[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108441494B - 母猪mmp2基因在促进卵巢颗粒细胞中e2生成的应用 - Google Patents

母猪mmp2基因在促进卵巢颗粒细胞中e2生成的应用 Download PDF

Info

Publication number
CN108441494B
CN108441494B CN201810203363.3A CN201810203363A CN108441494B CN 108441494 B CN108441494 B CN 108441494B CN 201810203363 A CN201810203363 A CN 201810203363A CN 108441494 B CN108441494 B CN 108441494B
Authority
CN
China
Prior art keywords
mmp2
gene
granulosa cells
sow
mmp2 gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810203363.3A
Other languages
English (en)
Other versions
CN108441494A (zh
Inventor
袁晓龙
辛晓萍
张豪
钟玉宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201810203363.3A priority Critical patent/CN108441494B/zh
Publication of CN108441494A publication Critical patent/CN108441494A/zh
Application granted granted Critical
Publication of CN108441494B publication Critical patent/CN108441494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0681Cells of the genital tract; Non-germinal cells from gonads
    • C12N5/0682Cells of the female genital tract, e.g. endometrium; Non-germinal cells from ovaries, e.g. ovarian follicle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • C12N9/6491Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24007Interstitial collagenase (3.4.24.7), i.e. matrix metalloprotease 1 or MMP1

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Reproductive Health (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开一种母猪MMP2基因在促进卵巢颗粒细胞中E2生成的应用,属于基因工程和细胞工程技术领域。本发明以MMP2基因为研究对象,采用了细胞生物学方法研究其在猪卵巢颗粒细胞中的表达应用。本发明第一次证实猪MMP2基因在猪卵巢颗粒细胞中的表达情况;以及在猪卵巢颗粒细胞中超表达或者干扰MMP2后,对母猪卵巢颗粒细胞的影响;在颗粒细胞中MMP2基因启动子缺失片段的活性。

