CN108470741A - Imaging sensor and forming method thereof - Google Patents
Imaging sensor and forming method thereof Download PDFInfo
- Publication number
- CN108470741A CN108470741A CN201810218968.XA CN201810218968A CN108470741A CN 108470741 A CN108470741 A CN 108470741A CN 201810218968 A CN201810218968 A CN 201810218968A CN 108470741 A CN108470741 A CN 108470741A
- Authority
- CN
- China
- Prior art keywords
- forming
- isolation
- barrier
- isolation opening
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 135
- 238000003384 imaging method Methods 0.000 title abstract 3
- 238000002955 isolation Methods 0.000 claims abstract description 205
- 230000004888 barrier function Effects 0.000 claims abstract description 190
- 150000002500 ions Chemical class 0.000 claims abstract description 85
- 239000000758 substrate Substances 0.000 claims abstract description 79
- 230000008569 process Effects 0.000 claims description 67
- 239000002019 doping agent Substances 0.000 claims description 62
- 229920002120 photoresistant polymer Polymers 0.000 claims description 46
- 238000005468 ion implantation Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 26
- 230000000903 blocking effect Effects 0.000 claims description 20
- 238000002513 implantation Methods 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- -1 boron ions Chemical class 0.000 description 14
- 230000009286 beneficial effect Effects 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000000137 annealing Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 238000002161 passivation Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000005224 laser annealing Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/807—Pixel isolation structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/014—Manufacture or treatment of image sensors covered by group H10F39/12 of CMOS image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/199—Back-illuminated image sensors
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造技术领域,尤其涉及一种图像传感器及其形成方法。The invention relates to the technical field of semiconductor manufacturing, in particular to an image sensor and a forming method thereof.
背景技术Background technique
图像传感器是将光学图像信号转换为电信号的半导体器件。CMOS(互补金属氧化物半导体)图像传感器是一种快速发展的固态图像传感器,由于CMOS图像传感器中的图像传感器部分和控制电路部分集成于同一芯片中,因此CMOS图像传感器的体积小、功耗低、价格低廉,相较于传统的CCD(电荷耦合)图像传感器更具优势,也更易普及。Image sensors are semiconductor devices that convert optical image signals into electrical signals. CMOS (Complementary Metal Oxide Semiconductor) image sensor is a fast-growing solid-state image sensor. Since the image sensor part and the control circuit part of the CMOS image sensor are integrated in the same chip, the CMOS image sensor is small in size and low in power consumption. , low price, compared with the traditional CCD (charge-coupled) image sensor, it has more advantages and is easier to popularize.
现有的CMOS图像传感器中包括用于将光信号转换为电信号的光电传感器,所述光电传感器为形成于硅衬底中的光电二极管。此外,在形成有光电二极管的硅衬底表面还形成有介质层,所述介质层内形成有金属互联层,所述金属互联层用于使光电二极管与外围电路电连接。对于上述CMOS图像传感器来说,所述硅衬底具有介质层和金属互联层的一面为CMOS图像传感器的正面,与正面相对的一面为CMOS图像传感器的背面,根据光线照射方向的差异,所述CMOS图像传感器能够分为前照式(Front-side Illumination,FSI)CMOS图像传感器和后照式(Back-side Illumination)CMOS图像传感器。Existing CMOS image sensors include photosensors for converting optical signals into electrical signals, and the photosensors are photodiodes formed in a silicon substrate. In addition, a dielectric layer is formed on the surface of the silicon substrate on which the photodiodes are formed, and a metal interconnection layer is formed in the dielectric layer, and the metal interconnection layer is used to electrically connect the photodiodes to peripheral circuits. For the above-mentioned CMOS image sensor, the side of the silicon substrate having a dielectric layer and a metal interconnection layer is the front side of the CMOS image sensor, and the side opposite to the front side is the back side of the CMOS image sensor. According to the difference in the direction of light irradiation, the CMOS image sensors can be classified into front-side illumination (FSI) CMOS image sensors and back-side illumination (Back-side Illumination) CMOS image sensors.
对于前照式CMOS图像传感器,光线照射到CMOS图像传感器的正面,然而,由于所述光线需要穿过介质层和金属互联层之后才能够照射到光电二极管,由于光线路径中的介质层和金属互联层较多,会限制光电二极管所吸收的光量,造成量子效率降低。对于背照式CMOS图像传感器,光线自CMOS图像传感器的背面入射到光电二极管,从而消除了光线的损耗,光子到电子的转换效率提高。For the front-illuminated CMOS image sensor, the light shines on the front of the CMOS image sensor. However, since the light needs to pass through the dielectric layer and the metal interconnection layer before it can irradiate the photodiode, due to the dielectric layer and the metal interconnection layer in the light path More layers limit the amount of light absorbed by the photodiode, resulting in lower quantum efficiency. For the back-illuminated CMOS image sensor, light is incident on the photodiode from the back of the CMOS image sensor, thereby eliminating the loss of light and improving the conversion efficiency of photons to electrons.
然而,现有的背照式CMOS图像传感器的性能较差。However, existing back-illuminated CMOS image sensors have poor performance.
发明内容Contents of the invention
本发明解决的技术问题是提供一种图像传感器及其形成方法,以提高图像传感器的性能。The technical problem solved by the present invention is to provide an image sensor and its forming method to improve the performance of the image sensor.
为解决上述技术问题,本发明实施例提供一种图像传感器的形成方法,包括:提供基底,所述基底包括相对的第一面和第二面,所述基底包括若干相互分离的像素区,相邻像素区之间具有阻挡区,所述基底内具有阱区,所述阱区内具有第一掺杂离子;在所述阻挡区基底内形成第一隔离开口,且所述第一面暴露出第一隔离开口;在所述阻挡区基底内形成第二隔开口,且所述第二面暴露出第二隔离开口;形成第一隔离开口之后或者形成第二隔离开口之后,在所述阻挡区的基底内形成第一阻挡结构,所述第一阻挡结构内具有第二掺杂离子,所述第二掺杂离子的导电类型与第一掺杂离子的导电类型相同。In order to solve the above-mentioned technical problems, an embodiment of the present invention provides a method for forming an image sensor, including: providing a substrate, the substrate includes opposite first surfaces and second surfaces, the substrate includes several mutually separated pixel regions, and There is a barrier area between the adjacent pixel areas, the base has a well area, and the well area has first dopant ions; a first isolation opening is formed in the base of the barrier area, and the first surface is exposed A first isolation opening; a second isolation opening is formed in the barrier region substrate, and the second surface exposes the second isolation opening; after the first isolation opening is formed or after the second isolation opening is formed, the barrier A first barrier structure is formed in the base of the region, the first barrier structure has second dopant ions inside, and the conductivity type of the second dopant ions is the same as that of the first dopant ions.
可选的,所述基底的厚度为:2微米~3微米。Optionally, the thickness of the substrate is: 2 microns to 3 microns.
可选的,所述第一隔离结构的深度为:0.3微米~0.4微米;所述第二隔离结构的深度为:0.3微米~0.4微米。Optionally, the depth of the first isolation structure is: 0.3 micron to 0.4 micron; the depth of the second isolation structure is: 0.3 micron to 0.4 micron.
可选的,还包括:在所述第一隔离开口内形成第一隔离结构;所述第一隔离开口的深度为0.3微米~0.4微米;所述第一隔离结构的材料包括氧化硅或者氮氧化硅。Optionally, it also includes: forming a first isolation structure in the first isolation opening; the depth of the first isolation opening is 0.3 micron to 0.4 micron; the material of the first isolation structure includes silicon oxide or oxynitride silicon.
可选的,形成第一隔离开口之后,形成第一隔离结构之前,形成所述第一阻挡结构;所述第一阻挡结构的形成方法包括:在像素区第一面形成第一光刻胶;以所述第一光刻胶为掩膜,在所述第一隔离开口底部的基底内形成所述第一阻挡区。Optionally, after forming the first isolation opening and before forming the first isolation structure, the first barrier structure is formed; the method for forming the first barrier structure includes: forming a first photoresist on the first surface of the pixel region; The first barrier region is formed in the substrate at the bottom of the first isolation opening by using the first photoresist as a mask.
