风力机机舱位置发生变化,绝对值编码器将记录当前调整的角度,然后启动偏航制动,通过这一系列的主动偏航调节动作为风力发电机组捕获最大风能提供可能。
因此,为提高风力发电机的效率,偏航系统总是要求按照最短路径通过转动垂直在塔架上的机舱来对准风向,因此偏航调节的最短路径与偏航角之间的关系如下:
(1)在风力机机舱位置与风向的角度差小于180°的情况下,偏航角的计算公式为:
θe=θw-θnp (3)
此时偏航系统驱动电机正转使得风力机机舱顺时针调向,其示意图如图2所示;
(2)在风力机机舱位置与风向的角度差大于180°的情况下,偏航角的计算公式为:
θe=360°-|θw-θnp| (4)
此时偏航系统驱动电机反转使得风力机机舱逆时针调向,其示意图如图3所示。
当前,在基于风向反馈的主动偏航控制策略下的偏航误差主要集中分布在[-15°,15°]。当风向变化超出设定范围时,偏航系统则会对机舱位置进行调整。下面以某一1.5MWCMYWP风机为例介绍工业上普遍采用的偏航逻辑控制算法,其实现流程示意图如图4所示。
根据图4可以看出,传统的主动偏航逻辑控制算法在实施过程中首先会对原始的风向测量数据进行滤波处理,随后会根据滤波后的风向数据来计算设定时间内的偏航误差平均值。
具体地,该控制算法会根据如下表达式来计算设定时间内的偏航误差平均值:
其中,表示10s内偏航误差平均值,表示30s内的偏航误差平均值,表示60s内偏航误差平均值。
随后,该算法将会判断计算得到的偏航误差平均值是否超出预先设定的相应范围。其中,如果没有超出预先设定的范围,那么偏航系统不会动作。而如果超出了预先设定的范围,那么该算法则会进一步判断偏航误差平均值超出预先设定范围的时间是否超过设定的延时时长。其中,如果偏航误差平均值超出预先设定范围的时间没有超过设定的延时时长,那么同样的偏航系统不会动作。
而如果偏航误差平均值超出预先设定范围的时间超过了设定的延时时长,那么此时该算法将会计算偏航系统运行时长tyaw。具体地,该算法可以根据如下表达式来计算偏航系统运行时长tyaw:
tyaw=θe/vyaw (6)
其中,vyaw表示偏航系统的运行速度(即偏航系统的转动速度)。
在得到偏航系统运行时长tyaw后,该算法也就可以根据偏航系统运行时长tyaw来控制偏航系统进行动作。
然而,风是空气相对于地球表面的运动,它的形成受地理位置、气象条件等多种因素的影响,它有着明显的日周期和年周期效应。此外,风速与风向也存在着某种关系,图5~图7示出了南方某风电场的风速与风向之间的分布关系图。
从图5~图7可以看出,在低风速区风向变化较频繁,而随着风速的提高风向也趋于稳定。此外,每个地方的风速和风向有着明显的区域特征,表1示出了该区域风速和风向特征。
表1
从图5~图7以及表1可以看出,在这一时间段内风速主要在9-15m/s,占据了90.48%。对北风向主要集中在280-330°,主要是西北,占据了总量的83.71%。平均风速是10.18m/s,风速的标准偏差是4.02。
利用前文的数据对在传统偏航控制策略下的实际运行结果进行分析,结果如图8~图10所示。根据图8~图10可以看出,在传统的偏航策略控制下,风机的偏航误差均值和标准差会随着风速的增大而逐渐下降。在低于2.5m/s这段风速区域内由于风速较小,偏航系统未启动,因此该区域内的偏航误差较大;在额定值以下的低风速区,其中2.5-4m/s这段偏航误差平均值较大,随后逐渐稳定;在额定值以上的高风速区,偏航误差平均值较为稳定。
通过分析,发明人发现,传统的偏航控制算法存在着以下几个问题:
(1)机组偏航对风精度低。现有控制策略是基于风向反馈的控制,完全依赖于风向测量的准确性。然而,风向的准确性除了与自身风向标传感器的测量精度有关,还与风向标的安装位置有着密切的联系。这是由于位于上风向的风力发电机组的风轮旋转会产生尾流湍流,使得位于下风向的风向标不停摆动,从而降低了风向测量的准确度和测风设备的使用寿命,使得偏航控制系统得不到理想的风向输入信号,进而导致机组对风精度较低。
(2)偏航控制滞后。现有偏航控制策略所使用的偏航误差是计算的一段时间内的平均值,而该平均值反应的是历史的偏航状态。
(3)整个风速区域采用同一控制策略,单纯的依靠风向数据而没有考虑风速。而根据上文的研究,风速和风向是存在一定联系的。现场大部分风电机组的偏航策略未区分风速,使得偏航误差角的容忍范围和延时时间为固定值。
(4)偏航系统自适应水平很低。在实际风场中,风力机的地理位置对偏航系统的影响也非常大,比如地形、不同机位之间的影响。而目前不同机位甚至不同风电场的机组均采用同一控制策略,忽略了风电场风况的差异及机组间的性能差异。
(5)从图8~图10可以看出,对于现有的偏航控制策略来说,虽然在高风速区域偏航误差较稳定,但偏航误差的平均值仍超出了设定的8°。
由此可知,现有的偏航控制策略效果不尽如人意,因此有必要对偏航控制系统进行优化。
本发明首先提供了一种风速、风向预测方法,该方法能够实现对风速和风向进行短时独立预测。由于该方法对风速和风向进行预测的实现原理以及实现流程相同,故在此仅以对风速进行预测为例来进行说明。
图11示出了本实施例中对风速进行预测的实现流程示意图。
图11示出了本实施例中对风速进行独立预测的实现流程示意图。