Description

母猪MMP2基因在促进卵巢颗粒细胞中E2生成的应用
技术领域
本发明属于基因工程和细胞工程技术领域,具体涉及一种母猪MMP2基因在促进卵巢颗粒细胞中E2(雌二酮)生成的应用。
背景技术
卵巢是哺乳动物重要的生殖腺,是卵泡发育和排卵的重要繁殖器官。卵泡作为卵巢的基本组成单位,维持着卵子的存在、发育与闭锁。颗粒细胞是卵泡周围扁平或立方状细胞,其生长与分化在卵泡的发育过程中起着重要的调控作用。卵泡的发育过程伴随着颗粒细胞生长、发育和分化,颗粒细胞的增殖和凋亡与卵泡发育卵母细胞的成长发育、原始卵泡生长的启动、生长期卵泡发育的调控以及卵泡闭锁密切相关。
基质金属蛋白酶(matrix metalloproteinases,MMPs)是一类重要的锌离子水解酶,主要功能是降解细胞外基质(extracellular matrix,ECM),调节细胞粘着,可以作用于细胞外成分或其它蛋白成分而启动潜在的生物学功能,直接或间接参与胚胎发育、角膜修复、骨生长、组织重塑、血管形成及创伤愈合等正常生理过程以及炎症、肿瘤的侵袭转移等病理过程。迄今在人类至少已发现有种之多,构成MMPs超家族。依据MMPs各成员均有特异的底物将其分为五类:(1)胶原酶,其作用底物主要为间质胶原;(2)明胶类,其作用底物主要是Ⅳ型胶和明胶;(3)基质溶胶,可降解Ⅲ、Ⅳ、Ⅴ、型胶原和基质中的蛋白多糖和糖蛋白,并能激活某些MMP;(4)模型胶,能降解几种ECM成分,有些可激活其他MMP;(5)其它类,较复杂,有些底物不详。组织金属蛋白酶抑制剂(tissue inhibitor of metalloproteinases,TIMPs)是其天然抑制物两者在肿瘤发生过程中起着重要的作用。
MMP2是MMPs家族的重要成员,定位于人类染色体16q21,由13个外显子和12个内含子所组成,它不仅能水解变性胶原及细胞外基底膜中的主要成分Ⅳ型胶原,MMP2表达和功能的调节发生于转录、分泌、前酶原的激活、细胞表面的结合以及与来源于肿瘤或宿主细胞的抑制剂的相互作用等多个不同的水平。MMP2在肿瘤细胞的增殖、血管生成、浸润转移中有重要作用,除了降解基底膜型胶原外,还可以分解多种重要的生物活性分子结合蛋白,使生物活性分子游离而发挥作用。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于提供一种母猪MMP2基因在促进卵巢颗粒细胞中E2生成的应用。
本发明的另一目的在于提供抑制MMP2基因的RNA小干扰片段(siRNA)。
本发明的另一目的在于提供所述的MMP2基因的核心启动子区。
本发明的再一目的在于提供所述的MMP2基因的核心启动子区的应用。
通过基因工程技术构建该基因启动子区的缺失片段,分析各启动子区缺失片段的活性,找出其核心启动子区。
本发明的目的通过下述技术方案实现:
本发明提供一种母猪MMP2基因在促进卵巢颗粒细胞中E2生成的应用。过表达MMP2基因后能促进E2的生成,干扰MMP2基因后抑制E2的生成。
本发明提供一种抑制MMP2基因的siRNA,序列如下:
MMP2-siRNA-2:5′-GCGACAAGAAGUACGGCUU-3′;
MMP2-siRNA-3:5′-GCAAACAGGACAUCGUCUU-3′;
本发明提供一种MMP2基因的核心启动子区,其位置位于-1145~-686bp区域。
本发明的验证结果如下:
1、构建含有MMP2基因CDS区的真核表达载体pcDNA3.1-MMP2,qRT-PCR检测超表达MMP2基因后MMP2基因的表达情况。
2、合成3对MMP2基因干扰小片段/对照(MMP2-siRNA/Scrambled-siRNA),筛选并检测其干扰效率。
3、在猪的卵巢颗粒细胞中超表达或者干扰MMP2基因,用FITC Annexin VApoptosis Detection Kit with PI检测细胞凋亡。
4、在猪的卵巢颗粒细胞中超表达或者干扰MMP2基因,用ELISA检测卵巢颗粒细胞上清中E2的含量。
5、构建含有MMP2基因启动子区缺失片段的双荧光素酶报告基因重组体,瞬时转染进猪的卵巢颗粒细胞,双荧光素酶报告系统分析MMP2基因启动子区缺失片段的活性,并确定其核心启动子区。
本发明以MMP2基因为研究对象,采用了分子与细胞生物学方法研究其在猪卵巢颗粒细胞中表达调控。关键点在于:
(1)检测MMP2基因在各组织中的表达情况;
(2)超表达或者干扰母猪MMP2基因,对母猪卵巢颗粒细胞凋亡的影响;
(3)超表达或者干扰母猪MMP2基因,对母猪卵巢颗粒细胞上清中E2水平的影响;
(4)构建含有MMP2基因启动子区缺失片段的双荧光素酶报告基因重组体并进行启动子活性分析找出核心启动子区。
本发明的机理是:
本发明主要通过qRT-PCR检测长大二元杂母猪MMP2基因在母猪各个组织上的表达情况,构建含有MMP2基因CDS区序列的真核表达载体,并合成三对MMP2基因的siRNA,通过qRT-PCR检测MMP2基因的超表达和干扰情况,通过流式细胞仪检测超表达或者干扰MMP2基因对母猪卵巢颗粒细胞的影响,并使用ELISA试剂盒检测超表达或者干扰MMP2基因后母猪卵巢颗粒细胞上清中E2的浓度变化,随后使用PCR技术获得母猪MMP2基因启动子区序列,构建含有MMP2基因启动子区缺失片段的双荧光素酶报告基因重组体,瞬时转染进猪的卵巢颗粒细胞,双荧光素酶报告系统分析MMP2基因启动子区缺失片段的活性,并确定其核心启动子区。
本发明相对于现有技术具有如下的优点及效果:
本发明以MMP2基因为研究对象,采用了细胞生物学方法研究其在猪卵巢颗粒细胞中的表达应用。本发明第一次证实猪MMP2基因在猪卵巢颗粒细胞中的表达情况;以及在猪卵巢颗粒细胞中超表达或者干扰MMP2后,对母猪卵巢颗粒细胞的影响;在颗粒细胞中MMP2基因启动子缺失片段的活性。
附图说明
图1是猪MMP2基因,在各组织中的表达情况图。
图2是qRT-PCR检测MMP2基因在卵巢颗粒细胞中的最适转染浓度图。
图3是qRT-PCR检测MMP2基因3对干扰小片段的干扰效率图。
图4是超表达或者干扰MMP2基因后E2的水平变化图。
图5是MMP2基因启动子缺失片段的活性分析图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下列实施例中未注明具体条件的实验方法,通常按照常规条件。
实施例1卵巢颗粒细胞的培养
(1)在屠宰场采集卵巢,用PBS或者生理盐水(含1%双抗)置于37℃保温瓶迅速运回实验室;
(2)将收集的卵巢在无菌培养室用预热过的PBS(含1%双抗)清洗3遍后,迅速转入超净工作台;用1mL无菌一次性注射器浅插入卵巢有腔卵泡中吸取卵泡液;
(3)吸取的卵泡液置于含有适量DMEM的15mL离心管中,1000rpm室温离心6min;
(4)弃去上清,再用DMEM重悬、离心,重复清洗细胞2次;配制DMEM完全培养基:89%DMEM+10%FBS+1%双抗;
(5)吸取细胞重悬液和完全培养基接种于75mL培养瓶;置于37℃,5%CO2培养箱中静置培养。
所述的双抗为青霉素和链霉素。
实施例2卵巢颗粒细胞的接种和转染
(1)颗粒细胞长至90%左右,倒掉培养基,用预热的含1%双抗(所述的双抗为青霉素和链霉素)的PBS洗3遍;
(2)加入胰蛋白酶消化,放入培养箱3min左右,显微镜下观察至大部分细胞漂起,立即加入等量终止液终止消化;
(3)DMEM清洗2遍,期间1000rpm离心5min;
(4)用完全培养基轻轻重悬细胞沉淀,均匀分到每个孔中,用完全培养基补充体积,轻轻摇匀,放培养箱中培养;
(5)24h左右,观察颗粒细胞状态,待细胞汇合度达80%左右时准备转染;
(6)转染方法按Invitrogen公司的
Figure BDA0001595166570000041
3000试剂盒说明书进行;每组设置3个重复;
(7)转染后的孔板置于37℃,5%CO2培养箱中培养;
(8)转染后1~3天,观察细胞状态,生长良好即可收集细胞。
实施例3 qRT-PCR
本发明中基因的qRT-PCR检测分别采用美国Thermo公司的SYBR SYBR Green qPCRMix试剂盒。实验采用比较Ct值法检测样品基因的含量,具体计算公式如下:
基因相对表达量=2-{〈﹙实验组目的基因Ct值﹚-﹙实验组内参基因Ct值﹚〉-〈﹙对照组目的基因Ct值﹚-﹙对照组内参基因Ct值﹚〉}
其中对基因检测用GAPDH做内参,本发明所用到的qRT-PCR引物为:
qRT-PCR-MMP2 Forward:5′-GCGAACTTGACCAGAGCACC-3′;
Reverse:5′-GAGCGAAGGCATCATCCACC-3′;
qRT-PCR-GAPDH Forward:5′-TCCCGCCAACATCAAAT-3′;
Reverse:5′-CACGCCCATCACAAACAT-3′;
细胞的总RNA提取参照Takara公司TRIzol操作说明书,具体提取步骤如下:
(1)颗粒细胞直接加入TRIzol;
(2)室温下放置10min以充分裂解细胞,12000g离心5min,弃沉淀吸上清于新RNase-free管中;
(3)加入0.2mL氯仿(每1mL TRIzol)剧烈震荡15~30s,室温下放置5min后4℃12000g离心15min;
(4)吸取上层水相置于新RNase-free EP管中;
(5)加入0.5mL异丙醇(每1mL TRIzol),轻轻地上下颠倒混匀后在室温放置10min,4℃12000g离心10min;
(6)弃上清后置于室温,沿管壁加入1mL 75%乙醇-DEPC(每1mL TRIzol)以洗涤RNA,4℃12000g离心5min后尽量弃上清;
(7)真空干燥5~10min,注意避免RNA沉淀干燥过度;
(8)加入DEPC水以溶解RNA沉淀。
mRNA的反转录PCR采用Thermo公司的Thermo Scientific RevertAid FirstStrand cDNA Synthesis Kit。
实施例4 FITC Annexin V Apoptosis Detection Kit with PI检测
(1)1000转离心5min收集细胞,弃上清,用预冷PBS洗细胞两次。
(2)加入1×Binding Buffer重悬细胞,使细胞浓度为1.0*106个/mL。
(3)吸取100μL上述细胞悬液到另一离心管中,依次加入5μL FITC-AnnexinV,加入5μL PI,轻混匀后,室温(25℃)避光反应15min。
(4)每管加入400μL1×Binding Buffer,上机进行流式分析。选择合适的通道(FL1通道检测FITC,FL3或者FL2通道检测PI)。
实施例5 ELISA方法测定猪卵巢颗粒细胞上清样本中E2含量
ELISA方法测定猪卵巢颗粒细胞上清样本中E2含量检测,参照CUSABIO公司的PigE2ELISA试剂盒,具体操作步骤如下:
(1)24孔板转染48h后,吸取细胞培养液至无菌的1.5mL离心管,-20℃保存待用。
(2)准备样品和试剂;
(3)设置空白对照;
(4)每孔加入50μL样品;
(5)样品组每孔加入50μL的HRP-conjugate,对照组不加,随后每孔加入50μL抗体,混合均匀;
(6)37℃孵育1h;
(7)用200μL的Wash Buffer洗涤三次;
(8)每孔加入50μL的Substrate A和50μL的Substrate B,混合均匀,37℃孵育15min;
(9)每孔加入50μL的Stop Solution,轻轻吹打,混合均匀,10min之内测完全部样品的OD值。
实施例6荧光素酶报告基因活性检测
荧光素酶报告基因活性检测,参照Promega公司的Dual-Luciferase ReporterAssay System试剂盒,具体操作步骤如下:
(1)转染48h后,吸去旧的培养基,用PBS清洗两次,每孔细胞加入100μL的GloLysis Buffer,室温轻微振摇5min,收集细胞裂解液;
(2)将30μL细胞裂解液加入96孔发光板后,在其中加入75μL
Figure BDA0001595166570000061
Luciferase Assay Reagent,混匀后在20~25℃静置15~30min。在BioTek公司Synergy 2多功能酶标仪上检测发光值,对应于萤火虫荧光素酶的表达水平;
(3)再加入75μL Stop&
Figure BDA0001595166570000062
Reagent试剂,混匀后在20~25℃静置15~30min。检测发光值,对应于海肾荧光素酶的表达水平;
(4)萤火虫荧光素酶与海肾荧光素酶表达量的比值为萤火虫荧光素酶相对活性,即为对应靶基因活性(三个重复)。
结果分析:
1、qRT-PCR检测MMP2基因在长大二元杂母猪各个组织中的表达情况,结果如图1所示。MMP2基因在卵巢中的表达情况显著高于其他各个组织,说明MMP2基因可能在卵巢卵泡的发育过程中起着重要的作用。
2、qRT-PCR检测MMP2基因在猪卵巢颗粒细胞中的超表达和干扰效果。结果如图2和图3所示。本研究所选择的超表达浓度为200ng,干扰效果最好的干扰小片段为MMP2-siRNA-2。
MMP2-siRNA-1:5′-GGUGUUCCACCACCUACAA-3′;
MMP2-siRNA-2:5′-GCGACAAGAAGUACGGCUU-3′;
MMP2-siRNA-3:5′-GCAAACAGGACAUCGUCUU-3′;
2、流式细胞仪检测超表达和干扰MMP2基因后,卵巢颗粒细胞凋亡情况,超表达和干扰MMP2基因后,对母猪卵巢颗粒细胞凋亡没有影响。
3、使用ELISA试剂盒检测超表达和干扰MMP2基因后,卵巢颗粒细胞培养液里E2的浓度变化,结果如图4所示,超表达MMP2基因后,促进E2的生成,干扰MMP2基因后,抑制E2的生成。
4、培养猪的卵巢颗粒细胞,将猪的MMP2基因启动子缺失片段报告基因重组质粒瞬时转染进猪的卵巢颗粒细胞,以pRL-TK为内参,pRL-TK可以提供组成型表达的海肾萤光素酶,为实验的萤火虫萤光素酶报告基因正态化提供内对照值,进行双荧光素酶活性检测,结果如图5所示,通过猪MMP2基因启动子缺失片段荧光活性分析得出:重组质粒P0、P1之间活性无显著差异,P1、P2、P3之间两两差异显著,结合猪MMP2基因启动子CPG岛的情况,得出猪MMP2基因启动子区的活性可能与CPG岛密切相关。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110> 华南农业大学
<120> 母猪MMP2基因在促进卵巢颗粒细胞中E2生成的应用
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> MMP2-siRNA-1
<400> 1
gguguuccac caccuacaa 19
<210> 2
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> MMP2-siRNA-2
<400> 2
gcgacaagaa guacggcuu 19
<210> 3
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> MMP2-siRNA-3
<400> 3
gcaaacagga caucgucuu 19
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> qRT-PCR- MMP2 Forward
<400> 4
gcgaacttga ccagagcacc 20
<210> 5
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> qRT-PCR- MMP2 Reverse
<400> 5
gagcgaaggc atcatccacc 20
<210> 6
<211> 17
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> qRT-PCR- GAPDH Forward
<400> 6
tcccgccaac atcaaat 17
<210> 7
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> qRT-PCR- GAPDH Reverse
<400> 7
cacgcccatc acaaacat 18

Claims (1)

1.一种母猪MMP2基因的核心启动子功能调节区,其特征在于:
所述的母猪MMP2基因的核心启动子功能调节区位于-1145~-686 bp区域。
CN201810203363.3A 2018-03-13 2018-03-13 母猪mmp2基因在促进卵巢颗粒细胞中e2生成的应用 Active CN108441494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810203363.3A CN108441494B (zh) 2018-03-13 2018-03-13 母猪mmp2基因在促进卵巢颗粒细胞中e2生成的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810203363.3A CN108441494B (zh) 2018-03-13 2018-03-13 母猪mmp2基因在促进卵巢颗粒细胞中e2生成的应用

Publications (2)

Publication Number Publication Date
CN108441494A CN108441494A (zh) 2018-08-24
CN108441494B true CN108441494B (zh) 2020-04-17

Family

ID=63194759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810203363.3A Active CN108441494B (zh) 2018-03-13 2018-03-13 母猪mmp2基因在促进卵巢颗粒细胞中e2生成的应用

Country Status (1)

Country Link
CN (1) CN108441494B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106182B (zh) * 2019-05-13 2023-01-10 华南农业大学 p65基因在猪卵巢颗粒细胞中的应用
CN114874993B (zh) * 2022-05-30 2023-08-15 华南农业大学 一种调控猪卵巢颗粒细胞mmp2基因表达的方法
CN115011599B (zh) * 2022-05-30 2024-05-10 华南农业大学 一种dna甲基化调控mmp2基因转录的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399209B (zh) * 2010-11-01 2013-06-21 Taiwan Sugar Corp 豬肺萃取物作為基質金屬蛋白酶抑制劑之用途

Also Published As

Publication number Publication date
CN108441494A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
Massimiani et al. Molecular signaling regulating endometrium–blastocyst crosstalk
Yu et al. Wnt7b-induced Sox11 functions enhance self-renewal and osteogenic commitment of bone marrow mesenchymal stem cells
Scheiber et al. Endoplasmic reticulum stress is induced in growth plate hypertrophic chondrocytes in G610C mouse model of osteogenesis imperfecta
CN108441494B (zh) 母猪mmp2基因在促进卵巢颗粒细胞中e2生成的应用
CN106102761A (zh) 用于肾疾病的预防或治疗剂
CN105567686B (zh) miR-126-3p在猪卵巢颗粒细胞中的应用
WO2006095559A1 (ja) 造血因子としてのFgf21の使用
Zhang et al. MicroRNA-7 targets the KLF4 gene to regulate the proliferation and differentiation of chicken primary myoblasts
CN108103070B (zh) Kiss1基因在促进卵巢颗粒细胞中E2生成的应用
CN111378663A (zh) lncRNA SFR1及其应用、调控卵泡发育的产品和方法
CN105695463B (zh) Pik3r2在猪卵巢颗粒细胞中的应用
CN108559750B (zh) Stat3在猪卵巢颗粒细胞中的应用
Wang et al. Inactivation of Ihh in Sp7-expressing cells inhibits osteoblast proliferation, differentiation, and bone formation, resulting in a dwarfism phenotype with severe skeletal dysplasia in mice
Gorodetska et al. The distinct role of ALDH1A1 and ALDH1A3 in the regulation of prostate cancer metastases
WO2011078037A1 (ja) 老化マーカー、老化抑制物質の評価方法および癌抑制剤
CN107519194A (zh) miR‑21在制备治疗宫腔粘连和/或薄型内膜的药物中的应用
Li et al. Galectin-1 promotes angiogenesis and chondrogenesis during antler regeneration
Boissy et al. An assessment of ADAMs in bone cells: absence of TACE activity prevents osteoclast recruitment and the formation of the marrow cavity in developing long bones
CN108715848B (zh) 转录因子CEBPα作为Kiss1启动子区的转录因子的应用
Yang et al. Uterine expression of NDRG4 is induced by estrogen and up-regulated during embryo implantation process in mice
Tan et al. Lgr4 regulates oviductal epithelial secretion through the WNT signaling pathway
Chen et al. Mesenchymal stem cells promote tumor progression via inducing stroma remodeling on rabbit VX2 bladder tumor model
Xu et al. Unbiased metastatic niche-labeling identifies estrogen receptor-positive macrophages as a barrier of T cell infiltration during bone colonization
CN102321585B (zh) miRNA-106a及其抑制剂在制备胶质瘤干细胞侵袭调控剂中的应用
CN110106182A (zh) p65基因在猪卵巢颗粒细胞中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant