[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108444478B - Moving target visual pose estimation method for underwater vehicle - Google Patents

Moving target visual pose estimation method for underwater vehicle Download PDF

Info

Publication number
CN108444478B
CN108444478B CN201810206444.9A CN201810206444A CN108444478B CN 108444478 B CN108444478 B CN 108444478B CN 201810206444 A CN201810206444 A CN 201810206444A CN 108444478 B CN108444478 B CN 108444478B
Authority
CN
China
Prior art keywords
underwater vehicle
state
target
coordinate system
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810206444.9A
Other languages
Chinese (zh)
Other versions
CN108444478A (en
Inventor
高剑
严卫生
张福斌
崔荣鑫
张立川
刘明雍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810206444.9A priority Critical patent/CN108444478B/en
Publication of CN108444478A publication Critical patent/CN108444478A/en
Application granted granted Critical
Publication of CN108444478B publication Critical patent/CN108444478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Navigation (AREA)

Abstract

The invention provides a moving target visual pose estimation method for an underwater vehicle, which is characterized in that according to a mathematical model of the underwater vehicle, a linear velocity, an angular velocity and an angle of the underwater vehicle under a carrier system are measured by combining sensors (such as a Doppler velocimeter and an azimuth attitude measurement system) to obtain state information; and (3) taking a plurality of feature points known on the moving target, and on the basis of the underwater vehicle kinematic model, obtaining the position of the feature points under the global system under the image system through coordinate system transformation, thereby obtaining the measurement information. And estimating the relative position difference and the motion attitude of the underwater vehicle and the center of the target object by using an unscented Kalman filtering algorithm. Compared with the method of the geometric method, the method breaks through the limitation that the arrangement of the characteristic points in the geometric method must meet specific conditions, and can accurately estimate the relative position difference and the motion attitude of the centers of the underwater vehicle and the target object.