可选的,所述第一阻挡结构包括多层堆叠的第一阻挡部;所述第一阻挡部的形成方法包括:以所述第一光刻胶为掩膜,采用第一离子注入工艺在所述第一隔离开口底部的基底内形成第一阻挡部;所述第一阻挡结构的形成方法包括进行若干次第一离子注入工艺,且每次第一注入能量依次递增。Optionally, the first barrier structure includes a multilayer stacked first barrier portion; the method for forming the first barrier portion includes: using the first photoresist as a mask, using a first ion implantation process in A first barrier portion is formed in the substrate at the bottom of the first isolation opening; the method for forming the first barrier structure includes performing a first ion implantation process several times, and the energy of each first implantation is sequentially increased.
可选的,所述第一离子注入工艺包括第一注入能量;当第一光刻胶的厚度为:1.8微米~4微米时,所述第一注入能量的最大值为:600千电子伏~1200千电子伏;所述第一阻挡结构沿垂直于基底表面方向上的尺寸为:0.4微米~2微米。Optionally, the first ion implantation process includes a first implantation energy; when the thickness of the first photoresist is: 1.8 microns to 4 microns, the maximum value of the first implantation energy is: 600 keV to 1200 keV; the size of the first barrier structure along the direction perpendicular to the surface of the substrate is: 0.4 microns to 2 microns.
可选的,还包括:在所述第二隔离开口内形成第二隔离结构;所述第二隔离开口的深度为0.3微米~0.4微米;所述第二隔离结构的材料包括氧化硅或者氮氧化硅。Optionally, it also includes: forming a second isolation structure in the second isolation opening; the depth of the second isolation opening is 0.3 micron to 0.4 micron; the material of the second isolation structure includes silicon oxide or oxynitride silicon.
可选的,形成所述第二隔离开口之后,在所述第二隔离开口内形成第一隔离结构之前,形成第二阻挡结构,所述第二阻挡结构内具有第三掺杂离子,所述第三掺杂离子与第一掺杂离子的导电类型相同;所述第二阻挡结构的形成方法包括:在像素区第二面形成第二光刻胶;以所述第二光刻胶为掩膜,在所述第二隔离开口底部的基底内形成第二阻挡区。Optionally, after forming the second isolation opening, and before forming the first isolation structure in the second isolation opening, a second barrier structure is formed, the second barrier structure has third dopant ions in it, and the The conductivity type of the third doping ions is the same as that of the first doping ions; the method for forming the second barrier structure includes: forming a second photoresist on the second surface of the pixel region; using the second photoresist as a mask film, forming a second barrier region in the base at the bottom of the second isolation opening.
可选的,所述第二阻挡结构包括多层堆叠的第二阻挡部;所述第二阻挡部的形成方法包括:以所述第二光刻胶为掩膜,采用第二离子注入工艺在所述第二隔离开口底部的基底内形成第二阻挡部;所述第二阻挡结构的形成方法包括进行若干次第二离子注入工艺。Optionally, the second barrier structure includes a multi-layer stacked second barrier portion; the method for forming the second barrier portion includes: using the second photoresist as a mask, using a second ion implantation process in A second blocking portion is formed in the base at the bottom of the second isolation opening; the method for forming the second blocking structure includes performing a second ion implantation process several times.
可选的,所述第二离子注入工艺包括第二注入能量;当第二光刻胶的厚度为:1.8微米~4微米时,所述第二注入能量的最大值为600千电子伏~1200千电子伏;所述第二阻挡结构沿垂直于基底表面方向上的尺寸为:0.4微米~2微米。Optionally, the second ion implantation process includes a second implantation energy; when the thickness of the second photoresist is: 1.8 microns to 4 microns, the maximum value of the second implantation energy is 600 keV to 1200 KeV; the size of the second barrier structure along the direction perpendicular to the surface of the substrate is: 0.4 microns to 2 microns.
可选的,所述像素区阱区内具有光电掺杂区,所述光电掺杂区内具有第四掺杂离子,所述第四掺杂离子的导电类型与第一掺杂离子的导电类型相反。Optionally, there is a photoelectric doping region in the well region of the pixel region, and there is a fourth doping ion in the photoelectric doping region, and the conductivity type of the fourth doping ion is the same as that of the first doping ion. on the contrary.
可选的,所述形成方法包括:在像素区第二面形成滤色镜,一个像素区内形成一个滤色镜;在所述滤色镜表面形成透镜结构;所述滤色镜为红色滤色镜、绿色滤色镜或者蓝色滤色镜。Optionally, the forming method includes: forming a color filter on the second surface of the pixel area, one color filter is formed in one pixel area; forming a lens structure on the surface of the color filter; the color filter is a red color filter, a green color filter or a blue color filter.
可选的,第一隔离开口在形成第二隔离开口之前形成;或者,第一隔离开口在形成第二隔离开口之后形成。Optionally, the first isolation opening is formed before forming the second isolation opening; or, the first isolation opening is formed after the second isolation opening is formed.
相应的,本发明还提供一种图像传感器,包括:基底,所述基底包括相对的第一面和第二面,所述基底包括若干相互分离的像素区,相邻像素区之间具有阻挡区,所述阱区内具有第一掺杂离子;位于所述阻挡区基底内的第一隔离开口,且所述第一面暴露出第一隔离开口;位于所述阻挡区基底内的第二隔离开口,且所述第二面暴露出第二隔离开口;位于所述第一隔离开口底部或者第二隔离开口底部基底内的第一阻挡结构,所述第一阻挡结构内具有第二掺杂离子,所述第二掺杂离子的导电类型与第一掺杂离子的导电类型相同。Correspondingly, the present invention also provides an image sensor, including: a substrate, the substrate includes opposite first surfaces and second surfaces, the substrate includes several pixel regions separated from each other, and barrier regions are provided between adjacent pixel regions , there are first dopant ions in the well region; a first isolation opening in the substrate of the barrier region, and the first surface exposes the first isolation opening; a second isolation in the substrate of the barrier region opening, and the second surface exposes a second isolation opening; a first barrier structure located at the bottom of the first isolation opening or in the bottom substrate of the second isolation opening, the first barrier structure has second dopant ions , the conductivity type of the second dopant ions is the same as the conductivity type of the first dopant ions.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
本发明技术方案提供的图形传感器的形成方法中,形成所述第一隔离开口之后或者第二隔离开口之后,在阻挡区基底内形成第一阻挡结构,使得形成第一阻挡结构的难度较低。所述第一隔离开口用于后续容纳第一隔离结构,所述第二隔离开口用于后续容纳第二隔离结构。所述阻挡区内不仅具有第一隔离结构和第二隔离结构,还具有第一阻挡结构,因此,所述第一隔离结构、第二隔离结构和第一阻挡结构阻挡电子扩散或者溢出至相邻的像素区内能力较强,即:降低电学串扰和弥散现象的能力较强。In the method for forming a pattern sensor provided by the technical solution of the present invention, after forming the first isolation opening or the second isolation opening, a first barrier structure is formed in the barrier region substrate, so that the difficulty of forming the first barrier structure is relatively low. The first isolation opening is used for subsequently accommodating the first isolation structure, and the second isolation opening is used for subsequently accommodating the second isolation structure. The barrier region not only has the first isolation structure and the second isolation structure, but also has the first barrier structure, therefore, the first isolation structure, the second isolation structure and the first barrier structure prevent electrons from diffusing or overflowing to adjacent The ability in the pixel area is strong, that is, the ability to reduce electrical crosstalk and dispersion is strong.
进一步,形成第二隔离开口之后,在所述第二隔离开口内形成第二隔离结构之前,在所述第二隔离开口底部形成第二阻挡结构,使得形成第二阻挡结构的难度较低。并且,同时形成第一阻挡结构和第二阻挡结构,使得第一隔离开口底部与第二隔离开口底部之间的阻挡区内掺杂的离子更加充分,使得第一阻挡结构和第二阻挡结构对电子的阻挡能力更强。Further, after forming the second isolation opening, before forming the second isolation structure in the second isolation opening, a second barrier structure is formed at the bottom of the second isolation opening, so that the difficulty of forming the second barrier structure is low. Moreover, the first barrier structure and the second barrier structure are formed at the same time, so that the doping of ions in the barrier region between the bottom of the first isolation opening and the bottom of the second isolation opening is more sufficient, so that the first barrier structure and the second barrier structure are Electrons are more resistant to blocking.
附图说明Description of drawings
图1是一种背照式CMOS图像传感器的结构示意图;FIG. 1 is a schematic structural view of a back-illuminated CMOS image sensor;
图2至图10是本发明图像传感器的形成方法一实施例各步骤的结构示意图。2 to 10 are structural schematic diagrams of each step of an embodiment of the method for forming an image sensor of the present invention.
具体实施方式Detailed ways
正如背景技术所述,图像传感器的性能较差。As mentioned in the background, image sensors have poor performance.
图1是一种背照式CMOS图像传感器的结构示意图。FIG. 1 is a schematic structural diagram of a back-illuminated CMOS image sensor.
请参考图1,基底(图中未示出),所述基底内具有阱区100,所述阱区100内具有第一掺杂离子,所述基底100包括若干相互分离的像素区Ⅰ,相邻像素区Ⅰ之间具有阻挡区Ⅱ,所述像素区Ⅰ内具有第二掺杂离子,所述第二掺杂离子的导电类型与第一掺杂离子的导电类型相反,所述基底具有相对的第一面1和第二面2,所述阻挡区Ⅱ基底内具有第一阻挡结构101和第二阻挡结构104,所述第一面1暴露出第一阻挡结构101,所述第二面2暴露出第二阻挡结构104;位于像素区Ⅰ基底100第二面2和第二阻挡结构104的滤色镜102;位于所述滤色镜101表面的透镜结构103。Please refer to FIG. 1, a substrate (not shown in the figure), the substrate has a well region 100 inside, and the well region 100 has first dopant ions inside, and the substrate 100 includes several pixel regions I separated from each other. There is a barrier region II between adjacent pixel regions I, and there are second dopant ions in the pixel region I, the conductivity type of the second dopant ions is opposite to that of the first dopant ions, and the substrate has a relatively The first surface 1 and the second surface 2, the barrier region II substrate has a first barrier structure 101 and a second barrier structure 104, the first surface 1 exposes the first barrier structure 101, the second surface 2 exposing the second barrier structure 104; the color filter 102 located on the second surface 2 of the substrate 100 of the pixel region I and the second barrier structure 104; and the lens structure 103 located on the surface of the color filter 101.
上述图像传感器中,所述第一掺杂离子与第二掺杂离子的导电类型相反,因此,在所述像素区Ⅰ内形成光电二极管,所述光电二极管用于吸收光子产生电子。所述第一阻挡结构101和第二阻挡结构104用于阻挡电子漂移或者扩散至相邻的像素区Ⅰ内。In the above image sensor, the conductivity type of the first dopant ions is opposite to that of the second dopant ions, therefore, a photodiode is formed in the pixel region I, and the photodiode is used to absorb photons to generate electrons. The first blocking structure 101 and the second blocking structure 104 are used to prevent electrons from drifting or diffusing into adjacent pixel regions I.
一种所述第一阻挡结构101和第二阻挡结构104的形成方法包括:在所述阻挡区Ⅱ基底内形成第一开口,所述第一面暴露出第一开口;在所述第一开口内形成第一阻挡结构101;所述第二阻挡结构104的形成方法包括:在所述阻挡区Ⅱ基底内形成第二开口,所述第二面暴露出第二开口;在所述第二开口内形成第二阻挡结构104。所述第一开口和第二开口的形成工艺包括干法刻蚀工艺。然而,随着半导体器件集成度的不断提高,第一开口和第二开口的宽度不断减小,使得刻蚀气体难以进入第一开口和第二开口内,使得所形成的第一开口和第二开口的深度难以做深,具体的,所述第一阻挡结构101的深度为0.3微米~0.4微米,所述第二阻挡结构104的深度为0.3微米~0.4微米。而所述基底的厚度为:2微米~3微米,因此,所述第一隔离结构101底部与第二阻挡结构104底部并未相接,使得电子易在第一阻挡结构101和第二阻挡结构104之间漂移或者扩散至相邻的像素区Ⅰ内,易产生电学串扰。并且,当光线较强时,所产生的电子过多时,过多的电子易弥散至相邻的像素区Ⅰ内,因此,所述图像传感器的性能较差。A method for forming the first barrier structure 101 and the second barrier structure 104 includes: forming a first opening in the substrate of the barrier region II, and the first surface exposes the first opening; Forming the first barrier structure 101 in; the forming method of the second barrier structure 104 includes: forming a second opening in the substrate of the barrier region II, the second surface exposes the second opening; A second barrier structure 104 is formed therein. The forming process of the first opening and the second opening includes a dry etching process. However, with the continuous improvement of the integration level of semiconductor devices, the widths of the first opening and the second opening are continuously reduced, making it difficult for etching gas to enter the first opening and the second opening, so that the formed first opening and the second opening The depth of the opening is difficult to make deep. Specifically, the depth of the first barrier structure 101 is 0.3 micron to 0.4 micron, and the depth of the second barrier structure 104 is 0.3 micron to 0.4 micron. The thickness of the base is 2 microns to 3 microns, therefore, the bottom of the first isolation structure 101 is not in contact with the bottom of the second barrier structure 104, so that electrons can easily flow between the first barrier structure 101 and the second barrier structure. 104 drift or diffuse into the adjacent pixel area I, which is likely to generate electrical crosstalk. Moreover, when the light is strong, too many electrons are generated, and the excess electrons are easy to diffuse into the adjacent pixel area I. Therefore, the performance of the image sensor is poor.
一种降低光学串扰和弥散现象的方法包括:增大第一阻挡结构101和第二阻挡结构104的深度。具体的,所述第一阻挡结构101的形成方法包括:采用第一离子注入工艺,在所述阻挡区Ⅱ基底内形成第一阻挡结构101;所述第二阻挡结构104的形成方法包括:采用第二离子注入工艺,在所述阻挡区Ⅱ基底内形成第二阻挡结构104。然而,由于第一阻挡结构101的深度较深,使得采用第一离子注入工艺形成第一阻挡结构101的难度较大。同样的,由于第二阻挡结构104的深度较深,使得采用第二离子注入工艺形成第二阻挡结构104的难度也较大。A method for reducing optical crosstalk and dispersion phenomenon includes: increasing the depths of the first blocking structure 101 and the second blocking structure 104 . Specifically, the method for forming the first barrier structure 101 includes: using a first ion implantation process to form the first barrier structure 101 in the substrate of the barrier region II; the method for forming the second barrier structure 104 includes: using In the second ion implantation process, a second blocking structure 104 is formed in the substrate of the blocking region II. However, due to the deep depth of the first barrier structure 101 , it is very difficult to form the first barrier structure 101 by using the first ion implantation process. Likewise, due to the deep depth of the second barrier structure 104 , it is more difficult to form the second barrier structure 104 by the second ion implantation process.
为解决所述技术问题,本发明提供了一种图像传感器的形成方法,包括:在所述阻挡区基底内形成第一隔离开口,且所述第一面暴露出第一隔离开口;在所述阻挡区基底内形成第二隔离开口,且所述第二面暴露出第二隔离结构;形成所述第一隔离开口之后或者第二隔离开口之后,在阻挡区基底内形成第一阻挡结构。所述方法能够降低形成第一阻挡结构的难度,同时,第一阻挡结构和后续形成的第一隔离结构和第二隔离结构对电子扩散或者弥散至相邻像素区内的能力较强。In order to solve the above technical problem, the present invention provides a method for forming an image sensor, comprising: forming a first isolation opening in the substrate of the barrier region, and the first surface exposes the first isolation opening; A second isolation opening is formed in the barrier region substrate, and the second surface exposes the second isolation structure; after the first isolation opening or the second isolation opening is formed, the first barrier structure is formed in the barrier region substrate. The method can reduce the difficulty of forming the first barrier structure, and at the same time, the first barrier structure and the subsequently formed first isolation structure and second isolation structure have a strong ability to diffuse or disperse electrons into adjacent pixel regions.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图2至图10是本发明图像传感器的形成方法一实施例各步骤的结构示意图。2 to 10 are structural schematic diagrams of each step of an embodiment of the method for forming an image sensor of the present invention.
请参考图2,提供基底(图中未示出),所述基底包括相对的第一面11和第二面12,所述基底包括若干相互分离的像素区A,相邻像素区A之间具有阻挡区B,所述基底内具有阱区200,所述阱区200内具有第一掺杂离子;在所述像素区A的基底内形成光电掺杂区201,所述光电掺杂区201内具有第四掺杂离子,所述第四掺杂离子的导电类型与第一掺杂离子的导电类型相反。Please refer to FIG. 2, a substrate (not shown in the figure) is provided, the substrate includes opposite first surfaces 11 and second surfaces 12, the substrate includes several pixel regions A separated from each other, and between adjacent pixel regions A There is a blocking area B, a well area 200 is provided in the substrate, and first dopant ions are provided in the well area 200; a photoelectric doping area 201 is formed in the base of the pixel area A, and the photoelectric doping area 201 There are fourth dopant ions inside, and the conductivity type of the fourth dopant ions is opposite to that of the first dopant ions.
在本实施例中,所述基底的材料为硅。在其他实施例中,所述基底的材料包括:锗或者硅锗。In this embodiment, the material of the base is silicon. In other embodiments, the material of the substrate includes: germanium or silicon germanium.
所述像素区A用于形成光电掺杂区201,所述阻挡区B用于后续形成阻挡结构。The pixel region A is used to form a photoelectric doped region 201 , and the blocking region B is used to form a blocking structure subsequently.
所述阱区200内具有第一掺杂离子,所述第一掺杂离子的导电类型与第四掺杂离子的导电类型相反,因此,所述光电掺杂区201与阱区200形成光电二极管,所述光电二极管用于吸收光子产生电子。There are first dopant ions in the well region 200, and the conductivity type of the first dopant ions is opposite to that of the fourth dopant ions. Therefore, the photoelectric doped region 201 and the well region 200 form a photodiode , the photodiode is used to absorb photons to generate electrons.
在本实施例中,所述第一掺杂离子为P型离子,如:硼离子,所述第四掺杂离子为N型离子,如:磷离子或者砷离子。在其他实施例中,所述第一掺杂离子为N型离子,如:磷离子或者砷离子,第四掺杂离子为P型离子,如:硼离子。In this embodiment, the first dopant ions are P-type ions, such as boron ions, and the fourth dopant ions are N-type ions, such as phosphorus ions or arsenic ions. In other embodiments, the first dopant ions are N-type ions, such as phosphorus ions or arsenic ions, and the fourth dopant ions are P-type ions, such as boron ions.
所述光电掺杂区201的形成方法包括:在所述阻挡区B的基底表面形成第一掩膜层;以所述第一掩膜层为掩膜,在所述像素区A的阱区200内形成所述光电掺杂区201。The method for forming the photoelectric doped region 201 includes: forming a first mask layer on the base surface of the barrier region B; The photoelectric doped region 201 is formed therein.
所述第一掩膜层的材料包括氮化硅或者氮化钛。所述第一掩膜层用于形成光电掺杂区201的掩膜。The material of the first mask layer includes silicon nitride or titanium nitride. The first mask layer is used to form a mask for the photoelectric doped region 201 .
所述基底包括相对的第一面11和第二面12。The base comprises a first 11 and a second 12 opposing faces.
在本实施例中,图像传感器为后照式(Back-side Illumination)CMOS图像传感器,因此,所述第一面11用于后续布局金属线,所述第二面12用于后续形成滤色镜。In this embodiment, the image sensor is a Back-side Illumination CMOS image sensor, therefore, the first surface 11 is used for subsequent layout of metal lines, and the second surface 12 is used for subsequent formation of color filters.
在其他实施例中,图像传感器为前照式(Front-side Illumination,FSI)CMOS图像传感器,因此,所述第一面用于后续形成滤色镜,所述第二面用于后续布局金属线。In other embodiments, the image sensor is a front-side illumination (FSI) CMOS image sensor, therefore, the first surface is used for subsequent formation of color filters, and the second surface is used for subsequent layout of metal lines.
后续在阻挡区B基底内形成第一隔离开口和第二隔离开口。在本实施例中,形成第一隔离开口之后,形成第二隔离开口,具体请参考图3至图7。Subsequently, a first isolation opening and a second isolation opening are formed in the barrier region B substrate. In this embodiment, after the first isolation opening is formed, the second isolation opening is formed, please refer to FIG. 3 to FIG. 7 for details.
请参考图3,在所述阻挡区B基底内形成第一隔离开口203,所述第一面11暴露出第一隔离开口203。Referring to FIG. 3 , a first isolation opening 203 is formed in the base of the barrier region B, and the first surface 11 exposes the first isolation opening 203 .
所述第一隔离开口203的形成方法包括:在所述像素区A第一面11形成第一光刻胶202;以所述第一光刻胶202为掩膜,刻蚀所述基底,在所述基底内形成第一隔离开口203。The method for forming the first isolation opening 203 includes: forming a first photoresist 202 on the first surface 11 of the pixel region A; using the first photoresist 202 as a mask, etching the substrate, and A first isolation opening 203 is formed in the substrate.
所述第一光刻胶202用于作为形成第一隔离开口203和后续第一阻挡结构的掩膜。The first photoresist 202 is used as a mask for forming the first isolation opening 203 and the subsequent first barrier structure.
后续第一阻挡结构的形成工艺包括第一离子注入工艺,所述第一离子注入工艺包括第二掺杂离子和第一注入能量,在形成第一阻挡结构的过程中,所述第一光刻胶202用于防止像素区A内也被注入第二掺杂离子。因此,所述第一光刻胶202的厚度与第一注入能量的最大值密切相关。The subsequent forming process of the first barrier structure includes a first ion implantation process, the first ion implantation process includes second dopant ions and first implantation energy, and in the process of forming the first barrier structure, the first photolithography The glue 202 is used to prevent the pixel area A from being implanted with the second dopant ions. Therefore, the thickness of the first photoresist 202 is closely related to the maximum value of the first implant energy.
在本实施例中,所述第一光刻胶202的厚度为:1.8微米~4微米。In this embodiment, the thickness of the first photoresist 202 is: 1.8 μm˜4 μm.
以所述第一光刻胶202为掩膜,刻蚀所述基底的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。Using the first photoresist 202 as a mask, the process of etching the substrate includes: one or a combination of a dry etching process and a wet etching process.
所述第一隔离开口203的深度为:0.3微米~0.4微米。The depth of the first isolation opening 203 is: 0.3 μm˜0.4 μm.
所述第一隔离开口203用于后续容纳第一隔离结构。形成第一隔离开口201之后,形成所述第二隔离结构之前,在所述第一隔离开口203底部的基底内形成第一阻挡结构,具体请参考图4。The first isolation opening 203 is used for subsequently accommodating the first isolation structure. After forming the first isolation opening 201 and before forming the second isolation structure, a first barrier structure is formed in the substrate at the bottom of the first isolation opening 203 , please refer to FIG. 4 for details.
请参考图4,在所述第一隔离开口203底部的基底内形成第一阻挡结构204,所述第一阻挡结构204内具有第二掺杂离子,所述第二掺杂离子与第一掺杂离子的导电类型相同。Please refer to FIG. 4 , a first barrier structure 204 is formed in the substrate at the bottom of the first isolation opening 203 , the first barrier structure 204 has second dopant ions inside, and the second dopant ions are mixed with the first dopant The heteroions are of the same conductivity type.
所述第一阻挡结构204的形成方法包括:以所述第一光刻胶202为掩膜,在所述第一隔离开口203底部的阱区200内形成第一阻挡结构204。The method for forming the first barrier structure 204 includes: using the first photoresist 202 as a mask to form the first barrier structure 204 in the well region 200 at the bottom of the first isolation opening 203 .
所述第一阻挡结构204包括多层堆叠的第一阻挡部;所述第一阻挡部的形成方法包括:以所述第一光刻胶202为掩膜,在所述第一隔离开口203底部的阱区200形成第一阻挡部。The first barrier structure 204 includes a multi-layer stacked first barrier portion; the method for forming the first barrier portion includes: using the first photoresist 202 as a mask, forming a layer at the bottom of the first isolation opening 203 The well region 200 forms a first barrier.
以所述第一光刻胶202为掩膜,在所述第一隔离开口201底部形成第一阻挡部的工艺包括第一离子注入工艺,所述第一离子注入工艺包括第一注入能量。Using the first photoresist 202 as a mask, the process of forming the first barrier portion at the bottom of the first isolation opening 201 includes a first ion implantation process, and the first ion implantation process includes a first implantation energy.
所述第一阻挡结构204的形成方法包括进行若干次第一离子注入工艺,所述第一注入能量的最大值是由第一光刻胶202的厚度所决定的。The method for forming the first barrier structure 204 includes performing the first ion implantation process several times, and the maximum value of the first implantation energy is determined by the thickness of the first photoresist 202 .
在本实施例中,所述第一光刻胶202的厚度为1.8微米~4微米,所述第一注入能量的最大值为:600千电子伏~1200千电子伏。In this embodiment, the thickness of the first photoresist 202 is 1.8 micrometers to 4 micrometers, and the maximum value of the first injection energy is 600 keV to 1200 keV.
在本实施例中,由于第一掺杂离子为P型离子,因此,所述第二掺杂离子为P型离子,如:硼离子。在其他实施例中,由于第一掺杂离子为N型离子,因此,所述第二掺杂离子为N型离子,如:磷离子或者砷离子。In this embodiment, since the first dopant ions are P-type ions, the second dopant ions are P-type ions, such as boron ions. In other embodiments, since the first dopant ions are N-type ions, the second dopant ions are N-type ions, such as phosphorus ions or arsenic ions.
在所述第一隔离开口203底部的基底内形成第一阻挡结构204的意义在于:形成所述第一隔离开口203之后,形成第一阻挡结构204,使得形成第一阻挡结构204的难度较低。并且,由于第一注入能量较小,使得第一离子注入工艺在行径过程中对阻挡区B基底的损伤较低,有利于减小缺陷,从而有利于降低暗电流,提高图像传感器的性能。The meaning of forming the first barrier structure 204 in the substrate at the bottom of the first isolation opening 203 is: after the first isolation opening 203 is formed, the first barrier structure 204 is formed, so that the difficulty of forming the first barrier structure 204 is relatively low. . Moreover, since the first implantation energy is relatively small, the damage to the base of the barrier region B during the first ion implantation process is low, which is beneficial to reducing defects, thereby reducing dark current and improving the performance of the image sensor.
并且,由于所述第一阻挡结构204位于阻挡区B内,所述阻挡区B位于相邻像素区A之间,因此,所述第一阻挡结构204与后续的第一隔离结构和第二隔离结构防止电子漂移或者扩散至相邻的像素区A内的能力较强,有利于进一步降低电学串扰。并且,当所述入射光的强度过大时,即:所述光电二极管产生的电子过多时,所述第一阻挡结构204与后续的第一隔离结构和第二隔离结构阻挡过多的电子弥散到相邻的像素区A内的能力较强,因此,有利于进一步降低弥散现象,所述方法形成的图像传感器的性能较好。Moreover, since the first barrier structure 204 is located in the barrier region B, and the barrier region B is located between adjacent pixel regions A, the first barrier structure 204 is separated from the subsequent first isolation structure and second isolation structure. The structure has a strong ability to prevent electrons from drifting or diffusing into adjacent pixel regions A, which is beneficial to further reducing electrical crosstalk. Moreover, when the intensity of the incident light is too large, that is, when the photodiode generates too many electrons, the first blocking structure 204 and the subsequent first isolation structure and second isolation structure block excessive electron diffusion. The ability to enter the adjacent pixel area A is relatively strong, so it is beneficial to further reduce the diffusion phenomenon, and the performance of the image sensor formed by the method is relatively good.
形成第一阻挡结构204之后,所述形成方法还包括第一退火处理。所述第一退火处理的工艺包括:快速退火工艺,所述第一退火处理用于激活第二掺杂离子。After forming the first barrier structure 204, the forming method further includes a first annealing treatment. The process of the first annealing treatment includes: a rapid annealing process, and the first annealing treatment is used to activate the second dopant ions.
所述第一阻挡结构204的深度为:0.4微米~2微米。选择所述第一阻挡结构204的深度的意义:若所述第一阻挡结构204的深度小于0.4微米,第一阻挡结构204与后续的第一隔离结构和第二隔离结构阻挡电子漂移或者扩散至相邻像素区A内的能力较弱,仍易发生电学串扰和弥散现象;当所述第一阻挡结构204的深度大于2微米,使得形成第一阻挡结构204的难度较大。The depth of the first barrier structure 204 is: 0.4 μm˜2 μm. The significance of selecting the depth of the first barrier structure 204: if the depth of the first barrier structure 204 is less than 0.4 microns, the first barrier structure 204 and the subsequent first and second isolation structures prevent electrons from drifting or diffusing to The power in the adjacent pixel area A is relatively weak, and electrical crosstalk and dispersion phenomenon are still prone to occur; when the depth of the first barrier structure 204 is greater than 2 μm, it is difficult to form the first barrier structure 204 .
请参考图5,形成所述第一阻挡结构204之后,在所述第一隔离开口203(见图4)内形成第一隔离结构205。Referring to FIG. 5 , after the first barrier structure 204 is formed, a first isolation structure 205 is formed in the first isolation opening 203 (see FIG. 4 ).
形成第一阻挡结构204之后,形成所述第一隔离结构205之前,所述形成方法还包括:去除所述第一光刻胶202;去除所述第一光刻胶202之前,在所述第一隔离开口203的侧壁和底部形成第一衬垫氧化层(Liner oxide)(图中未示出)。After forming the first barrier structure 204 and before forming the first isolation structure 205, the forming method further includes: removing the first photoresist 202; before removing the first photoresist 202, A first liner oxide layer (not shown) is formed on the sidewall and bottom of the isolation opening 203 .
去除所述第一光刻胶202的工艺包括:灰化工艺。The process of removing the first photoresist 202 includes: an ashing process.
所述第一衬垫氧化层的材料包括氧化硅。The material of the first pad oxide layer includes silicon oxide.
形成所述第一隔离结构205之前,在所述第一隔离开口203的侧壁和底部形成第一衬垫氧化层的意义在于:采用刻蚀工艺形成的第一隔离开口203的侧壁和底部存在缺陷,在所述第一隔离开口203的侧壁和底部形成第一衬垫氧化层,有利于填补所述缺陷,使得后续形成的第一隔离结构205与基底的致密性较好,有利于降低暗电流,提高图像传感器的性能。Before forming the first isolation structure 205, the significance of forming the first pad oxide layer on the sidewall and bottom of the first isolation opening 203 is that the sidewall and bottom of the first isolation opening 203 formed by etching process There are defects, and the first pad oxide layer is formed on the sidewall and bottom of the first isolation opening 203, which is conducive to filling the defects, so that the subsequently formed first isolation structure 205 and the substrate have better compactness, which is beneficial to Reduce dark current and improve image sensor performance.
所述第一隔离结构205的形成方法包括:在所述第一隔离开口203内和基底的第一面11形成第一隔离材料膜;去除部分第一隔离材料膜,直至暴露出基底第一面11,在所述第一隔离开口203内形成第一隔离结构205。The method for forming the first isolation structure 205 includes: forming a first isolation material film in the first isolation opening 203 and the first surface 11 of the substrate; removing part of the first isolation material film until the first surface of the substrate is exposed 11. Form a first isolation structure 205 in the first isolation opening 203 .
所述第一隔离材料膜的材料包括氧化硅或者氮氧化硅,相应的,所述第一隔离结构205的材料包括氧化硅或者氮氧化硅。The material of the first isolation material film includes silicon oxide or silicon oxynitride, and correspondingly, the material of the first isolation structure 205 includes silicon oxide or silicon oxynitride.
所述第一隔离材料膜的形成工艺包括:化学气相沉积工艺或者物理气相沉积工艺。The forming process of the first isolation material film includes: a chemical vapor deposition process or a physical vapor deposition process.
去除部分第一隔离材料膜的工艺包括:化学机械研磨工艺。The process of removing part of the first isolation material film includes: a chemical mechanical polishing process.
所述第一隔离结构205和第一阻挡结构204、以及后续的第二隔离结构用于防止光学串扰和弥散现象。The first isolation structure 205, the first barrier structure 204, and the subsequent second isolation structure are used to prevent optical crosstalk and dispersion phenomenon.
请参考图6,在所述阱区200第一面11和第一隔离结构205表面形成介质层206和位于介质层206表面的钝化层207。Referring to FIG. 6 , a dielectric layer 206 and a passivation layer 207 located on the surface of the dielectric layer 206 are formed on the first surface 11 of the well region 200 and the surface of the first isolation structure 205 .
所述介质层206的材料包括氧化硅或者氮氧化硅。所述介质层206的形成工艺包括化学气相沉积工艺或者物理气相沉积工艺。The material of the dielectric layer 206 includes silicon oxide or silicon oxynitride. The formation process of the dielectric layer 206 includes a chemical vapor deposition process or a physical vapor deposition process.
所述介质层206内具有金属线(图中未示出)。Metal wires (not shown in the figure) are provided in the dielectric layer 206 .
所述钝化层207的材料包括氮化硅,所述钝化层207的形成工艺包括化学气相沉积工艺或者物理气相沉积工艺。The material of the passivation layer 207 includes silicon nitride, and the formation process of the passivation layer 207 includes a chemical vapor deposition process or a physical vapor deposition process.
所述钝化层207用于保护介质层206的顶部表面。The passivation layer 207 is used to protect the top surface of the dielectric layer 206 .
请参考图7,形成钝化层207之后,在所述像素区A的第二面12形成第二光刻胶208;以所述第二光刻胶208为掩膜,刻蚀所述阻挡区B的基底,在所述基底内形成第二隔离开口209。Please refer to FIG. 7 , after the passivation layer 207 is formed, a second photoresist 208 is formed on the second surface 12 of the pixel area A; using the second photoresist 208 as a mask, the barrier area is etched. The base of B, in which the second isolation opening 209 is formed.
形成钝化层207之后,形成所述第二光刻胶208之前,所述形成方法还包括:对基底第二面11进行磨薄处理。After forming the passivation layer 207 and before forming the second photoresist 208 , the forming method further includes: performing thinning treatment on the second surface 11 of the substrate.
进行磨薄处理之后,所述基底的厚度为:2微米~3微米。后续形成的第一隔离结构和第二阻挡结构均位于基底内,因此,所述基底的厚度决定后续第一隔离结构和第二阻挡结构的深度。After the thinning treatment, the thickness of the substrate is 2-3 microns. Both the subsequently formed first isolation structure and the second barrier structure are located in the substrate, therefore, the thickness of the substrate determines the depth of the subsequent first isolation structure and the second barrier structure.
所述第二光刻胶208用于作为形成第二隔离开口209和后续第二阻挡结构的掩膜。The second photoresist 208 is used as a mask for forming the second isolation opening 209 and the subsequent second blocking structure.
后续第二阻挡结构的形成工艺包括第二离子注入工艺,所述第二离子注入工艺包括第三掺杂离子和第二注入能量,在形成第二阻挡结构的过程中,所述第二光刻胶208用于防止像素区A内也被注入第三掺杂离子。因此,所述第二光刻胶208的厚度与第二注入能量的最大值密切相关。在本实施例中,所述第二光刻胶208的厚度为:1.8微米~4微米。The subsequent forming process of the second barrier structure includes a second ion implantation process, the second ion implantation process includes third doping ions and a second implantation energy, and during the process of forming the second barrier structure, the second photolithography The glue 208 is used to prevent the pixel area A from being implanted with the third dopant ions. Therefore, the thickness of the second photoresist 208 is closely related to the maximum value of the second implantation energy. In this embodiment, the thickness of the second photoresist 208 is: 1.8 μm˜4 μm.
以所述第二光刻胶208为掩膜,刻蚀所述阻挡区B基底的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。Using the second photoresist 208 as a mask, the process of etching the base of the barrier region B includes: one or a combination of a dry etching process and a wet etching process.
所述第二隔离开口209的深度为:深度为:0.3微米~0.4微米。The depth of the second isolation opening 209 is: the depth is: 0.3 μm˜0.4 μm.
在其他实施例中,形成第一隔离开口之前,形成所述第二隔离开口。In other embodiments, the second isolation opening is formed before the first isolation opening is formed.
请参考图8,以所述第二光刻胶208为掩膜,在所述第二隔离开口209底部的基底内形成第二阻挡结构210,所述第二阻挡结构210内具有第三掺杂离子,所述第三掺杂离子的导电类型与第一掺杂离子的导电类型相同。Please refer to FIG. 8, using the second photoresist 208 as a mask, a second barrier structure 210 is formed in the base at the bottom of the second isolation opening 209, and the second barrier structure 210 has a third doped ions, the conductivity type of the third dopant ions is the same as that of the first dopant ions.
所述第二阻挡结构210的形成方法包括:以所述第二光刻胶208为掩膜,在所述第一隔离开口209底部的阱区200内形成第二阻挡结构210。The method for forming the second barrier structure 210 includes: using the second photoresist 208 as a mask to form the second barrier structure 210 in the well region 200 at the bottom of the first isolation opening 209 .
所述第二阻挡结构210包括多层堆叠的第二阻挡部;所述第二阻挡部的形成方法包括:以所述第二光刻胶208为掩膜,在所述第二隔离开口209底部的阱区200形成第二阻挡部。以所述第二光刻胶208为掩膜,在所述第二隔离开口209底部形成第二阻挡部的工艺包括第二离子注入工艺,所述第二离子注入工艺包括第二注入能量。The second barrier structure 210 includes a multi-layer stacked second barrier portion; the method for forming the second barrier portion includes: using the second photoresist 208 as a mask, forming a layer at the bottom of the second isolation opening 209 The well region 200 forms the second barrier. Using the second photoresist 208 as a mask, the process of forming the second barrier portion at the bottom of the second isolation opening 209 includes a second ion implantation process, and the second ion implantation process includes a second implantation energy.
所述第二阻挡结构210的形成方法包括进行若干次第二离子注入工艺,所述第二注入能量的最大值是由第二光刻胶208的厚度所决定的。The method for forming the second barrier structure 210 includes performing a second ion implantation process several times, and the maximum value of the second implantation energy is determined by the thickness of the second photoresist 208 .
在本实施例中,所述第二光刻胶208的厚度为1.8微米~4微米,所述第二注入能量的最大值为:600千电子伏~1200千电子伏。In this embodiment, the thickness of the second photoresist 208 is 1.8 micrometers to 4 micrometers, and the maximum value of the second injection energy is 600 keV to 1200 keV.
在第二隔离开口209底部形成所述第二阻挡结构210的意义在于:形成所述第二隔离开口209之后,形成第二阻挡结构210,使得形成第二阻挡结构210难度较低。并且,由于第二注入能量较小,使得第二离子注入工艺在行径过程中对阻挡区B基底的损伤较低,有利于减小缺陷,从而有利于降低暗电流,提高图像传感器的性能。The significance of forming the second barrier structure 210 at the bottom of the second isolation opening 209 is that the second barrier structure 210 is formed after the second isolation opening 209 is formed, so that the difficulty of forming the second barrier structure 210 is relatively low. Moreover, since the second implantation energy is relatively small, the damage to the substrate of the barrier region B during the second ion implantation process is low, which is beneficial to reducing defects, thereby reducing dark current and improving the performance of the image sensor.
在本实施例中,同时形成第一阻挡结构204和第二阻挡结构210,意义在于:使得在第一隔离开口203底部与第二隔离开口209底部之间的阻挡区B内掺入第二掺杂离子和第三掺杂离子更加充分,使得第一阻挡结构204和第二阻挡结构210阻挡电子扩散或者溢出至相邻像素区A内的能力更强,有利于进一步减小电学串扰和弥散现象。In this embodiment, the first blocking structure 204 and the second blocking structure 210 are formed at the same time, which means that the second doped The hetero ions and the third dopant ions are more sufficient, so that the first barrier structure 204 and the second barrier structure 210 have a stronger ability to prevent electron diffusion or overflow into the adjacent pixel area A, which is conducive to further reducing electrical crosstalk and dispersion phenomena .
在其他实施例中,不形成第二阻挡结构。In other embodiments, no second barrier structure is formed.
所述第二阻挡结构210的深度为:0.4微米~2微米。The depth of the second barrier structure 210 is: 0.4 μm˜2 μm.
在本实施例中,选择所述第二阻挡结构210的深度的意义在于:若所述第二阻挡结构210的深度小于0.4微米,则第二阻挡结构210、第一阻挡结构204、第一隔离结构205和后续第二隔离结构阻挡电子漂移或者扩散至相邻像素区A内的能力较弱,仍易发生电学串扰和弥散现象;若所述第二阻挡结构210的深度大于2微米,使得形成第二阻挡结构210的难度较大。In this embodiment, the significance of selecting the depth of the second barrier structure 210 is: if the depth of the second barrier structure 210 is less than 0.4 microns, the second barrier structure 210, the first barrier structure 204, the first isolation The ability of the structure 205 and the subsequent second isolation structure to prevent electron drift or diffusion into the adjacent pixel area A is relatively weak, and electrical crosstalk and diffusion phenomena are still prone to occur; if the depth of the second isolation structure 210 is greater than 2 microns, the formation The second blocking structure 210 is more difficult.
在本实施例中,所述第一掺杂离子为P型离子,因此,所述第三掺杂离子为P型离子,如:硼离子。In this embodiment, the first dopant ions are P-type ions, therefore, the third dopant ions are P-type ions, such as boron ions.
在其他实施例中,所述第一掺杂离子为N型离子,因此,所述第三掺杂离子为N型离子,如:磷离子或者砷离子。In other embodiments, the first dopant ions are N-type ions, therefore, the third dopant ions are N-type ions, such as phosphorus ions or arsenic ions.
所述第二阻挡结构210位于相邻像素区A之间,因此,所述第二阻挡结构210、第一阻挡结构204、第一隔离结构205和后续第二隔离结构阻挡电子漂移或者扩散至相邻的像素区A内的能力较强,有利于进一步降低电学串扰。并且,所述第二阻挡结构210、第一阻挡结构204、第一隔离结构205和后续第二隔离结构阻挡过多的电子弥散到相邻的像素区A内的能力也较强,有利于进一步降低弥散现象,因此,所述方法形成的图像传感器的性能更好。The second barrier structure 210 is located between adjacent pixel regions A, therefore, the second barrier structure 210, the first barrier structure 204, the first isolation structure 205 and the subsequent second isolation structure prevent electrons from drifting or diffusing to phase The ability in the adjacent pixel area A is stronger, which is beneficial to further reduce the electrical crosstalk. Moreover, the ability of the second barrier structure 210, the first barrier structure 204, the first isolation structure 205 and the subsequent second isolation structure to prevent excess electrons from diffusing into the adjacent pixel area A is also relatively strong, which is beneficial to further Bleeding is reduced and, therefore, the performance of the image sensor formed by the method is better.
形成第二阻挡结构210之后,所述形成方法还包括第二退火处理。所述第二退火处理的工艺包括:激光退火工艺,所述第二退火处理用于激活第三掺杂离子。尽管激光退火的温度较高,但是,激光退火工艺的时间较短,使得介质层206内的金属线不至于熔化,有利于确保金属线的特性。After forming the second barrier structure 210, the forming method further includes a second annealing treatment. The process of the second annealing treatment includes: a laser annealing process, and the second annealing treatment is used to activate the third dopant ions. Although the temperature of the laser annealing is relatively high, the time of the laser annealing process is short so that the metal wires in the dielectric layer 206 will not be melted, which is beneficial to ensure the properties of the metal wires.
请参考图9,形成所述第二阻挡区210之后,在所述第二隔离开口209(见图8)内形成第二隔离结构211。Referring to FIG. 9 , after forming the second barrier region 210 , a second isolation structure 211 is formed in the second isolation opening 209 (see FIG. 8 ).
形成第二阻挡结构210之后,形成所述第二隔离结构211之前,所述形成方法还包括:去除所述第二光刻胶208;去除所述第二光刻胶208之后,在所述第二隔离开口209的侧壁和底部形成第二衬垫氧化层(Liner oxide)(图中未示出)。After forming the second barrier structure 210 and before forming the second isolation structure 211, the forming method further includes: removing the second photoresist 208; after removing the second photoresist 208, A second liner oxide layer (not shown) is formed on the sidewalls and bottom of the two isolation openings 209 .
去除所述第二光刻胶208的工艺包括:灰化工艺。The process of removing the second photoresist 208 includes: an ashing process.
所述第二衬垫氧化层的材料包括氧化硅。The material of the second pad oxide layer includes silicon oxide.
形成所述第二隔离结构211之前,在所述第二隔离开口209的侧壁和底部形成第二衬垫氧化层的意义在于:采用刻蚀工艺形成的第二隔离开口209的侧壁和底部存在缺陷,在所述第二隔离开口209的侧壁和底部形成第二衬垫氧化层,有利于填补所述缺陷,使得后续形成的第二隔离结构211与基底的致密性较好,有利于降低暗电流,提高图像传感器的性能。Before forming the second isolation structure 211, the significance of forming the second pad oxide layer on the sidewall and bottom of the second isolation opening 209 is that the sidewall and bottom of the second isolation opening 209 formed by etching process There are defects, and the second pad oxide layer is formed on the sidewall and bottom of the second isolation opening 209, which is conducive to filling the defects, so that the subsequent formation of the second isolation structure 211 and the substrate are more compact, which is conducive to Reduce dark current and improve image sensor performance.
所述第二隔离结构211的形成方法包括:在所述基底第二面12和第二隔离开口209内形成第一隔离材料膜;平坦化所述第二隔离材料膜,直至暴露出基底第二面12,在所述第二隔离开口209内形成第二隔离结构211。The method for forming the second isolation structure 211 includes: forming a first isolation material film on the second surface 12 of the substrate and the second isolation opening 209; planarizing the second isolation material film until the second surface of the substrate is exposed. surface 12 , forming a second isolation structure 211 in the second isolation opening 209 .
所述第二隔离材料的材料包括氧化硅或者氮氧化硅。所述第二隔离材料膜的形成工艺包括:化学气相沉积工艺或者物理气相沉积工艺。The material of the second isolation material includes silicon oxide or silicon oxynitride. The forming process of the second isolation material film includes: a chemical vapor deposition process or a physical vapor deposition process.
所述第二隔离材料膜用于形成第二隔离结构211,因此,所述第二隔离结构211的材料包括氧化硅或者氮氧化硅。The second isolation material film is used to form the second isolation structure 211 , therefore, the material of the second isolation structure 211 includes silicon oxide or silicon oxynitride.
平坦化所述第二隔离材料膜的工艺包括化学机械研磨工艺。The process of planarizing the second isolation material film includes a chemical mechanical polishing process.
第二隔离结构211、所述第二阻挡结构210、第一阻挡结构204和第一隔离结构205阻挡电子漂移或者扩散至相邻的像素区A内的能力较强,有利于进一步降低电学串扰。并且,第二隔离结构211、所述第二阻挡结构210、第一阻挡结构204和第一隔离结构205阻挡过多的电子弥散到相邻的像素区A内的能力也较强,有利于进一步降低弥散现象,因此,所述方法形成的图像传感器的性能更好。The second isolation structure 211 , the second barrier structure 210 , the first barrier structure 204 and the first isolation structure 205 have a strong ability to prevent electrons from drifting or diffusing into adjacent pixel regions A, which is beneficial to further reduce electrical crosstalk. Moreover, the ability of the second isolation structure 211, the second barrier structure 210, the first barrier structure 204 and the first isolation structure 205 to prevent excessive electrons from diffusing into the adjacent pixel area A is also relatively strong, which is beneficial to further Bleeding is reduced and, therefore, the performance of the image sensor formed by the method is better.
请参考图10,在所述像素区A基底第二面12形成滤色镜212,一个像素区A内形成一个滤色镜212;在所述滤色镜212表面形成透镜结构213。Referring to FIG. 10 , a color filter 212 is formed on the second surface 12 of the base of the pixel area A, and one color filter 212 is formed in one pixel area A; a lens structure 213 is formed on the surface of the color filter 212 .
所述滤色镜212包括红色滤色镜212a、绿色滤色镜212b或蓝色滤色镜212c,而且一个像素区A内形成一种颜色的滤色镜212,进入所述滤色镜212的光线能够被一种颜色的滤色镜212滤色,则照射到光电二极管上的入射光为单色光。The color filter 212 includes a red color filter 212a, a green color filter 212b or a blue color filter 212c, and a color filter 212 of one color is formed in one pixel area A, the light entering the color filter 212 can be filtered by the color filter 212 of one color, Then the incident light irradiated on the photodiode is monochromatic light.
所述透镜结构213用于聚焦光线,使经过一个透镜结构213的入射光能够照射到该透镜结构213所对应的光电二极管上。The lens structures 213 are used to focus light, so that the incident light passing through one lens structure 213 can be irradiated on the photodiode corresponding to the lens structure 213 .
所述阻挡区B内不仅具有第一隔离结构205和第二隔离结构211,还具有第一阻挡结构204和第二阻挡结构210,使得阻挡电子漂移至相邻的像素区A内的能力较强。并且,当入射光强度较强时,光电二极管产生的电子过多,所述第一隔离结构205、第二隔离结构211、第一阻挡结构204和第二阻挡结构210防止过多的电子弥散至相邻的像素区A内的能力较强,有利于进一步减小弥散现象,所述方法形成的图像传感器的性能较好。The barrier area B not only has the first isolation structure 205 and the second isolation structure 211, but also has the first barrier structure 204 and the second barrier structure 210, so that the ability to prevent electrons from drifting into the adjacent pixel area A is relatively strong. . Moreover, when the incident light intensity is strong, the photodiode generates too many electrons, and the first isolation structure 205, the second isolation structure 211, the first blocking structure 204, and the second blocking structure 210 prevent excessive electrons from diffusing to The capability in the adjacent pixel area A is stronger, which is beneficial to further reduce the dispersion phenomenon, and the performance of the image sensor formed by the method is better.
相应的,本发明还提供一种图像传感器,请参考图10,包括:Correspondingly, the present invention also provides an image sensor, please refer to FIG. 10, including:
基底,所述基底包括相对的第一面11和第二面12,所述基底包括若干相互分离的像素区A,相邻像素区A之间具有阻挡区B,所述基底内具有阱区200,所述阱区200内具有第一掺杂离子;A substrate, the substrate includes opposite first surfaces 11 and second surfaces 12, the substrate includes a number of pixel regions A separated from each other, a barrier region B is provided between adjacent pixel regions A, and a well region 200 is provided in the substrate , there are first dopant ions in the well region 200;
位于所述阻挡区B基底内的第一隔离开口203(见图3),且所述第一面11暴露出第一隔离开口203;A first isolation opening 203 (see FIG. 3 ) located in the base of the barrier region B, and the first surface 11 exposes the first isolation opening 203;
位于所述阻挡区B基底内的第二隔离开口209(见图7),且所述第二面12暴露出第二隔离开口209;A second isolation opening 209 (see FIG. 7 ) located in the base of the barrier region B, and the second surface 12 exposes the second isolation opening 209;
位于所述第一隔离开口203底部或者第二隔离开口209底部阻挡区B基底内的第一阻挡结构204,所述第一阻挡结构204内具有第二掺杂离子,所述第二掺杂离子的导电类型与第一掺杂离子的导电类型相同。The first barrier structure 204 located at the bottom of the first isolation opening 203 or the bottom of the second isolation opening 209 in the barrier region B substrate, the first barrier structure 204 contains second dopant ions, and the second dopant ions The conductivity type of is the same as that of the first dopant ion.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810218968.XA CN108470741A (en) | 2018-03-16 | 2018-03-16 | Imaging sensor and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810218968.XA CN108470741A (en) | 2018-03-16 | 2018-03-16 | Imaging sensor and forming method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108470741A true CN108470741A (en) | 2018-08-31 |
Family
ID=63264448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810218968.XA Pending CN108470741A (en) | 2018-03-16 | 2018-03-16 | Imaging sensor and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108470741A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109192746A (en) * | 2018-10-29 | 2019-01-11 | 德淮半导体有限公司 | Back side illumination image sensor and forming method thereof |
CN109216393A (en) * | 2018-10-31 | 2019-01-15 | 昆山锐芯微电子有限公司 | CMOS-TDI imaging sensor and forming method thereof |
CN110783356A (en) * | 2019-11-05 | 2020-02-11 | 昆山锐芯微电子有限公司 | Time delay integral image sensor and method of forming the same |
CN110797363A (en) * | 2019-11-05 | 2020-02-14 | 昆山锐芯微电子有限公司 | Back-illuminated time-delay integral image sensor and method of forming the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040094784A1 (en) * | 2002-11-14 | 2004-05-20 | Howard Rhodes | Isolation process and structure for CMOS imagers |
CN101261957A (en) * | 2007-03-06 | 2008-09-10 | 台湾积体电路制造股份有限公司 | Method for manufacturing semiconductor device and image sensing device |
CN101847643A (en) * | 2009-03-23 | 2010-09-29 | 株式会社东芝 | Solid-state imaging device and manufacturing method thereof |
CN102067316A (en) * | 2008-07-09 | 2011-05-18 | 柯达公司 | Backside illuminated image sensor with backside trenches |
CN102301473A (en) * | 2009-02-06 | 2011-12-28 | 佳能株式会社 | Photoelectric conversion apparatus and manufacturing method for a photoelectric conversion apparatus |
CN103165508A (en) * | 2011-12-09 | 2013-06-19 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor part manufacturing method |
-
2018
- 2018-03-16 CN CN201810218968.XA patent/CN108470741A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040094784A1 (en) * | 2002-11-14 | 2004-05-20 | Howard Rhodes | Isolation process and structure for CMOS imagers |
CN101261957A (en) * | 2007-03-06 | 2008-09-10 | 台湾积体电路制造股份有限公司 | Method for manufacturing semiconductor device and image sensing device |
CN102067316A (en) * | 2008-07-09 | 2011-05-18 | 柯达公司 | Backside illuminated image sensor with backside trenches |
CN102301473A (en) * | 2009-02-06 | 2011-12-28 | 佳能株式会社 | Photoelectric conversion apparatus and manufacturing method for a photoelectric conversion apparatus |
CN101847643A (en) * | 2009-03-23 | 2010-09-29 | 株式会社东芝 | Solid-state imaging device and manufacturing method thereof |
CN103165508A (en) * | 2011-12-09 | 2013-06-19 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor part manufacturing method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109192746A (en) * | 2018-10-29 | 2019-01-11 | 德淮半导体有限公司 | Back side illumination image sensor and forming method thereof |
CN109216393A (en) * | 2018-10-31 | 2019-01-15 | 昆山锐芯微电子有限公司 | CMOS-TDI imaging sensor and forming method thereof |
CN110783356A (en) * | 2019-11-05 | 2020-02-11 | 昆山锐芯微电子有限公司 | Time delay integral image sensor and method of forming the same |
CN110797363A (en) * | 2019-11-05 | 2020-02-14 | 昆山锐芯微电子有限公司 | Back-illuminated time-delay integral image sensor and method of forming the same |
CN110783356B (en) * | 2019-11-05 | 2022-09-02 | 锐芯微电子股份有限公司 | Time delay integral image sensor and forming method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI683430B (en) | Image sensor with an absorption enhancement semiconductor layer | |
TWI591810B (en) | Complementary gold-oxide half image sensor and forming method thereof | |
JP6259418B2 (en) | Back-illuminated image sensor device integrated vertically | |
CN100555647C (en) | Imageing sensor and manufacture method thereof | |
CN100517741C (en) | CMOS image sensor and manufacturing method thereof | |
CN108091665A (en) | Imaging sensor and forming method thereof | |
TW201806137A (en) | Image sensor and manufacturing method thereof | |
CN103378114A (en) | Apparatus and method for reducing cross talk in image sensors | |
CN1937235A (en) | CMOS image sensor and method of manufacturing the same | |
US20090236645A1 (en) | Cmos image sensor and method for manufacturing the same | |
CN108470741A (en) | Imaging sensor and forming method thereof | |
WO2015027742A1 (en) | Backside illumination image sensor and method for reducing dark current of backside illumination image sensor | |
US20140159184A1 (en) | Image sensor and method for fabricating the same | |
JP2021103768A (en) | Image sensor and method for manufacturing the same | |
TWI476911B (en) | Semiconductor device and method of manufacturing same | |
KR20140085656A (en) | Image sensor and method for fabricating the same | |
CN1992315B (en) | CMOS image sensor and manufacturing method thereof | |
CN104576662A (en) | Stackable CMOS (complementary metal oxide semiconductors) sensor with high quantum conversion efficiency and preparation method of stackable CMOS sensor | |
KR100698082B1 (en) | CMOS image sensor and its manufacturing method | |
KR100700267B1 (en) | Image sensor and its manufacturing method | |
CN110034145B (en) | Image sensor and forming method thereof | |
CN101388361A (en) | Method of manufacturing an image sensor | |
CN108428711A (en) | Imaging sensor and forming method thereof | |
CN107946336A (en) | Imaging sensor and forming method thereof | |
US7883925B2 (en) | Image sensor and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: Room 508-511, building a, Modern Plaza, No. 18, Weiye Road, Kunshan Development Zone, Suzhou, Jiangsu Applicant after: Ruixin Microelectronics Co., Ltd Address before: Room 508-511, block A, Modern Plaza, 18 Weiye Road, Kunshan, Jiangsu, Suzhou, 215300 Applicant before: BRIGATES MICROELECTRONICS (KUNSHAN) Co.,Ltd. |
|
CB02 | Change of applicant information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180831 |
|
RJ01 | Rejection of invention patent application after publication |