如图11所示,本实施例中,该方法首先会在步骤S1101中获取历史风速数据。需要指出的是,该方法在步骤S1101中所获取到的历史风速数据所指代的优选地为特定长度(该长度可以根据实际需要配置为不同的合理值)的时段内所包含的多个时刻(包括当前时刻)所对应的预设时长内的风速平均值(例如10s、30s或60s内的风速平均值)。其中,当前时刻所对应的10s内的风速平均值表征的是当前时刻之前10s内的风速的平均值。
当然,在本发明的不同实施例中,上述预设时长可以根据实际需要配置为不同的合理值(例如5s至240s内的合理值等),本发明并不对上述预设时长的具体取值进行限定。
由于本方法是基于ARMA模型来进行风速预测的,而ARMA模型要求数据是平稳的,因此为了保证数据的平稳性,在得到历史风速数据后,该方法会在步骤S1102中对历史风速数据进行去趋势化处理,从而得到去趋势化风速数据。
具体地,本实施例中,该方法在步骤S1102中优选地根据如下表达式对历史时刻的风速数据进行去趋势化处理:
其中,表示t时刻的去趋势化后的风速数据,表示t时刻的风速数据值,表示历史风速趋势值(即平均值)。
本实施例中,历史风速数据平均值优选地指当前时刻前所有风速数据的平均值或当前时刻以前特定时长内的风速数据的平均值。
在完成一次去趋势化处理过程后,该方法还会在步骤S1102中对去趋势化风速数据进行平稳性检测。其中,如果去趋势化风速数据并不是平稳的,那么该方法则会再次对该去趋势化风速数据进行差分并重新进行平稳性检测,直至得到的去趋势化风速数据是平稳的。
由于风速信号存在不平稳性,为了应用时间序列的方法对其进行预测,就需要将风速信号变为平稳的随机信号。本实施例中,该方法优选地采取引用有序差分算子(即▽=1-B)的方法,对原非平稳时间序列{yt}施行一阶有序差分变换。即,存在:
▽yt=(1-B)yt=yt-yt-1 (8)
其中,▽yt表示t时刻(即当前时刻)和t-1时刻(即前一时刻)的数据的差值,B表示yt和yt-1的比例系数,yt和yt-1分别表示t时刻(即当前时刻)和t-1时刻(即前一时刻)的数据。
d阶数差分后可以得到:
▽dyt=(1-B)dyt (9)
其中,▽dyt表示d阶差分算子。
差分后得到的平稳序列可以用AR、MA、ARMA模型来描述,则原时间序列可表示为:
其中,表示滞后算子多项式,θ(B)表示预测误差滞后算子多项式,at表示预测误差。
这就是累积式自回归一滑动平均模型ARIMA(p,d,q)。
如果需要使得数据序列保持平稳性,那么也就需要要求方程φ(B)=0和θ(B)=0的根均位于单位圆外,即根的模值均大于1。其中,
其中,如果上述方程的根的模值均大于1,那么风速序列是平稳的。而如果平稳可逆性检验未通过,可适当调整差分阶数进行修正,直至调整后的风速序列是稳定的。
当然,在本发明的其它实施例中,该方法还可以采用其它合理方式来检测去趋势化风速数据的平稳性,本发明不限于此。
本实施例中,通过对历史风速数据进行去趋势化处理,该方法还可以确定出ARMA模型中的差分阶数d。
在完成去趋势化处理后,该方法会在步骤S1103中根据步骤S1102中所得到的去趋势化风速数据的自相关函数(autocorrelative function,ACF)和偏自相关函数(partialautocorrelative function,PACF)确定拖尾截尾模式。
具体地,本实施例中,上述自相关函数和偏自相关函数可以分别表示为:
其中,ρk表示求滞后数为k的自相关系数,和分别表示i时刻的去趋势后的数据和i+k时刻的去趋势后的数据时刻,φkk表示滞后数为k的偏相关系数,φk-1,j表示k-1阶自回归过程中第j个回归系数。
具体地,本实施例中,该方法会判断去趋势化风速数据的自相关函数在达到特定阶后是否能够保持为零。其中,如果能够,该方法则可以判定去趋势化风速数据的自相关函数具有截尾性,否则则可以判定去趋势化风速数据的自相关函数具有拖尾性。
类似地,该方法还可以判断去趋势化风速数据的偏自相关函数在达到特定阶后是否能够保持为零。其中,如果能够,该方法则可以判定去趋势化风速数据的偏自相关函数具有截尾性,否则则可以判定去趋势化风速数据的偏自相关函数具有拖尾性。
通过判断去趋势化风速数据的自相关函数和偏相关函数为拖尾型还是截尾型,本实施例所提供的方法也就可以确定出去趋势化风速数据的拖尾截尾模式。
图12和图13分别示出了本实施例中风速序列10s平均值的自相关函数和偏相关函数示意图。从图12和图13中可以看出,该去趋势化风速数据的自相关函数和偏相关函数都是拖尾型。
再次如图11所示,本实施例中,在确定出去趋势化风速数据的拖尾截尾模式后,该方法会在步骤S1104中基于所确定出的拖尾截尾模式,对ARMA模型进行定阶,从而确定给出自动阶数、滑动平均数阶数和差分阶数。其中,该差分阶数即为步骤S1102差分过程中所确定出的差分的次数。如果风速数据比较平稳,那么在去趋势化过程中也就不需要进行差分处理,这样差分的次数(即差分阶数d)也就等于零。
在确定出ARMA模型中的自动回归阶数、滑动平均数阶数和差分阶数后,本实施例中,该方法会在步骤S1105中基于ARMA模型,来利用步骤S1104中所确定出的自动回归阶数、滑动平均数阶数和差分阶数根据去趋势化风速数据对风速数据进行提前一步预测,从而计算得到下一时刻的风速数据。
具体地,本实施例中,该方法优选地根据如下表达式确定下一时刻的风速数据:
其中,yt+1表示t+1时刻(即下一时刻)的数据,yt表示t时刻(即当前时刻)的数据,yt-i表示t-i时刻的数据,δ表示常数项,表示第i个自回归系数,φj表示第j个滑动平均系数,p表示自动回归的阶数,q表示滑动平均数的阶数,et表示t时刻(即当前时刻)的误差项(即t时刻的预测值与观测值之间的差值)。
对于风速数据,即存在:
其中,表示t+1时刻(即下一时刻)的风速数据。
至此也就根据历史风速数据预测出了下一时刻的风速数据。
基于相同原理以及过程,本发明所提供的风速风向预测方法同样可以根据历史风向数据来预测出下一时刻的风向数据。
本发明还通过了一种风速风向预测方法,该方法在利用ARMA模型根据历史风速数据确定下一时刻的风速数据的情况下,会利用风向圆形变换的方式来预测下一时刻的风向数据。
图14示出了本实施例所提供的风速风向预测方法的实现流程示意图。
如图14所示,本实施例中,该方法会在步骤S1401中获取历史风速数据和风向数据。需要指出的是,该方法在步骤S1101中所获取到的历史风速数据所指代的优选地为多个时刻(包括当前时刻)所对应的预设时长内的风速平均值(例如10s、30s或60s内的风速平均值)。其中,当前时刻所对应的10s内的风速平均值表征的是当前时刻之前10s内的风速的平均值。
当然,在本发明的不同实施例中,上述预设时长可以根据实际需要配置为不同的合理值(例如5s至240s内的合理值等),本发明并不对上述预设时长的具体取值进行限定。
在步骤S1402中,该方法会利用ARMA模型来根据历史风速数据来预测出下一时刻的风速数据。本实施例中,该方法利用ARMA模型来根据历史风速数据来预测出下一时刻的风速数据的具体原理以及过程与上述步骤S1102至步骤S1105所阐述的内容类似,故在此不再对该部分内容进行赘述。
风向是一个圆形变量,因此本实施例所提供的方法采用更适合于圆形变量的预测方法来对下一时刻的风向数据进行预测。具体地,本实施例中,该方法会在步骤S1403中对历史风向数据进行圆形变量变换,从而得到历史风向数据的正弦值和余弦值。
具体地,该方法优选地根据如下表达式对历史风向数据进行变换:
其中,和分别表示t时刻的风向数据的正弦值和余弦值,表示t时刻的风向数据。
基于表达式(17),该方法可以得到当前时刻以及当前时刻之前各个时刻的风向数据的正弦值和余弦值。
在确定出当前时刻(即t时刻)的风向数据的正弦值和余弦值后,该方法会在步骤S1404中根据当前时刻的风向数据的正弦值和余弦值来确定下一时刻(即t+1时刻)的风向数据的正弦值和余弦值
具体地,本实施例中,该方法优选地分别利用ARMA模型来根据历史风向数据的正弦值和余弦值确定下一时刻的风向数据的正弦值和余弦值其具体原理以及过程与上述图11所阐述的内容相同,故在此不再对该部分内容进行赘述。
如图14所示,本实施例中,在得到下一时刻的风向数据的正弦值和余弦值后,该方法会在步骤S1405中根据一时刻的风向数据的正弦值和余弦值确定下一时刻的风向数据
具体地,本实施例中,该方法优选地根据如下表达式确定下一时刻的风向数据
其中,表示t+1时刻(即下一时刻)的风向数据,和分别表示t+1时刻的风向数据的正弦值和余弦值。
需要指出的是,在本发明的其它实施例中,该方法还可以采用其它合理方式来根据预测的下一时刻的风向数据的正弦值和余弦值确定下一时刻的风向数据
需要指出的是,在本发明的其它实施例中,对于风速数据的预测可以根据实际需要进行配置,即在需要的情况下获取风速数据并对风速数据进行预测,在不需要的情况下不获取风速数据同时不对风速数据进行预测,本发明不限于此。此外,在本发明的其它实施例中,根据实际需要,该方法还可以采用其它合理方式来对风速数据进行预测,本发明同样不限于此。
本发明提供了一种新的风速风向预测方法,该方法将风速和风向视为一个矢量,并给予风矢量来对下一时刻的风速数据和风向数据进行预测。
图15示出了本实施例所提供的风速风向预测方法的实现流程示意图。
如图15所示,本实施例中,该风速风向预测方法会在步骤S1501中获取待分析区域的历史风速数据和历史风向数据。需要指出的是,该方法在步骤S1101中所获取到的历史风速数据所指代的优选地为多个时刻(包括当前时刻)所对应的预设时长内的风速平均值(例如10s、30s或60s内的风速平均值)。其中,当前时刻所对应的10s内的风速平均值表征的是当前时刻之前10s内的风速的平均值。
当然,在本发明的不同实施例中,上述预设时长可以根据实际需要配置为不同的合理值(例如5s至240s内的合理值等),本发明并不对上述预设时长的具体取值进行限定。
在得到历史风速数据和风向数据后,该方法会在步骤S1502中根据历史风速数据和历史风向数据对风矢量进行分解,从而得到历史风矢量横坐标和风矢量纵坐标。
具体地,本实施例中,该方法优选地根据如下表达式对风矢量进行分解:
其中,和分别表示t时刻的风矢量横坐标数据和风矢量纵坐标数据,表示风速数据,表示t时刻的风向数据。
基于表达式(19),该方法可以得到当前时刻以及当前时刻之前各个时刻的风矢量横坐标数据和风矢量纵坐标数据。
当然,在本发明的其它实施例中,该方法还可以采用其它合理方式来对风矢量进行分解,本发明不限于此。
在得到历史风矢量横坐标和风矢量纵坐标后,该方法会在步骤S1503中利用ARMA模型来根据历史风矢量横坐标和历史风矢量纵坐标确定下一时刻的风矢量横坐标和风矢量纵坐标
本实施例中,该方法利用ARMA模型确定下一时刻的风矢量横坐标和风矢量纵坐标的具体原理以及过程与上述图11所示的内容类似,在图11所示的方法的基础上将历史风速数据替换为历史风矢量横坐标和历史风矢量纵坐标,即可分别确定出下一时刻的风矢量横坐标和风矢量纵坐标在此不再对该过程进行赘述。
如图15所示,本实施例中,该方法会在步骤S1504中根据步骤S1503中所得到的下一时刻的风矢量横坐标和风矢量纵坐标确定下一时刻的风速数据和风向数据。
具体地,本实施例中,该方法优选地根据如下表达式确定下一时刻的风速数据
根据如下表达式确定下一时刻的风向数据:
其中,表示t+1时刻(即下一时刻)的风向数据。
需要指出的是,在本发明的其它实施例中,该方法还可以采用其它合理方式来根据下一时刻的风矢量横坐标和风矢量纵坐标确定下一时刻的风速数据和风向数据,本发明不限于此。
为了验证本发明所提供的风速风向预测方法的有效性以及优点,本实施例使用南方某风场的SCADA(Supervisory Control and Data Acquisition System)所记录的24小时内的风速和风向数据,共86400个点。其中,原始风向以及不同时长下的平均风向如图16所示,原始风速以及不同时长下的平均风速如图17所示,图18和图19分别示出了不同预测方法所得到的10s风向预测结果和风速预测结果,图20和图21分别示出了不同预测方法所得到的30s风向预测结果和风速预测结果,图22和图23分别示出了不同预测方法所得到的60s风向预测结果和风速预测结果。
根据图16和图17可知,由于风速原始数据和风向原始数据的波动比较大,因此计算10s、30s以及60s的平均值有利于滤波和减小异常值的影响。此外,在风向标在测量风向超过360°时,数值将从0开始。这就造成图16所示的风向在20-22H这段事件内波动比较大,实用ARMA模型单独预测风向时精度不高(尤其是图18、图20和图22的圆圈处),而使用圆形变量法来对风向进行预测更能够体现风向的连续性,不会出线上述圆圈处的突变,从而使得风向预测精度更高。而对于风速预测而言,从图19、图21和图23可以看出,采用单独预测法所得到的结果比原始数据更为稳定。
为评估所提出的短时风速和风向预测方法的精确性,本实施例中,可以采用绝对误差平均值(MAE)、平均绝对百分误差(MAPE)和均方差(MSE)三个表达式来对比其预测结果,其统计结果如表2所示。其中,绝对误差平均值(MAE)、平均绝对百分误差(MAPE)和均方差(MSE)的计算表达式分别为:
其中,N表示数据个数,xi表示实际值,表示预测值。
表2
结合图16~图23以及表2可知,对于风向预测而言,单独使用ARMA预测模型所得到的风向预测结果的精度低于风矢量法以及圆形变量法
从上述描述种可以看出,相较于现有的风速风向预测方法,本发明所提供的方法能够使得风向预测结果更加准确以及稳定,这样也就为风力发电机组的偏航控制提供了数据依据。
图24示出了本实施例所提供的风力发电机组的偏航控制方法的实现流程示意图。
如图24所示,本实施例中,该偏航控制方法首先会在步骤S2401中根据获取到的风速和风向分别计算预设时长内的风速平均值和风向平均值,从而得到历史风速数据和风向数据。
本实施例中,上述预设时长优选地为10s、30s和/或60s。当然,在本发明的不同实施例中,上述预设时长可以根据实际需要配置为不同的合理值(例如5s至240s内的合理值等),本发明并不对上述预设时长的具体取值进行限定。
在得到历史风速数据和风向数据后,该方法会在步骤S2402种根据历史风速数据和风向数据预测下一时刻的风速数据和风向数据。本实施例中,该方法优选地采用圆形变量法来预测下一时刻的风速数据和风向数据,其中,基于圆形变量法进行风速数据和风向数据预测的具体原理以及过程在上述内容中已经详细阐述,故在此不再对该部分内容进行赘述。
当然,在本发明的其它实施例中,根据实际情况,该方法还可以采用其它合理方式来根据历史风速数据和风向数据对下一时刻的风速数据和风向数据进行预测,本发明不限于此。例如在本发明的一个实施例中个,该方法还可以采用如图11所示的分别对风速数据和风向数据进行预测的方式来得到下一时刻的风速数据和风向数据,或是采用如图15所示的基于风矢量法的预测方式来得到下一时刻的风速数据和风向数据。
如图24所示,本实施例中,在确定出下一时刻的风速数据和风向数据后,该方法会在步骤S2403中根据所预测得到的下一时刻的风速数据来确定控制参数,随后再在步骤S2404中根据步骤S2403中所确定出的控制参数和步骤S2402中所确定出的下一时刻的风向书来对风力发光点机组进行偏航控制。
本实施例中,该方法优选地在步骤S2403中确定预测得到的下一时刻的风速数据所属风速区间,并根据其所属风速区间来确定控制参数。
具体地,如图25所示,本实施例中,该方法将风力发电机组的可控制风速区域以切入风速vcut_in、额定风速vn和切出风速vcut_out为界划分为4段。
优选地,如果通过相关传感器测量得到的风速vw<vcut_in(例如vw<2.5m/s),这也就表示风速vw(即预测得到的下一时刻的风速数据)处于切入风速vcut_in以下区域。由于该区域所含风能较小,因此该方法此时优选地控制风力发电机组在该风速区域处于停机状态。
优选地,如果风速vw>vcut_out(例如vw>25m/s),这就表示风速vw(即预测得到的下一时刻的风速数据)处于切出风速vcut_out以上区域。由于该区域风速较大,过高的风速对于风力发电机组载荷产生较大的影响从而影响风力发电机组的安全性、可靠性以及机组寿命,因此本实施例中,该方法优选地控制风力发电机组在该风速区域偏航至下风向位置并处于停机状态。
优选地,如果风速vw大于或等于预设切入风速且小于第一预设风速阈值,即存在vcut_in≤vw<v1,那么该方法将会保持控制参数为原始控制参数不变。而如果风速vw大于或等于第一预设风速阈值且小于预设切出风速,即存在v1≤vw<vcut_out,那么该方法则会将原始控制参数减小特定值来得到所需要的控制参数。需要指出的是,在本发明的不同实施例中,上述第一预设风速阈值可以根据实际风能情况配置为不同的合理值,本发明不限于此。同时,还需要指出的是,在本发明的其它实施例中,当vcut_in≤vw<v1或v1≤vw<vcut_out时,该方法还可以采用其它合理方式来配置控制参数,本发明同样不限于此。
例如,如果第一预设风速阈值配置为4m/s,由于风速区间[2.5m/s,4m/s)的风能占据了风能总量的9.64%,其对风误差平均值和标准差较大,且该区域风向较为不稳定。同时,由于该风速区间内风力发电机组从风中所获取到的能量较小,因此本实施例中,该方法优选地会将延时时间Tset和/或偏航启动误差角度vset等控制参数保持原始控制参数(即根据现有偏航控制方法中所设定的控制参数)不变。
而对于风速区间[4m/s,25m/s),本实施例中,该方法优选地会将原始控制参数减小特定值,从而得到新的适用于该风速区间的控制参数。偏空控制方法也就可以根据所确定出的新的控制参数来对风力发电机机组进行控制。
本实施例中,第一预设风速阈值与预设额定风速之间包括若干风速区间,其中,对于这些风速区间来说,其风速越大,风速区间所对应的控制参数则越小。
例如,如果4m/s≤vw<9m/s,由于该风速区间所蕴含的风能占据了风能总量的13.61%并且处在额定风速以下的低风速段,因此传统偏航控制下的对风误差平均值和标准差较小,传统偏航控制器作用下能较[2.5m/s,4m/s)风速区间有所提升,但偏航控制性能仍需要提高。因此,本实施例所提供的方法也就会将延时时间Tset和/或偏航启动误差角度vset等控制参数的原始控制参数值减小特定值,从而使得偏航控制性能能够满足该风速区间的要求。
如果9m/s≤vw<12m/s,由于该风速区间所蕴含的风能占据了风能总量的33.07%并且处在额定风速以下的中高风速段,传统偏航控制下的对风误差平均值和标准差会较上一风速区间继续较小,但偏航控制性能仍需要提高。因此,本实施例中,该方法会将延时时间Tset和/或偏航启动误差角度vset等控制参数的原始控制参数值继续减小,从而使得偏航控制性能能够满足该风速区间的要求。
本实施例中,如果风速vw大于或等于预设切入风速且小于额定风速,那么该方法则优选地通过调节风力机的叶尖速比,以实现最佳功率曲线的跟踪和最大风能的捕获为目标。此时,桨距角优选地设置为0°。当然,在本发明的其它实施例中,桨距角还可以根据实际需要配置为其它合理值,本发明不限于此。
本实施例中,如果风速数据大于或等于预设额定风速且小于预设切出风速,那么该方法则会根据下一时刻的风向数据对风力发电机组进行偏航控制以使得所述风力发电机组的偏航误差处于预设误差范围内。具体地,本实施例中,如果风速数据大于或等于预设额定风速且小于预设切出风速,该方法将会调节桨距角改变风能获取系数,以获得稳定的输出功率从而保护机组设备。
例如,如果如果12m/s≤vw<25m/s,该风速区间所蕴含的风能将会占据风能总量的40.32%,并且该风速区间的风向将会稳定增强。由于额定风速以上风力发电机组需要保持额定输出功率,虽然该风速区间的偏航误差对发电量影响不打,但偏航误差过大将会影响风力发电机组的整机载荷,导致平均诱导风速的变化幅度过大,因此本实施例中,该方法会将偏航启动误差角度配置为[-8°,-8°],这样通过对于风力发电机组的偏航控制也就可以将风力发电机组的偏航误差保持在在[-8°,-8°]。
由此可见,对于切入风速到切除风速中所包含的各个风速区间,本实施例所提供的方法对每一风速区间所对应的控制参数优选地单独设定,其具体设置结果可以如表3所示。
表3
对于本实施例所提供的风力发电机组的偏航控制方法来说,偏航控制中所使用到的风速数据(例如10s、30s和/或60s风速平均值)和风向数据(例如10s、30s和/或60s风向平均值)可以提前一步预测得到,随后通过将预测得到的风速数据和风向数据与对应的阈值进行判断来控制偏航系统的运行。
为了验证基于风速和风向预测的分区控制策略的有效性,本实施例采用如图16至图23所示风速数据和风向数据,在Matlab/Simulink环境下分别用传统控制策略和本发明所提出的基于风速和风向预测的分区控制策略进行控制,并对实验结果进行分析。另外,为了清晰地表述分区策略的效果,本实施例从五个方面进行分析,分别是偏航误差平均值、偏航误差均方根、偏航时间、偏航次数及功率损失系数。
其中,偏航误差平均值采用如下表达式计算得到:
偏航误差均方根采用如下表达式计算得到:
偏航时间采用如下表达式计算得到:
偏航次数采用如下表达式计算得到:
在实际工程经验中常用以下表达式计算功率损失系数
其中,θye表示,N表示偏航误差的个数,tyaw表示偏航时间,表示,Cyaw表示偏航次数,ξ表示功率损失系数,Pred表示减小的功率,Preal表示理想情况下输出的功率,表示等效的偏航误差。
等效的偏航误差可以根据如下表达式计算得到:
其中,是第j段偏航误差区域内的误差平均值,其表征该偏航误差区域的概率。
图26示出了在传统控制策略和本发明所提供的分区控制策略下的机舱位置。将图26的结果按照风速分区分别进行统计,得到图27至图30所示的偏航误差分布图。
表4示出了不同偏航控制方法下的统计数据。
表4
综合图26至图30及表4的统计结果可知,在低风速区间(例如[2.5m/s,4m/s)),由于本实施例所提供的偏航控制方法所采用的偏航控制策略与传统策略一致,因此偏航误差分布不变。
在额定风速以下的中低风速区间(例如[4m/s,9m/s)),本实施例所提供的偏航控制方法所得到的偏航误差较传统方法有所减小,同时对风精度也更高,偏航误差在[-8°,-8°]区间由75.20%提高到76.04%。
在额定风速以下中高风速区(例如[9m/s,12m/s)),本实施例所提供的偏航控制方法所得到的偏航误差较传统方法显著减小,偏航误差在[-8°,-8°]区间由81.75%提高到82.62%。
在额定风速以上高风速区(例如[12m/s,25m/s)),本实施例所提供的偏航控制方法所得到的偏航误差较传统方法显著减小,偏航误差在[-8°,-8°]区间由83.83%提高到84.79%,误差分布以及偏航误差分布更为集中。
相较于传统偏航控制方法,本发明所提供的偏航控制方法的偏航次数相对于传统控制策略有所提高,但提高的次数主要集中在中高风速区,因此功率损失系数显著减小。
由此可知,本发明所提供的分区的预测控制方法能够有效减小中高风速区的偏航误差,从而减小了功率损失系数(即提高了风能的利用率)。
应该理解的是,本发明所公开的实施例不限于这里所公开的特定结构或处理步骤,而应当延伸到相关领域的普通技术人员所理解的这些特征的等同替代。还应当理解的是,在此使用的术语仅用于描述特定实施例的目的,而并不意味着限制。
说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。
虽然上述示例用于说明本发明在一个或多个应用中的原理,但对于本领域的技术人员来说,在不背离本发明的原理和思想的情况下,明显可以在形式上、用法及实施的细节上作各种修改而不用付出创造性劳动。因此,本发明由所附的权利要求书来限定。
Claims (15)
1.一种风力发电机组的偏航控制方法,其特征在于,所述偏航控制方法包括:
步骤一、根据获取到的风速和风向分别计算预设时长内的风速平均值和风向平均值,得到历史风速数据和历史风向数据,根据所述历史风速数据和历史风向数据预测下一时刻的风速数据和风向数据;
步骤二、根据所述下一时刻的风速数据确定控制参数,并利用所述控制参数和风向数据对风力发电机组进行偏航控制;
其中,在所述步骤一中,预测下一时刻的风速数据和风向数据的步骤包括:
根据所述历史风速数据和历史风向数据对风矢量进行分解,得到历史风矢量横坐标数据和历史风矢量纵坐标数据;
利用ARMA模型来根据所述历史风矢量横坐标数据和历史风矢量纵坐标数据确定下一时刻的风矢量横坐标数据和风矢量纵坐标数据;
根据下一时刻的风矢量横坐标数据和风矢量纵坐标数据分别确定下一时刻的风速数据和风向数据;
或,
对所述历史风向数据进行圆形变量变换,得到历史风向数据的正弦值和余弦值;
利用ARMA模型根据历史风向数据的正弦值和余弦值确定下一时刻的风向数据的正弦值和余弦值,并根据所述下一时刻的风向数据的正弦值和余弦值确定下一时刻的风向数据。
2.如权利要求1所述的方法,其特征在于,在所述步骤一中,所述预设时长为10s、30s或60s。
3.如权利要求1所述的方法,其特征在于,根据如下表达式对风矢量进行分解:
其中,和分别表示t时刻的风矢量横坐标数据和风矢量纵坐标数据,表示风速数据,表示t时刻的风向数据。
4.如权利要求1所述的方法,其特征在于,根据如下表达式确定下一时刻的风速数据:
其中,表示t+1时刻的风速数据,和分别表示t+1时刻的风矢量横坐标数据和风矢量纵坐标数据。
5.如权利要求1所述的方法,其特征在于,根据如下表达式确定下一时刻的风向数据:
其中,表示t+1时刻的风向数据,和分别表示t+1时刻的风矢量横坐标数据和风矢量纵坐标数据。
6.如权利要求1所述的方法,其特征在于,根据如下表达式对所述历史风向数据进行圆形变量变换:
其中,和分别表示t时刻的风向数据的正弦值和余弦值,表示t时刻的风向数据。
7.如权利要求1所述的方法,其特征在于,根据如下表达式确定所述下一时刻的风向数据:
其中,表示t+1时刻的风向数据,和分别表示t+1时刻的风向数据的正弦值和余弦值。
8.如权利要求6所述的方法,其特征在于,在所述步骤一中,利用ARMA模型根据历史风速数据确定下一时刻的风速数据。
9.如权利要求8所述的方法,其特征在于,确定下一时刻的风速数据的步骤包括:
步骤a、对所述历史风速数据进行去趋势化处理,得到去趋势化风速数据;
步骤b、根据所述去趋势化风速数据的自相关函数和偏自相关函数,确定拖尾截尾模式;
步骤c、基于所述拖尾截尾模式,利用预设准则对所述ARMA模型进行定阶,确定自动回归阶数、滑动平均数阶数和差分阶数;
步骤d、基于所述ARMA模型,利用所述自动回归阶数、滑动平均数阶数和差分阶数根据所述去趋势化风速数据计算下一时刻的风速数据。
10.如权利要求1~9中任一项所述的方法,其特征在于,在所述步骤二中,确定所述下一时刻的风速数据所属风速区间,并根据所属风速区间确定所述控制参数。
11.如权利要求10所述的方法,其特征在于,在所述步骤二中,如果所述下一时刻的风速数据小于预设切入风速,则控制风力发电机组处于停机状态。
12.如权利要求10所述的方法,其特征在于,在所述步骤二中,如果所述下一时刻的风向数据大于或等于预设切出风速,则控制风力发电机组偏航至下风向位置并处于停机状态。
13.如权利要求10所述的方法,其特征在于,在所述步骤二中,
如果所述下一时刻的风速数据大于或等于预设切入风速且小于第一预设风速阈值,则保持所述控制参数为原始控制参数不变;
且/或,如果所述下一时刻的风速数据大于或等于所述第一预设风速阈值且小于预设切出风速,则将所述原始控制参数减小特定值得到所需要的控制参数。
14.如权利要求13所述的方法,其特征在于,在所述步骤二中,所述第一预设风速阈值与所述预设额定风速之间包括若干风速区间,其中,对于这些风速区间来说,其风速越大,风速区间所对应的控制参数则越小。
15.如权利要求10所述的方法,其特征在于,在所述步骤二中,如果所述下一时刻的风速数据大于或等于预设额定风速且小于预设切出风速,则根据所述下一时刻的风向数据对所述风力发电机组进行偏航控制以使得所述风力发电机组的偏航误差处于预设误差范围内。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810259908.2A CN108488038B (zh) | 2018-03-27 | 2018-03-27 | 一种风力发电机组的偏航控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810259908.2A CN108488038B (zh) | 2018-03-27 | 2018-03-27 | 一种风力发电机组的偏航控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108488038A CN108488038A (zh) | 2018-09-04 |
CN108488038B true CN108488038B (zh) | 2019-05-24 |
Family
ID=63316662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810259908.2A Active CN108488038B (zh) | 2018-03-27 | 2018-03-27 | 一种风力发电机组的偏航控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108488038B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11261844B2 (en) * | 2019-02-28 | 2022-03-01 | General Electric Company | System and method for predicting wind turbine shutdowns due to excessive vibration |
CN110005580B (zh) * | 2019-05-06 | 2020-06-02 | 保定绿动风电设备科技有限公司 | 一种风电机组运行状态监测方法 |
CN110985291B (zh) * | 2019-12-13 | 2021-07-30 | 中国船舶重工集团海装风电股份有限公司 | 偏航对风控制方法、装置、设备及存储介质 |
CN111984905B (zh) * | 2020-07-17 | 2023-11-28 | 明阳智慧能源集团股份公司 | 一种基于拟合技术的风电机组风向数据滤波方法 |
CN114320768B (zh) * | 2020-09-30 | 2024-11-05 | 北京金风科创风电设备有限公司 | 风电机组管理方法和装置 |
CN112796940B (zh) * | 2021-01-29 | 2022-05-24 | 东方电气风电股份有限公司 | 一种风向数据缺失风机的对风方法 |
CN113107770B (zh) * | 2021-05-20 | 2022-07-01 | 上海电气风电集团股份有限公司 | 风机偏航控制方法、系统、风机和可读存储介质 |
CN113236507B (zh) * | 2021-05-28 | 2022-08-19 | 中南大学 | 一种风电机组偏航静态误差诊断方法和系统 |
CN113482853B (zh) * | 2021-08-06 | 2023-02-24 | 贵州大学 | 一种偏航控制方法、系统、电子设备及储存介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104196680A (zh) * | 2014-09-05 | 2014-12-10 | 南京达沙信息科技有限公司 | 基于临近预测的风机预知性偏航控制 |
US11073133B2 (en) * | 2014-10-31 | 2021-07-27 | General Electric Company | System and method for controlling the operation of a wind turbine |
US10443577B2 (en) * | 2015-07-17 | 2019-10-15 | General Electric Company | Systems and methods for improved wind power generation |
CN105484938B (zh) * | 2015-12-24 | 2018-11-23 | 北京金风科创风电设备有限公司 | 风力发电机组的偏航控制方法及装置 |
CN105508148B (zh) * | 2015-12-31 | 2019-02-15 | 北京金风科创风电设备有限公司 | 基于风能分布捕获最大风能的方法和系统 |
-
2018
- 2018-03-27 CN CN201810259908.2A patent/CN108488038B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN108488038A (zh) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108488038B (zh) | 一种风力发电机组的偏航控制方法 | |
EP2878811B1 (en) | Methods of operating a wind turbine, and wind turbines | |
EP3464895B1 (en) | System and method for forecasting power output of a wind farm | |
US10260481B2 (en) | System and method for assessing farm-level performance of a wind farm | |
US8178986B2 (en) | Wind turbine operation system and method | |
CN108547736A (zh) | 风速风向预测方法及风力发电机组的偏航控制方法 | |
KR101024791B1 (ko) | 풍력 발전 장치, 풍력 발전 시스템 및 풍력 발전 장치의 발전 제어 방법 | |
US10371124B2 (en) | System and method for determining wind farm wake loss | |
US10107261B2 (en) | System and method for reducing oscillation loads of wind turbine | |
US20130300115A1 (en) | Systems and methods for optimizing power generation in a wind farm turbine array | |
US10385829B2 (en) | System and method for validating optimization of a wind farm | |
US11598313B2 (en) | Wind turbine control method | |
EP3613982A1 (en) | Method for controlling operation of a wind turbine | |
US9719494B2 (en) | Methods of operating a wind turbine, wind turbines and wind parks | |
CN103244350A (zh) | 一种风力发电机组最佳叶尖速比跟踪控制方法 | |
CN108537372B (zh) | 一种风向预测方法及风力发电机组的偏航控制方法 | |
CN114876732A (zh) | 一种风电机组变桨的控制方法及装置 | |
EP3406897B1 (en) | System and method for determining wind farm wake loss | |
US11372384B2 (en) | System and method for adjusting a multi-dimensional operating space of a wind turbine | |
TWI717000B (zh) | 風力發電廠 | |
CN104343627A (zh) | 一种离网风力发电最大风能捕获控制方法和装置 | |
Konara et al. | Estimation of annual energy output of a wind turbine using wind speed probability distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210114 Address after: 410000 Room 502, building 7, changxinyuan, dezhengyuan, Furong district, Changsha City, Hunan Province Patentee after: CHANGSHA VICTORY ELECTRICITY TECH Co.,Ltd. Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932 Patentee before: CENTRAL SOUTH University |
|
TR01 | Transfer of patent right |