Description

Moving target visual pose estimation method for underwater vehicle
Technical Field
The invention relates to the technical field of underwater vehicle vision, in particular to a moving target vision pose estimation method for an underwater vehicle, which is used for estimating moving target pose parameters below the underwater vehicle by utilizing vision measurement and a pose estimation method based on nonlinear Kalman filtering when the underwater vehicle tracks a characteristic target.
Background
The ocean is a huge wealth for human beings, which reserves huge resources, but the exploration of the ocean is still a huge challenge, especially the exploration of deep sea and open sea. The development of underwater sensor technology has also greatly driven the development of underwater vehicle technology.
For a long time, people are devoted to research on an underwater acoustic positioning technology, and good research results are obtained in the aspects of long-distance target positioning, navigation and the like in an underwater vehicle, but the stability and the precision in short-distance measurement are still to be further improved due to the low data updating frequency of an underwater acoustic positioning system. To meet the needs of underwater vehicle operations, people need to achieve close range target estimation. And the vision sensor is suitable for the close-range and high-precision target detection and tracking.
The current underwater vehicle vision positioning mainly adopts a geometric method. The geometric method obtains position coordinates of n characteristic points on a visual target under an image system through a camera arranged on an underwater vehicle, and the position and the posture of the underwater vehicle relative to the target are solved through a PnP (Passive-n-Piont) algorithm. However, the algorithm has the problems of multiple solutions, poor robustness and the like in the solving process, in order to obtain a unique solution, the arrangement of the feature points must meet specific conditions, so that the application range of the algorithm is limited, and information such as the speed of a target cannot be obtained, so that the method cannot be widely used for controlling the underwater vehicle in practical use.
Disclosure of Invention
Aiming at the problems in the prior art, the invention provides a moving target visual pose estimation method for an underwater vehicle, which is characterized in that the underwater vehicle with six degrees of freedom tracks a moving characteristic target above the characteristic target, and the method can accurately estimate the relative position difference and the motion attitude between the underwater vehicle and the center of a target object.
The main principle and thought of the invention are as follows: according to the mathematical model of the underwater vehicle, measuring the linear velocity, the angular velocity and the angle of the underwater vehicle under a carrier system by combining a sensor (such as a Doppler velocimeter and an azimuth attitude measurement system) to obtain state information; and (3) taking a plurality of feature points known on the moving target, and on the basis of the underwater vehicle kinematic model, obtaining the position of the feature points under the global system under the image system through coordinate system transformation, thereby obtaining the measurement information. And estimating the relative position difference and the motion attitude of the underwater vehicle and the center of the target object by using an unscented Kalman filtering algorithm.
The technical scheme of the invention is as follows:
the moving target visual pose estimation method for the underwater vehicle is characterized by comprising the following steps of: the method comprises the following steps:
step 1: acquiring initial state information of the underwater vehicle by using an azimuth attitude measurement system and a speed measuring instrument which are installed on the underwater vehicle with six degrees of freedom, estimating the initial state information of a target, and setting an initial value x (0) of a system state vector of the underwater vehicle when k is 0 according to the system state vector:
x(k)=[Δx,Δy,Δz,φBBB,uB,vB,wB,pB,qB,rBAAA,uA,vA,wA,pA,qA,rA]k T
wherein Δ x ═ xB-xA,Δy=yB-yA,Δz=zB-zA,(xB,yB,zB) For the position coordinates of the center of the underwater vehicle in the global coordinate system, (x)A,yA,zA) The position coordinates of the target center in the global system, and delta x, delta y and delta z are respectively the position difference of the underwater vehicle relative to the tracking target in the global coordinate system, phiBBBRespectively the attitude angle u of the underwater vehicle in the global coordinate systemB,vB,wBRespectively the linear velocity p of the underwater vehicle in the vehicle system of the underwater vehicleB,qB,rBAngular velocities, phi, of three attitude angles of the underwater vehicle in a global coordinate system, respectivelyAAARespectively the attitude angle, u, of the target in the global coordinate systemA,vA,wALinear velocities, p, of the target in three directions in the target carrier system, respectivelyA,qA,rAThe angular velocities of three attitude angles of the target in the global coordinate system are respectively; and calculating a covariance matrix of state quantities of the underwater vehicle at the moment when k is 0
Figure BDA0001596022950000021
Wherein
Figure BDA0001596022950000022
Is the expected value of x (0), E (.) represents the expected operation, (.)TRepresenting a transpose operation;
step 2: obtaining the estimated value of the system state vector according to the k-1 moment
Figure BDA0001596022950000023
And a state estimation covariance matrix P (k-1) is combined with the linear velocity of the underwater vehicle in the vehicle system of the underwater vehicle and the angular velocity and angle of the underwater vehicle in a global coordinate system measured at the moment k, and the estimated value of the system state vector of the underwater vehicle at the moment k is estimated
Figure BDA0001596022950000024
And a state estimation covariance matrix p (k):
step 2.1: predicting the state one step ahead, and the steps are as follows:
step 2.1.1: using estimated states at time k-1
Figure BDA0001596022950000025
And estimating the covariance matrix P (k-1| k-1), yielding the Sigma points
Figure BDA0001596022950000031
Figure BDA0001596022950000032
Figure BDA0001596022950000033
Figure BDA0001596022950000034
In the formula
Figure BDA0001596022950000035
Represents the ith point of Sigma and represents the point of Sigma,
Figure BDA0001596022950000036
after the expression n is multiplied by the estimation variance P (k-1| k-1), matrix evolution operation is carried out, an ith row is selected and is parallel to obtain an n-dimensional vector, and n is the dimension of the system state vector;
step 2.1.2: sigma spot
Figure BDA0001596022950000037
The state equation of the system is substituted to obtain
Figure BDA0001596022950000038
Wherein
Figure BDA0001596022950000039
The state estimate calculated for the ith Sigma point,
Figure BDA00015960229500000310
for the system state equation, the system state equation in one step length T is
Figure BDA00015960229500000311
In which is a T control period of time,
Figure BDA0001596022950000041
for converting the underwater vehicle carrier coordinate system into a coordinate conversion matrix under a global coordinate system,
Figure BDA0001596022950000042
converting the target carrier system into a coordinate conversion matrix under a global coordinate system;
step 2.1.3: merging to obtain a previous step state estimate at time k
Figure BDA0001596022950000043
Figure BDA0001596022950000044
Step 2.1.4: and (3) taking process noise into consideration, obtaining an estimated covariance matrix predicted in the previous step: :
Figure BDA0001596022950000045
wherein Q (k-1) is the covariance matrix of the system noise;
step 2.2: updating the prediction state of the previous step by using the measurement, and the steps are as follows:
step 2.2.1: predicting state with one step ahead
Figure BDA0001596022950000046
And covariance P (k | k-1), yielding Sigma points
Figure BDA0001596022950000047
Figure BDA0001596022950000048
Figure BDA0001596022950000049
Figure BDA00015960229500000410
Step 2.2.2: sigma spot
Figure BDA00015960229500000411
The state equation of the system is substituted to obtain
Figure BDA00015960229500000412
Wherein
Figure BDA00015960229500000413
The state estimate obtained for the ith Sigma point;
step 2.2.3: converting state estimators to metrology predictions according to metrology equations
Figure BDA00015960229500000414
Figure BDA00015960229500000415
Wherein the measurement equation is:
h[x(k)]=[μj(k),υj(k),φB(k),θB(k),ψB(k),uBB,wB,pB,qB,rB]T
j(k),υj(k) the coordinates of the jth characteristic point on the target in an image coordinate system are acquired by a downward-looking camera of the underwater vehicle, and the coordinates of the characteristic point on the target in the image coordinate system are obtained according to the image data;
step 2.2.4: merging to obtain measured prediction vector at k time
Figure BDA00015960229500000416
Figure BDA0001596022950000051
Step 2.2.5: the covariance of the metrology prediction considering metrology noise is:
Figure BDA0001596022950000052
wherein R (k) a covariance matrix of the measured noise;
step (ii) of2.2.6: estimating
Figure BDA0001596022950000053
And
Figure BDA0001596022950000054
covariance of each other
Figure BDA0001596022950000055
Step 2.3: calculating a gain matrix K (k) PXZPZ -1Then the updated state estimate and variance are
Figure BDA0001596022950000056
P(k|k)=P(k|k-1)-K(k)PZKT(k)
Wherein z (k) is a measurement at time k;
step 2.4: and (5) repeating the step 2.1 to the step 2.3 until the navigation is finished.
Advantageous effects
Compared with the method of the geometric method, the method breaks through the limitation that the arrangement of the characteristic points in the geometric method must meet specific conditions, and can accurately estimate the relative position difference and the motion attitude of the centers of the underwater vehicle and the target object.
Additional aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
Drawings
The above and/or additional aspects and advantages of the present invention will become apparent and readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
FIG. 1: the invention discloses a visual system model schematic diagram of an underwater vehicle;
FIG. 2: in the first example, a schematic diagram of the motion tracks of an underwater vehicle and characteristic points is shown;
FIG. 3: in the first example, the schematic diagram of the relative position of the underwater vehicle and the center of the characteristic target is shown;
FIG. 4: the attitude angle estimation value of the characteristic target in the first example is shown schematically.
Detailed Description
The following detailed description of embodiments of the invention is intended to be illustrative, and not to be construed as limiting the invention.
The embodiment is based on nonlinear Unscented kalman filtering (Unscented kalman Filter (kf)), and the hardware basis of the method is that an industrial camera is installed in the middle below the underwater vehicle with six degrees of freedom and is downward overlooked, the camera is sealed and waterproof by using a sealed cabin, the lower end of the sealed cabin is made of organic glass, and the frame rate of the camera at least reaches more than 20 frames. An industrial personal computer is installed in a main sealed cabin of the underwater vehicle, the performance of a processor of the industrial personal computer needs to reach the performance of an i5 processor or above, and the internal memory of a hard disk needs to reach above 32 GB. The underwater vehicle is provided with an azimuth attitude measurement system, so that the real-time angular speed and angle information of the underwater vehicle under a global coordinate system can be obtained. The Doppler velocimeter is arranged at the head part below the underwater vehicle, so that real-time speed information of the underwater vehicle under an underwater vehicle carrier system can be obtained.
The principle of the method is that according to a mathematical model of the underwater vehicle, a Doppler velocimeter and an azimuth attitude measurement system are combined to measure the linear velocity, the angular velocity and the angle of the underwater vehicle under a carrier system, and state information is obtained; 4 known feature points on a moving target are extracted by using an opencv image extraction algorithm in an industrial personal computer, and the positions of the feature points under a known global system under an image system are obtained through coordinate system transformation on the basis of an underwater vehicle kinematic model, so that measurement information is obtained. And estimating the relative position difference and the motion attitude of the underwater vehicle and the center of the target object by using an unscented Kalman filtering algorithm.
The method comprises the following specific steps:
step 1: acquiring initial state information of the underwater vehicle by using an azimuth attitude measurement system and a speed measuring instrument which are installed on the underwater vehicle with six degrees of freedom, estimating the initial state information of a target, and setting an initial value x (0) of a system state vector of the underwater vehicle when k is 0 according to the system state vector:
x(k)=[Δx,Δy,Δz,φBBB,uB,vB,wB,pB,qB,rBAAA,uA,vA,wA,pA,qA,rA]k T
wherein Δ x ═ xB-xA,Δy=yB-yA,Δz=zB-zA,(xB,yB,zB) For the position coordinates of the center of the underwater vehicle in the global coordinate system, (x)A,yA,zA) Is the position coordinate of the target center in the global system, Δ x, Δ y, ΔzRespectively the position difference phi of the underwater vehicle relative to the tracking target under the global coordinate systemBBBRespectively the attitude angle u of the underwater vehicle in the global coordinate systemB,vB,wBRespectively the linear velocity p of the underwater vehicle in the vehicle system of the underwater vehicleB,qB,rBAngular velocities, phi, of three attitude angles of the underwater vehicle in a global coordinate system, respectivelyAAARespectively the attitude angle, u, of the target in the global coordinate systemA,vA,wALinear velocities, p, of the target in three directions in the target carrier system, respectivelyA,qA,rAThe angular velocities of three attitude angles of the target in the global coordinate system are respectively; and calculating a covariance matrix of state quantities of the underwater vehicle at the moment when k is 0
Figure BDA0001596022950000071
Wherein
Figure BDA0001596022950000072
Is the expected value of x (0), E (.) represents the expected operation, (.)TRepresenting a transpose operation.
In this embodiment, the initial value x (0) of the system state vector is obtained
Figure BDA0001596022950000073
P(0)=diag{10,10,10,π/180,π/180,π/180,1,1,1,π/180,π/180,π/180,π/180,π/180,π/180,1,1,1,π/180,π/180,π/180}。
Step 2: obtaining the estimated value of the system state vector according to the k-1 moment
Figure BDA0001596022950000074
And a state estimation covariance matrix P (k-1) is combined with the linear velocity of the underwater vehicle in the vehicle system of the underwater vehicle and the angular velocity and angle of the underwater vehicle in a global coordinate system measured at the moment k, and the estimated value of the system state vector of the underwater vehicle at the moment k is estimated
Figure BDA0001596022950000075
And a state estimation covariance matrix p (k):
step 2.1: predicting the state one step ahead, and the steps are as follows:
step 2.1.1: using estimated states at time k-1
Figure BDA0001596022950000076
And estimating the covariance matrix P (k-1| k-1), yielding the Sigma points
Figure BDA0001596022950000077
Figure BDA0001596022950000078
Figure BDA0001596022950000079
Figure BDA00015960229500000710
In the formula
Figure BDA00015960229500000711
Represents the ith point of Sigma and represents the point of Sigma,
Figure BDA00015960229500000712
after the expression n is multiplied by the estimation variance P (k-1| k-1), matrix evolution operation is carried out, an ith row is selected and is parallel to obtain an n-dimensional vector, and n is the dimension of the system state vector;
step 2.1.2: sigma spot
Figure BDA00015960229500000713
The state equation of the system is substituted to obtain
Figure BDA00015960229500000714
Wherein
Figure BDA00015960229500000715
The state estimate calculated for the ith Sigma point,
Figure BDA00015960229500000716
for the system state equation, the system state equation in one step length T is
Figure BDA0001596022950000081
Wherein, T is the control period, T is 0.5,
Figure BDA0001596022950000082
for converting the underwater vehicle carrier coordinate system into a coordinate conversion matrix under a global coordinate system,
Figure BDA0001596022950000083
converting the target carrier system into a coordinate conversion matrix under a global coordinate system;
step 2.1.3: merging to obtain the forward of k timeOne-step state estimation
Figure BDA0001596022950000084
Figure BDA0001596022950000085
Step 2.1.4: and (3) taking process noise into consideration, obtaining an estimated covariance matrix predicted in the previous step: :
Figure BDA0001596022950000086
where Q (k-1) is the covariance matrix of the system noise, obtained through estimation and historical experience, taken in this example as:
Q=diag{0.1,0.1,0.1,0.1π/180,0.1π/180,0.1π/180,1,1,1,0.1π/180,0.1π/180,0.1π/180,0.1π/180,0.1π/180,0.1π/180,1,1,1,0.1π/180,0.1π/180,0.1π/180,}2
step 2.2: updating the prediction state of the previous step by using the measurement, and the steps are as follows:
step 2.2.1: predicting state with one step ahead
Figure BDA0001596022950000091
And covariance P (k | k-1), yielding Sigma points
Figure BDA0001596022950000092
Figure BDA0001596022950000093
Figure BDA0001596022950000094
Figure BDA0001596022950000095
Step 2.2.2: sigma spot
Figure BDA0001596022950000096
The state equation of the system is substituted to obtain
Figure BDA0001596022950000097
Wherein
Figure BDA0001596022950000098
The state estimate obtained for the ith Sigma point;
step 2.2.3: converting state estimators to metrology predictions according to metrology equations
Figure BDA0001596022950000099
Figure BDA00015960229500000910
Wherein the measurement equation is:
h[x(k)]=[μj(k),υj(k),φB(k),θB(k),ψB(k),uBB,wB,pB,qB,rB]T
j(k),υj(k) the coordinates of the jth characteristic point on the target under an image coordinate system are acquired by an overhead camera of the underwater vehicle, and the coordinates of the characteristic point on the target in the image coordinate system are obtained by an industrial personal computer according to the image data by utilizing an image extraction algorithm in opencv; in the present embodiment, 4 feature points j are 1,2,3, 4;
the feature points are converted into coordinates under the camera system
Figure BDA00015960229500000911
Wherein,
Figure BDA00015960229500000912
is a transformation matrix from a global coordinate system to an underwater vehicle carrier system, (x, y, z) are position coordinates of the underwater vehicle under the global coordinate system,
Figure BDA00015960229500000913
for the position coordinate of the jth characteristic point at the moment t in the global coordinate system,
Figure BDA00015960229500000914
j is the coordinate of the jth feature point at the time t in the camera coordinate system, and is 1,2,3, and 4, as shown in fig. 1. Combining an aperture camera model and an underwater vehicle kinematic model, the coordinates of 4 characteristic points in a global coordinate system in an image system are
Figure BDA0001596022950000101
Wherein R isijIs a rotation matrix
Figure BDA0001596022950000102
Row i and column j of (d), (u)jj) Is the two-dimensional coordinate of the j-th point in the camera system, kx,kyThe resulting parameters are calibrated for the camera. Considering the coincidence of the camera systems of the underwater vehicle carrier and the downward-looking camera,
Figure BDA0001596022950000103
in this embodiment, the initial coordinates of 4 feature points known to be on the target in the global coordinate system are taken as O1(0.25,0.25,0),O2(0.25,-0.25,0),O3(-0.25,-0.25,0),O4(-0.25,0.25,0), focal length f of the cameraxf y40 pixels.
Step 2.2.4: merging to obtain measured prediction vector at k time
Figure BDA0001596022950000104
Figure BDA0001596022950000105
Step 2.2.5: the covariance of the metrology prediction considering metrology noise is:
Figure BDA0001596022950000106
where R (k) is a covariance matrix of the measured noise, obtained from the recorded data and the characteristics of the instrument, in this example R (k) biag {4,4,4,4,4,4,4, pi/180, 0.01,0.01,0.01, pi/180, }2
Step 2.2.6: estimating
Figure BDA0001596022950000107
And
Figure BDA0001596022950000108
covariance of each other
Figure BDA0001596022950000109
Step 2.3: calculating a gain matrix K (k) PXZPZ -1Then the updated state estimate and variance are
Figure BDA00015960229500001010
P(k|k)=P(k|k-1)-K(k)PZKT(k)
Wherein z (k) is a measurement at time k;
step 2.4: and (5) repeating the step 2.1 to the step 2.3 until the navigation is finished.
And finishing the estimation of the position of the underwater vehicle relative to the characteristic target and the attitude of the characteristic target, wherein the Matlab simulation result of the estimation value of the relative position of the underwater vehicle and the center of the characteristic target is shown in FIG. 3, and the Matlab simulation result of the angle estimation value of the characteristic target is shown in FIG. 4. According to the embodiment, Matlab is used for respectively simulating the motion states of the characteristic targets, the distance difference between an underwater vehicle and the targets and the estimation of the angles of the characteristic targets are simulated, and the result shows that the method can accurately finish the estimation of the parameters of the motion targets.
Although embodiments of the present invention have been shown and described above, it is understood that the above embodiments are exemplary and should not be construed as limiting the present invention, and that variations, modifications, substitutions and alterations can be made in the above embodiments by those of ordinary skill in the art without departing from the principle and spirit of the present invention.

Claims (1)

1. A moving target visual pose estimation method for an underwater vehicle is characterized by comprising the following steps: the method comprises the following steps:
step 1: acquiring initial state information of the underwater vehicle by using an azimuth attitude measurement system and a speed measuring instrument which are installed on the underwater vehicle with six degrees of freedom, estimating the initial state information of a target, and setting an initial value x (0) of a system state vector of the underwater vehicle when k is 0 according to the system state vector:
x(k)=[Δx,Δy,Δz,φBBB,uB,vB,wB,pB,qB,rBAAA,uA,vA,wA,pA,qA,rA]k T
wherein Δ x ═ xB-xA,Δy=yB-yA,Δz=zB-zA,(xB,yB,zB) For the position coordinates of the center of the underwater vehicle in the global coordinate system, (x)A,yA,zA) The position coordinates of the target center in the global system, and delta x, delta y and delta z are respectively the position difference of the underwater vehicle relative to the tracking target in the global coordinate system, phiBBBRespectively the attitude angle u of the underwater vehicle in the global coordinate systemB,vB,wBRespectively the linear velocity p of the underwater vehicle in the vehicle system of the underwater vehicleB,qB,rBAngular velocities, phi, of three attitude angles of the underwater vehicle in a global coordinate system, respectivelyAAARespectively the attitude angle, u, of the target in the global coordinate systemA,vA,wALinear velocities, p, of the target in three directions in the target carrier system, respectivelyA,qA,rAThe angular velocities of three attitude angles of the target in the global coordinate system are respectively; and calculating a covariance matrix of state quantities of the underwater vehicle at the moment when k is 0
Figure FDA0001596022940000011
Wherein
Figure FDA0001596022940000012
Is the expected value of x (0), E (.) represents the expected operation, (.)TRepresenting a transpose operation;
step 2: obtaining the estimated value of the system state vector according to the k-1 moment
Figure FDA0001596022940000013
And a state estimation covariance matrix P (k-1) is combined with the linear velocity of the underwater vehicle in the vehicle system of the underwater vehicle and the angular velocity and angle of the underwater vehicle in a global coordinate system measured at the moment k, and the estimated value of the system state vector of the underwater vehicle at the moment k is estimated
Figure FDA0001596022940000014
And a state estimation covariance matrix p (k):
step 2.1: predicting the state one step ahead, and the steps are as follows:
step 2.1.1: using estimated states at time k-1
Figure FDA0001596022940000015
And estimating the covariance matrix P (k-1)I k-1), generating Sigma dots
Figure FDA0001596022940000016
Figure FDA0001596022940000017
Figure FDA0001596022940000018
Figure FDA0001596022940000019
In the formula
Figure FDA00015960229400000110
Represents the ith point of Sigma and represents the point of Sigma,
Figure FDA00015960229400000111
after the expression n is multiplied by the estimation variance P (k-1| k-1), matrix evolution operation is carried out, an ith row is selected and is parallel to obtain an n-dimensional vector, and n is the dimension of the system state vector;
step 2.1.2: sigma spot
Figure FDA0001596022940000021
The state equation of the system is substituted to obtain
Figure FDA0001596022940000022
Wherein
Figure FDA0001596022940000023
The state estimate calculated for the ith Sigma point,
Figure FDA0001596022940000024
for the system state equation, the system state equation in one step length T is
Figure FDA0001596022940000025
In which is a T control period of time,
Figure FDA0001596022940000026
for converting the underwater vehicle carrier coordinate system into a coordinate conversion matrix under a global coordinate system,
Figure FDA0001596022940000027
converting the target carrier system into a coordinate conversion matrix under a global coordinate system;
step 2.1.3: merging to obtain a previous step state estimate at time k
Figure FDA0001596022940000028
Figure FDA0001596022940000029
Step 2.1.4: and (3) taking process noise into consideration, obtaining an estimated covariance matrix predicted in the previous step:
Figure FDA0001596022940000031
wherein Q (k-1) is the covariance matrix of the system noise;
step 2.2: updating the prediction state of the previous step by using the measurement, and the steps are as follows:
step 2.2.1: predicting state with one step ahead
Figure FDA0001596022940000032
And covariance P (k | k)-1) generating Sigma dots
Figure FDA0001596022940000033
Figure FDA0001596022940000034
Figure FDA0001596022940000035
Figure FDA0001596022940000036
Step 2.2.2: sigma spot
Figure FDA0001596022940000037
The state equation of the system is substituted to obtain
Figure FDA0001596022940000038
Wherein
Figure FDA0001596022940000039
The state estimate obtained for the ith Sigma point;
step 2.2.3: converting state estimators to metrology predictions according to metrology equations
Figure FDA00015960229400000310
Figure FDA00015960229400000311
Wherein the measurement equation is:
h[x(k)]=[μj(k),υj(k),φB(k),θB(k),ψB(k),uBB,wB,pB,qB,rB]T
j(k),υj(k) the coordinates of the jth characteristic point on the target in an image coordinate system are acquired by a downward-looking camera of the underwater vehicle, and the coordinates of the characteristic point on the target in the image coordinate system are obtained according to the image data;
step 2.2.4: merging to obtain measured prediction vector at k time
Figure FDA00015960229400000312
Figure FDA00015960229400000313
Step 2.2.5: the covariance of the metrology prediction considering metrology noise is:
Figure FDA00015960229400000314
wherein R (k) a covariance matrix of the measured noise;
step 2.2.6: estimating
Figure FDA00015960229400000315
And
Figure FDA00015960229400000316
covariance of each other
Figure FDA0001596022940000041
Step 2.3: calculating a gain matrix K (k) PXZPZ -1Then the updated state estimate and variance are
Figure FDA0001596022940000042
P(k|k)=P(k|k-1)-K(k)PZKT(k)
Wherein z (k) is a measurement at time k;
step 2.4: and (5) repeating the step 2.1 to the step 2.3 until the navigation is finished.
CN201810206444.9A 2018-03-13 2018-03-13 Moving target visual pose estimation method for underwater vehicle Active CN108444478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810206444.9A CN108444478B (en) 2018-03-13 2018-03-13 Moving target visual pose estimation method for underwater vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810206444.9A CN108444478B (en) 2018-03-13 2018-03-13 Moving target visual pose estimation method for underwater vehicle

Publications (2)

Publication Number Publication Date
CN108444478A CN108444478A (en) 2018-08-24
CN108444478B true CN108444478B (en) 2021-08-10

Family

ID=63194113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810206444.9A Active CN108444478B (en) 2018-03-13 2018-03-13 Moving target visual pose estimation method for underwater vehicle

Country Status (1)

Country Link
CN (1) CN108444478B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109697734B (en) * 2018-12-25 2021-03-09 浙江商汤科技开发有限公司 Pose estimation method and device, electronic equipment and storage medium
CN110209180B (en) * 2019-05-20 2022-03-01 武汉理工大学 Unmanned underwater vehicle target tracking method based on HuberM-Cubasic Kalman filtering
CN110160524B (en) * 2019-05-23 2020-12-01 深圳市道通智能航空技术有限公司 Sensor data acquisition method and device of inertial navigation system
CN111649743B (en) * 2020-05-08 2022-03-22 武汉高德红外股份有限公司 Target angular velocity resolving method and device based on photoelectric turret
CN114200966B (en) * 2020-09-17 2023-10-13 中国科学院沈阳自动化研究所 Unmanned aircraft target orientation equidistant tracking method based on perception information
CN112184765B (en) * 2020-09-18 2022-08-23 西北工业大学 Autonomous tracking method for underwater vehicle
CN112417948B (en) * 2020-09-21 2024-01-12 西北工业大学 Method for accurately guiding lead-in ring of underwater vehicle based on monocular vision
CN112924708B (en) * 2021-01-29 2022-06-03 中国航天空气动力技术研究院 Speed estimation method suitable for underwater near-bottom operation vehicle
CN112836889B (en) * 2021-02-19 2024-07-19 鹏城实验室 Path optimization method, underwater vehicle, and computer-readable storage medium
CN113074725B (en) * 2021-05-11 2022-07-22 哈尔滨工程大学 Small underwater multi-robot cooperative positioning method and system based on multi-source information fusion
CN113945892B (en) * 2021-10-11 2022-05-03 哈尔滨工程大学 Method for measuring three-dimensional motion trail of body target
CN114323552B (en) * 2021-11-18 2022-10-21 厦门大学 Method for judging stability of water entering and exiting from cross-medium navigation body
CN115060238B (en) * 2022-05-18 2023-11-10 深圳荔石创新科技有限公司 Method and device for measuring relative pose of underwater component
CN115479507B (en) * 2022-09-14 2023-08-15 中国科学院声学研究所 Guidance control method and system for underwater vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598556A (en) * 2009-07-15 2009-12-09 北京航空航天大学 Unmanned plane vision/inertia integrated navigation method under a kind of circumstances not known
CN103149939A (en) * 2013-02-26 2013-06-12 北京航空航天大学 Dynamic target tracking and positioning method of unmanned plane based on vision
CN103645487A (en) * 2013-12-06 2014-03-19 江苏科技大学 Underwater multi-target tracking method
CN105676181A (en) * 2016-01-15 2016-06-15 浙江大学 Underwater moving target extended Kalman filtering tracking method based on distributed sensor energy ratios
CN105890589A (en) * 2016-04-05 2016-08-24 西北工业大学 Underwater robot monocular vision positioning method
CN106780560A (en) * 2016-12-29 2017-05-31 北京理工大学 A kind of feature based merges the bionic machine fish visual tracking method of particle filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2814833C (en) * 2010-10-25 2018-11-06 Sekhar C. Tangirala Estimating position and orientation of an underwater vehicle based on correlated sensor data
CN106950974B (en) * 2017-04-19 2020-07-28 哈尔滨工程大学 Three-dimensional path understanding and tracking control method for under-actuated autonomous underwater vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598556A (en) * 2009-07-15 2009-12-09 北京航空航天大学 Unmanned plane vision/inertia integrated navigation method under a kind of circumstances not known
CN103149939A (en) * 2013-02-26 2013-06-12 北京航空航天大学 Dynamic target tracking and positioning method of unmanned plane based on vision
CN103645487A (en) * 2013-12-06 2014-03-19 江苏科技大学 Underwater multi-target tracking method
CN105676181A (en) * 2016-01-15 2016-06-15 浙江大学 Underwater moving target extended Kalman filtering tracking method based on distributed sensor energy ratios
CN105890589A (en) * 2016-04-05 2016-08-24 西北工业大学 Underwater robot monocular vision positioning method
CN106780560A (en) * 2016-12-29 2017-05-31 北京理工大学 A kind of feature based merges the bionic machine fish visual tracking method of particle filter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AUV同时定位与跟踪研究;卢健等;《计算机工程与应用》;20111231;第47卷(第16期);第4-8页 *
The AUV Location and Location Error Analysis Based on Binocular Stereo Vision;Jun-Chai GAO, et al;《Sensors & Transducers》;20130930;第156卷(第9期);第291-297页 *

Also Published As

Publication number Publication date
CN108444478A (en) 2018-08-24

Similar Documents

Publication Publication Date Title
CN108444478B (en) Moving target visual pose estimation method for underwater vehicle
CN112347840B (en) Vision sensor laser radar integrated unmanned aerial vehicle positioning and image building device and method
CN112639502A (en) Robot pose estimation
CN109901205B (en) Underwater robot multi-sensor fusion and motion trajectory prediction method
CN111596333B (en) Underwater positioning navigation method and system
CN110726406A (en) Improved nonlinear optimization monocular inertial navigation SLAM method
CN108120438B (en) Indoor target rapid tracking method based on IMU and RFID information fusion
CN106679662B (en) A kind of underwater robot list beacon Combinated navigation method based on TMA technology
CN113739795B (en) Underwater synchronous positioning and mapping method based on polarized light/inertia/vision integrated navigation
CN108387236B (en) Polarized light SLAM method based on extended Kalman filtering
CN114001733B (en) Map-based consistent efficient visual inertial positioning algorithm
Yap et al. A particle filter for monocular vision-aided odometry
Zhou et al. A lidar odometry for outdoor mobile robots using ndt based scan matching in gps-denied environments
Demim et al. Simultaneous localisation and mapping for autonomous underwater vehicle using a combined smooth variable structure filter and extended kalman filter
CN112710304B (en) Underwater autonomous vehicle navigation method based on adaptive filtering
Zhang et al. An integrated navigation method for small-sized AUV in shallow-sea applications
CN113108774A (en) Underwater robot and navigation positioning method thereof
CN112581610B (en) Robust optimization method and system for building map from multi-beam sonar data
CN112611376B (en) RGI-Lidar/SINS tightly-coupled AUV underwater navigation positioning method and system
CN112802195B (en) Underwater robot continuous occupying and mapping method based on sonar
CN110849349B (en) Fusion positioning method based on magnetic sensor and wheel type odometer
Ma et al. A Vision-Integrated Navigation Method in AUV Terminal Mobile Docking Based on Factor Graph Optimization
CN113029173A (en) Vehicle navigation method and device
Wang et al. Initial positioning of terrain relative navigation under pseudo-peaks interference
CN117451054A (en) Unmanned aerial vehicle high-precision indoor positioning method based on monocular camera, IMU and UWB multi-sensor fusion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant