CN108394484B - Locust-simulated jumping robot with gliding function - Google Patents
Locust-simulated jumping robot with gliding function Download PDFInfo
- Publication number
- CN108394484B CN108394484B CN201810135603.0A CN201810135603A CN108394484B CN 108394484 B CN108394484 B CN 108394484B CN 201810135603 A CN201810135603 A CN 201810135603A CN 108394484 B CN108394484 B CN 108394484B
- Authority
- CN
- China
- Prior art keywords
- cam
- jumping
- connecting plate
- leg
- connecting rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009191 jumping Effects 0.000 title claims abstract description 113
- 230000007246 mechanism Effects 0.000 claims abstract description 11
- 210000002414 leg Anatomy 0.000 claims description 121
- 210000000689 upper leg Anatomy 0.000 claims description 32
- 230000003139 buffering effect Effects 0.000 claims description 25
- 210000001699 lower leg Anatomy 0.000 claims description 14
- 239000012528 membrane Substances 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 230000001788 irregular Effects 0.000 claims description 4
- 230000002068 genetic effect Effects 0.000 claims description 2
- 238000004146 energy storage Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 8
- 244000309466 calf Species 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 241000238814 Orthoptera Species 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Toys (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种具有滑翔功能的仿蝗虫跳跃机器人,涉及机器人技术领域。包括躯干结构、缓冲腿结构、滑翔翅结构、跳跃腿结构、驱动模块。缓冲腿结构由四个缓冲腿分支组成,可实现机器人的着陆缓冲。滑翔翅由两个缓冲腿分支和弹簧组成,通过弹簧变形带动滑翔翅的收放实现机器人的滑翔。跳跃腿结构分别由两个六杆机构构成的跳跃腿分支组成,实现机器人的高效跳跃。驱动模块由滑翔翅驱动模块和跳跃腿模块组成,均通过电机带动凸轮压迫弹簧变形实现储能和瞬间释放能量。本发明通过结合缓冲腿结构、滑翔翅结构、跳跃腿结构三种结构,提高了跳跃机器人的越障能力和跳跃性能,实现了机器人的稳定着陆。
The invention discloses a locust-like jumping robot with a gliding function, and relates to the technical field of robots. Including torso structure, buffer leg structure, gliding wing structure, jumping leg structure, drive module. The buffer leg structure consists of four buffer leg branches, which can realize the landing buffer of the robot. The gliding fin is composed of two buffer leg branches and a spring, and the robot can glide through the deformation of the spring to drive the retracting and unwinding of the gliding fin. The jumping leg structure consists of two jumping leg branches composed of six-bar mechanisms respectively, which realizes the efficient jumping of the robot. The driving module is composed of a gliding wing driving module and a jumping leg module, both of which are driven by the motor to drive the cam to compress the spring to deform to achieve energy storage and instantaneous release of energy. The invention improves the obstacle-surmounting ability and jumping performance of the jumping robot by combining the three structures of the buffer leg structure, the gliding wing structure and the jumping leg structure, and realizes the stable landing of the robot.
Description
技术领域technical field
本发明涉及机器人技术领域,具体来说,是一种具有滑翔功能的仿蝗虫跳跃机器人,该技术可使得跳跃机器人实现更高的跳跃性能和更稳定的着陆性能,可应用于极端环境着陆面。The invention relates to the technical field of robotics, in particular to a locust-like jumping robot with gliding function. The technology enables the jumping robot to achieve higher jumping performance and more stable landing performance, and can be applied to extreme environment landing surfaces.
背景技术Background technique
随着技术的发展,机器人技术在各个方面得到广泛应用。而在星际探测、生命救援和军事侦察等领域,存在各种类型的复杂、非结构化工作环境,这就要求机器人体积小且具有强大的越障能力。由于蝗虫体积小且可以越过数倍于自身尺寸的障碍物,研究者基于仿生学原理,设计出了各类仿蝗虫跳跃机器人。With the development of technology, robotics has been widely used in various aspects. In the fields of interstellar exploration, life rescue and military reconnaissance, there are various types of complex and unstructured working environments, which require robots to be small in size and have a strong ability to overcome obstacles. Because locusts are small and can cross obstacles several times their size, researchers have designed various locust-like jumping robots based on the principle of bionics.
在仿蝗虫跳跃机器人领域,目前已经取得了一些成果。公布号为105438306A的发明专利《一种具有蝗虫性能的仿蝗虫跳跃机器人》通过设计四个结构完全相同的缓冲腿分支,实现机器人的着陆缓冲。但是缓冲腿设计单薄,抗冲击性能差,缓冲腿易折弯失效。公布号为101954935A的发明专利《仿蝗虫活动关节杠杆弹射机理的跳跃机器人》根据蝗虫杠杆弹射机理设计出了具有缓慢储能和快速释放能力的机器人。但是设计中瞬间释放存在能量损耗且无着陆缓冲结构,地面冲击大。针对上述设计中存在的问题,需要设计出一种新型跳跃机器人,在保证具有良好的缓冲性能的同时,具有更高的跳跃性能和更远的跳跃距离。In the field of locust-like jumping robots, some achievements have been made. The invention patent with the publication number of 105438306A "A locust-like jumping robot with locust performance" realizes the landing buffer of the robot by designing four buffer leg branches with the same structure. However, the design of the buffer legs is thin, the impact resistance is poor, and the buffer legs are easy to bend and fail. The invention patent with the publication number of 101954935A "Jumping robot imitating the mechanism of locust movable joint lever ejection" has designed a robot with slow energy storage and rapid release capabilities according to the locust lever ejection mechanism. However, in the design, there is energy loss in the instantaneous release and there is no landing buffer structure, and the ground impact is large. In view of the problems in the above design, it is necessary to design a new type of jumping robot, which has higher jumping performance and longer jumping distance while ensuring good buffering performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种具有滑翔功能的仿蝗虫跳跃机器人,可通过在跳跃过程中收放滑翔翅实现更远的跳跃距离;通过六杆机构的跳跃腿实现更高的跳跃性能;通过缓冲腿实现跳跃机器人的稳定着陆。The purpose of the present invention is to provide a locust-like jumping robot with a gliding function, which can achieve a longer jumping distance by retracting and retracting the gliding wings during the jumping process; achieve higher jumping performance through the jumping legs of the six-bar mechanism; The legs enable stable landing of the jumping robot.
本发明滑翔功能的仿蝗虫跳跃机器人,包括躯干结构1、缓冲腿结构2、滑翔翅结构3、跳跃腿结构4、驱动模块5;The locust-like jumping robot with gliding function of the present invention includes a trunk structure 1, a buffer leg structure 2, a gliding wing structure 3, a jumping leg structure 4, and a drive module 5;
参照图2,躯干结构1包括左连接板11、右连接板13、中间连接板12三部分;左连接板11和右连接板13平行,中间连接板12垂直固定搭在左连接板11、右连接板13之间;左连接板11外侧面下端固定有前后排列的第一缓冲腿支架111和第二缓冲腿支架112;同样右连接板13外侧面下端固定有前后排列的两个缓冲腿支架。上述每个缓冲腿支架安装有一个缓冲腿结构2的分支即缓冲腿分支。2, the torso structure 1 includes three parts: a left connecting
每一个缓冲腿分支包括具有向下弯折的缓冲大腿211、倾斜的缓冲小腿212、第一扭簧213、第二扭簧214,缓冲大腿211的一端与缓冲腿支架之间采用轴连接,缓冲大腿211在垂直所对应的左连接板11、右连接板13面内相对缓冲腿支架转动,同时在所对应的左连接板11或右连接板13与缓冲大腿之间的夹角处安装有第一扭簧213,即第一扭簧213的一端与左连接板11或右连接板13固定连接,第一扭簧213的另一端与缓冲大腿211固定连接,第一扭簧213位于缓冲大腿211的上方;缓冲大腿211的向下弯的另一端与缓冲小腿212的一端之间采用轴连接,缓冲小腿在平行于左连接板11或右连接板13的平面内围绕缓冲大腿211可转动;在左连接板同一侧的两个缓冲小腿212之间呈八字形倾斜;在左连接板11或右连接板13同一侧的缓冲小腿212所在平面分别与左连接板11或右连接板13平行;每个缓冲大腿211所在平面均垂直左连接板11或右连接板13;缓冲大腿211和缓冲小腿212之间采用第二扭簧214进行限位,第二扭簧214的两端分别固定安装在缓冲大腿211和缓冲小腿212上;第二扭簧214位于八字的外侧;Each buffer leg branch includes a
滑翔翅结构3包括两个滑翔翅分支和一个第三弹簧33三部分;滑翔翅结构位于仿蝗虫跳跃机器人的前部;每个滑翔翅分支包括翅膀支架311、翅膀转轴312、翅膀骨架结构、翼膜313四部分;其中,翅膀骨架结构包括第一骨架314、第二骨架315、第三骨架316、第四骨架317、第五骨架318、第六骨架319、第七骨架320;翅膀支架311为板结构;第一骨架314、第二骨架315、第三骨架316、第四骨架317、第五骨架318、第六骨架319、第七骨架320依次平行排开并分别采用轴连接固定到翅膀支架311的一侧边上,每个骨架可转动;第一骨架314采用凸出的翅膀转轴312与翅膀支架311轴连接,且翅膀转轴312与第一骨架314固定为一体;第一骨架314、第二骨架315、第三骨架316、第四骨架317、第五骨架318、第六骨架319、第七骨架320采用翼膜313连接在一起;两个滑翔翅分支分别采用翅膀支架311固定在躯干结构1的两侧即对应的左连接板11和右连接板13上;两个滑翔翅分支的翅膀转轴312之间采用扭簧33连接,扭簧33的两端分别固定并在翅膀转轴312上进行螺旋缠绕,使得扭簧33非直线伸缩变形能够带动翅膀转轴312转动从而驱动对翅膀骨架结构打开和闭合,同时保证两滑翔翅分支的翅膀骨架结构打开和闭合的同步性;The gliding wing structure 3 includes two gliding wing branches and a
跳跃腿结构4包括两个跳跃腿分支和一个跳跃腿连杆43三部分;两个跳跃腿分支分别位于躯干结构1的两侧即对应的左连接板11和右连接板13相背对的外侧;跳跃腿结构位于仿蝗虫跳跃机器人的后部;The jumping leg structure 4 includes two jumping leg branches and a
每个跳跃腿分支包括连杆连接块411、第一连杆412、第二连杆413、第三连杆414、第四连杆415、脚套416、第四扭簧417、长固定柱418、短固定柱419九部分;各个构件的连接关系为:连杆连接块411整体外观为三角板状结构,三个角分别记为角A、角B、角C;连杆连接块411通过角A与所在侧对应的左连接板11或右连接板13采用长固定柱418进行轴连接;角B与第一连杆412的一端进行轴连接,第一连杆412的另一端与第二连杆413的一端进行轴连接;第二连杆413的另一端嵌套有脚套416作为自由端,可以与地面接触;第二连杆413的中间某点与第三连杆414的一端进行轴连接,第二连杆413与第三连杆414之间的夹角采用第四扭簧417进行连接,即第四扭簧417的一端与第二连杆413相连,另一端与第三连杆414相连,其初始变形量可根据需要调节,用于跳跃腿跳跃前储能和跳跃时瞬间释能;第三连杆414的另一端与连杆连接块411的角C进行轴连接;第四连杆415的一端与所在侧对应的左连接板11或右连接板13采用短固定柱419进行轴连接,同一个跳跃腿分支的短固定柱419与长固定柱418固定在同一个左连接板11或右连接板13上,且长固定柱418位于左连接板11或右连接板13上部,而短固定柱419的位置低于长固定柱418;第四连杆415的另一端与第二连杆413的中间某点进行轴连接;第二连杆413与第三连杆414、第四连杆415进行轴连接的部位可以相同,也还可以不同,优选不同;两个跳跃腿分支的两连杆连接块411之间采用跳跃腿连杆43固定连接,同时带动两连杆连接块411转动,并保证两跳跃腿分支实现运动的同步性。Each jumping leg branch includes a
驱动模块5包括翅膀驱动模块51、跳跃腿驱动模块52两部分;翅膀驱动模块51包括第一电机511、第一电机轴512、第一凸轮513、第二凸轮514四部分;各个构件的连接关系为:第一电机511与第一电机轴512轴接,电机带动电机轴转动,第一电机轴512与第三弹簧33成直线状态时平行,且第一电机轴512与第三弹簧33成直线状态时之间的平行距离记为L1,第一电机轴512上分别套有并固定第一凸轮513和第二凸轮514,第一凸轮513和第二凸轮514具有完全相同的轮廓曲线和结构形式,且平行,第一凸轮513和第二凸轮514为自身径向尺寸不等的不规则凸轮结构,第一凸轮513和第二凸轮514的半径有大于L1的部分和小于或等于L1的部分;第一凸轮513和第二凸轮514径向边缘可以驱动第三弹簧33向前凸或不凸,带动翅膀转轴312转动,从而带动整个翅膀骨架结构转动,即实现翅膀骨架结构打开和闭合;第一电机轴512一端轴接在左连接板11上,另一端轴接在右连接板13上;第一电机511固连在中间连接板12上。The drive module 5 includes two parts: a
跳跃腿驱动模块52包括第二电机512、第二电机轴522、第三凸轮523、第四凸轮524四部分;各个构件的连接关系为:第二电机512与第二电机轴522轴接,电机带动电机轴转动;第三凸轮523和第四凸轮524平行并固定套在第二电机轴522上;第一凸轮513与第二凸轮514具有完全相同的轮廓曲线和结构形式;第二电机轴522与跳跃腿连杆43平行,且两者之间的平行距离记为L2,第三凸轮523和第四凸轮524为自身径向尺寸不等的不规则凸轮结构,第三凸轮523和第四凸轮524的半径有大于L2的部分和小于或等于L2的部分,通过第三凸轮523和第四凸轮524径向边缘驱动跳跃腿连杆43上下前后移动,从而带动整个跳跃腿结构跳动;The jumping
第二电机轴522一端轴接在左连接板11上,另一端轴接在右连接板13上。第二电机521固连在中间连接板12上。One end of the second motor shaft 522 is axially connected to the left connecting
本发明的跳跃腿形成单自由度六杆机构,采用斯蒂芬森型,也可采用瓦特型,其优化方法是在给定始、末位置腿部摆动角度的情况下,求解出与给定质心位置最接近的一组机构关节姿态角,并以此为参考使得躯干转动角度最小。首先确定优化参数,并根据实际情况给出相应的约束条件。特别地,为了防止杆长差异过大而脱离实际,还需要对杆长比进行约束。然后根据运动学方程,求解出始、末状态下的质心位置,并判断求解出的质心位置与给定质心位置的偏差。在完成运动学求解后,进一步求解出始末位置的躯干转动角度,并将其差值的绝对值作为优化目标函数。最终采用遗传算法进行优化,使得目标函数最小的一组杆长即为所求的值。特别地,根据设计需求的不同,还可在关节姿态角确定时给定质心位置,使得腿部摆动角度与给定值最接近。The jumping leg of the present invention forms a single-degree-of-freedom six-bar mechanism, which adopts the Stephenson type or the Watt type. The closest set of joint pose angles of the mechanism, and use this as a reference to minimize the rotation angle of the torso. Firstly, the optimization parameters are determined, and the corresponding constraints are given according to the actual situation. In particular, in order to prevent the rod length difference from being too large and deviating from reality, it is also necessary to restrict the rod length ratio. Then, according to the kinematic equation, the position of the centroid in the initial and final states is solved, and the deviation of the solved position of the centroid from the given position of the centroid is judged. After the kinematics solution is completed, the rotation angle of the torso at the beginning and end positions is further solved, and the absolute value of the difference is used as the optimization objective function. Finally, the genetic algorithm is used for optimization, so that a set of rod lengths with the smallest objective function is the desired value. In particular, according to different design requirements, the position of the center of mass can also be given when the joint attitude angle is determined, so that the leg swing angle is the closest to the given value.
本发明的优点在于。The advantage of the present invention is that.
本发明跳跃腿结构为单自由度六杆机构,通过优化方法,实现包含末端轨迹、躯干姿态、起跳速度等在内的多目标能够同时满足运动约束的要求,进而实现起跳位姿准确、机构鲁棒性好的优点;The jumping leg structure of the present invention is a single-degree-of-freedom six-bar mechanism, and through the optimization method, multiple objectives including terminal trajectory, trunk posture, take-off speed, etc. can be realized, and the requirements of motion constraints can be met at the same time, thereby achieving accurate take-off posture and stable mechanism. Great advantage;
本发明缓冲腿结构突破已有的模拟蝗虫腿生理结构的思路,设计了一种新型缓冲腿,提高了跳跃机器人着陆时的稳定区域,降低了机器人受到的地面冲击力;The buffer leg structure of the invention breaks through the existing idea of simulating the physiological structure of the locust leg, and designs a new type of buffer leg, which improves the stable area of the jumping robot when landing, and reduces the ground impact force received by the robot;
本发明滑翔翅驱动模块通过凸轮压迫扭簧变形收放滑翔翅,结构简单,易于实现;滑翔翅结构的设计提高了机器人跳跃姿态稳定性的同时,还提高了跳跃距离。The gliding fin driving module of the invention deforms and retracts the gliding fin by compressing the torsion spring by the cam, and has simple structure and easy realization;
附图说明Description of drawings
图1本发明中机器人整体结构示意图;1 is a schematic diagram of the overall structure of the robot in the present invention;
图2本发明中机器人躯干结构示意图;2 is a schematic diagram of the structure of the robot torso in the present invention;
图3本发明中机器人缓冲腿、跳跃腿布局示意图;3 is a schematic diagram of the layout of the buffer legs and jumping legs of the robot in the present invention;
图4本发明中机器人缓冲腿、跳跃腿、驱动模块结构示意图;4 is a schematic structural diagram of a robot buffer leg, jumping leg and drive module in the present invention;
图5本发明中机器人滑翔翅结构示意图;5 is a schematic diagram of the structure of a robot gliding wing in the present invention;
图6本发明中机器人驱动模块装配示意图;6 is a schematic diagram of the assembly of the robot drive module in the present invention;
图7本发明中机器人跳跃前姿态示意图;Figure 7 is a schematic diagram of the robot's posture before jumping in the present invention;
图8本发明中机器人跳跃后姿态示意图;8 is a schematic diagram of the posture of the robot after jumping in the present invention;
图中:In the picture:
1-躯干结构2-缓冲腿结构3-滑翔翼结构4-跳跃腿结构5-驱动模块1- Torso structure 2- Cushioning leg structure 3- Glider structure 4- Jumping leg structure 5- Drive module
11-左连接板12-中间连接板13-右连接板11-left connecting plate 12-middle connecting plate 13-right connecting plate
111-第一缓冲腿支架112-第二缓冲腿支架113-第一定位槽131-第二定位槽111-first buffer leg bracket 112-second buffer leg bracket 113-first positioning groove 131-second positioning groove
21-第一缓冲腿分支22-第二缓冲腿分支23-第三缓冲腿分支24-第四缓冲腿分支21 - the first buffer leg branch 22 - the second buffer leg branch 23 - the third buffer leg branch 24 - the fourth buffer leg branch
211-后倾缓冲大腿212-缓冲小腿213-第一扭簧214-第二扭簧221-前倾缓冲大腿211-backward buffering thigh 212-buffering calf 213-first torsion spring 214-second torsion spring 221-forward leaning buffer thigh
31-第一滑翔翅分支32-第二滑翔翅分支33-第三弹簧31-first gliding wing branch 32-second gliding wing branch 33-third spring
311-翅膀支架312-翅膀转轴313-翼膜314-第一骨架315-第二骨架316-第三骨架317-第四骨架318-第五骨架319-第六骨架320-第七骨架311 - Wing bracket 312 - Wing shaft 313 - Wing membrane 314 - First frame 315 - Second frame 316 - Third frame 317 - Fourth frame 318 - Fifth frame 319 - Sixth frame 320 - Seventh frame
41-第一跳跃腿分支42-第二跳跃腿分支43-跳跃腿连杆41-first jumping leg branch 42-second jumping leg branch 43-jumping leg link
411-连杆连接块412-第一连杆413-第二连杆414-第三连杆415-第四连杆416-脚套417-第四扭簧418-长固定柱419-短固定柱411 - connecting rod connecting block 412 - first connecting rod 413 - second connecting rod 414 - third connecting rod 415 - fourth connecting rod 416 - foot cover 417 - fourth torsion spring 418 - long fixing column 419 - short fixing column
51-翅膀驱动模块52-跳跃腿驱动模块51-wing drive module 52-jumping leg drive module
511-第一电机512-第一电机轴513-第一凸轮514-第二凸轮511-first motor 512-first motor shaft 513-first cam 514-second cam
521-第二电机522-第二电机轴523-第三凸轮524-第四凸轮521-second motor 522-second motor shaft 523-third cam 524-fourth cam
具体实施方式Detailed ways
下面结合附图和实施例说明本发明,但本发明并不限于以下实施例。The present invention will be described below with reference to the accompanying drawings and embodiments, but the present invention is not limited to the following embodiments.
实施例1Example 1
参照图1,本发明滑翔功能的仿蝗虫跳跃机器人,包括躯干结构1、缓冲腿结构2、滑翔翅结构3、跳跃腿结构4、驱动模块5。1 , the locust-like jumping robot with gliding function of the present invention includes a torso structure 1 , a buffer leg structure 2 , a gliding wing structure 3 , a jumping leg structure 4 , and a drive module 5 .
参照图2,躯干结构1包括左连接板11、右连接板13、中间连接板12三部分。左连接板11、右连接板13、中间连接板12之间的连接关系为:左连接板11通过左连接板11上的第一定位槽113与中间连接板12的定位配合实现固连,右连接板13通过右连接板13上的第二定位槽131与中间连接板12的定位配合实现固连,左连接板11和右连接板13相对于中间连接板12的轴线对称。Referring to FIG. 2 , the torso structure 1 includes three parts: a left connecting
参照图2、图3、图4,缓冲腿结构2包括第一缓冲腿分支21、第二缓冲腿分支22、第三缓冲腿分支23、第四缓冲腿分支24四部分。第一缓冲腿分支21包括后倾缓冲大腿211、缓冲小腿212、第一扭簧213、第二扭簧214四部分。各个构件的连接关系为:后倾缓冲大腿211与缓冲小腿212轴接,二者可实现相对转动;第二扭簧214一端与后倾缓冲大腿211固连,一端与缓冲小腿212固连,其初始变形量可根据需要调节,用于限制缓冲小腿212与相对于后倾缓冲大腿211的相对转动。第三缓冲腿分支23与第一缓冲腿分支21的结构形式完全相同。第一缓冲腿分支21与左连接板11通过第一缓冲腿分支21的后倾缓冲大腿211与左连接板11上的第一缓冲腿支架111轴接,二者可实现相对转动。第一扭簧213一端与左连接板11相连,一端与后倾缓冲大腿211相连,其初始变形量可根据需要调节,用于限制后倾缓冲大腿211与相对于左连接板11的相对转动。第一缓冲腿分支21、第二缓冲腿分支22、第三缓冲腿分支23和第四缓冲腿分支24与躯干结构1的连接方式完全相同。第二缓冲腿分支22包括前倾缓冲大腿221、缓冲小腿212、第一扭簧213、第二扭簧214四部分。各个构件的连接关系为:前倾缓冲大腿221与缓冲小腿212轴接,二者可实现相对转动;第二扭簧214一端与前倾缓冲大腿221固连,一端与缓冲小腿212固连,其初始变形量可根据需要调节,用于限制缓冲小腿212与相对于前倾缓冲大腿221的相对转动。第四缓冲腿分支24与第二缓冲腿分支22的结构形式完全相同。2 , 3 and 4 , the buffer leg structure 2 includes four parts: a first
参照图4、图5、图8,滑翔翅结构3包括第一滑翔翅分支31、第二滑翔翅分支32、第三弹簧33三部分。第一滑翔翅分支31包括翅膀支架311、翅膀转轴312、翅膀骨架结构、翼膜313四部分。其中,翅膀骨架结构包括第一骨架314、第二骨架315、第三骨架316、第四骨架317、第五骨架318、第六骨架319、第七骨架320。各个构件的连接关系为:翅膀支架311与翅膀转轴312轴接,二者可以实现相对转动;第一骨架314、第二骨架315、第三骨架316、第四骨架317、第五骨架318、第六骨架319、第七骨架320按序与翅膀支架311轴接,可实现相对翅膀支架311的转动;翅膀转轴312与第一骨架固连;翼膜313按序连接在七个骨架上,保证各个骨架运动的一致性。第一滑翔翅分支31通过第一滑翔翅分支31的翅膀支架311实现与左连接板11的固连。第二滑翔翅分支32与第一滑翔翅分支31结构及安装方式完全相同,相对于中间连接板12轴线对称。第三弹簧33一端与第一滑翔翅分支31上的翅膀转轴312固连,另一端与第二滑翔翅分支32在相同位置固连,保证第一滑翔翅分支31翅膀骨架结构与第二滑翔翅分支32翅膀骨架结构打开和闭合的同步性,4 , 5 and 8 , the gliding fin structure 3 includes three parts: a first
参照图3、图4、图7,跳跃腿结构4包括第一跳跃腿分支41、第二跳跃腿分支42、跳跃腿连杆43三部分。第一跳跃腿分支41包括连杆连接块411、第一连杆412、第二连杆413、第三连杆414、第四连杆415、脚套416、第四扭簧417、长固定柱418、短固定柱419九部分。各个构件的连接关系为:连杆连接块411与长固定柱418轴接,第一连杆412与连杆连接块411轴接,第一连杆412与第二连杆413轴接,第二连杆413与第三连杆414轴接,第三连杆414与连杆连接块411轴接,第四连杆415端与第二连杆413轴接,第四连杆415与短固定柱419轴接,第二连杆413嵌套于脚套416内部,增加第一跳跃腿分支41的摩擦力,第四扭簧417一端与第二连杆413相连,另一端与第三连杆414相连,其初始变形量可根据需要调节,用于第一跳跃腿跳跃前储能和跳跃时瞬间释能。长固定柱418固定于左连接板11上方,短固定柱419固定于左连接板11下方。第二跳跃腿分支42与第一跳跃腿分支41结构及安装方式完全相同。跳跃腿连杆43一端与第一跳跃腿分支41连杆连接块411固连,另一端与第二跳跃腿分支42在相同位置固连,保证第一跳跃腿分支41与第二跳跃腿分支42实现运动的同步性。3 , 4 and 7 , the jumping leg structure 4 includes three parts: a first jumping leg branch 41 , a second
参照图3、图4、图7,驱动模块5包括翅膀驱动模块51、跳跃腿驱动模块52两部分。翅膀驱动模块51包括第一电机511、第一电机轴512、第一凸轮513、第二凸轮514四部分。各个构件的连接关系为:第一电机511与第一电机轴512轴接,电机带动电机轴转动,第一凸轮513和第二凸轮514与第一电机轴512平行固连。第一凸轮513与第二凸轮514具有完全相同的轮廓曲线和结构形式。第一电机轴512一端轴接在左连接板11上,另一端轴接在右连接板13上。第一电机511固连在中间连接板12上。跳跃腿驱动模块52包括第二电机521、第二电机轴522、第三凸轮523、第四凸轮524四部分。各个构件的连接关系为:第二电机521与第二电机轴522轴接,电机带动电机轴转动,第三凸轮523和第四凸轮524与第二电机轴522平行固连。第一凸轮513与第二凸轮514具有完全相同的轮廓曲线和结构形式。第二电机轴522一端轴接在左连接板11上,另一端轴接在右连接板13上。第二电机521固连在中间连接板12上。Referring to FIG. 3 , FIG. 4 , and FIG. 7 , the driving module 5 includes two parts: a
本发明的工作原理如下:The working principle of the present invention is as follows:
参照图7、图8,跳跃机器人起跳前,第一凸轮513、第二凸轮514处于远休止端,压迫第三弹簧33变形储能;第三凸轮523、第四凸轮524处于即将越过远休止端的临界状态,第二连杆513和第三连杆514压迫第四扭簧417变形储能;起跳时,第三凸轮523、第四凸轮524在第二电机521带动下越过远休止端时,第四扭簧417瞬间释放能量,第二连杆413碰撞地面,跳跃机器人起跳;在跳跃机器人从起跳至跳跃到最高点期间,第一电机511带动第一凸轮513、第二凸轮514越过远休止端,第三弹簧33瞬间释放能量,通过翅膀转轴312带动第一骨架314绕翅膀支架311转动,其余6个骨架在翼膜313约束下同时绕翅膀支架311转动,翅膀展开;在跳跃机器人跳跃到最高点至落地前,第二电机521反转,跳跃腿结构4恢复到初始状态,第四扭簧417再次储能;跳跃机器人落地后,第一电机511带动第一凸轮513、第二凸轮514至远休止端,再次第三弹簧33变形储能。Referring to FIGS. 7 and 8 , before the jumping robot takes off, the first cam 513 and the second cam 514 are at the far rest end, compressing the third spring 33 to deform and store energy; In the critical state, the second link 513 and the third link 514 press the fourth torsion spring 417 to deform and store energy; when taking off, when the third cam 523 and the fourth cam 524 cross the far resting end driven by the second motor 521, the first The four torsion springs 417 release energy instantly, the second link 413 hits the ground, and the jumping robot takes off; during the period from the jumping off to jumping to the highest point, the first motor 511 drives the first cam 513 and the second cam 514 to cross the far resting end , the third spring 33 releases energy instantaneously, and drives the first frame 314 to rotate around the wing bracket 311 through the wing shaft 312, and the remaining 6 frames rotate around the wing bracket 311 at the same time under the constraint of the wing membrane 313, and the wings are unfolded; when the jumping robot jumps to the highest Before landing, the second motor 521 reverses, the jumping leg structure 4 returns to the initial state, and the fourth torsion spring 417 stores energy again; after the jumping robot lands, the first motor 511 drives the first cam 513 and the second cam 514 to Far from the rest end, the third spring 33 is deformed again to store energy.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810135603.0A CN108394484B (en) | 2018-02-09 | 2018-02-09 | Locust-simulated jumping robot with gliding function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810135603.0A CN108394484B (en) | 2018-02-09 | 2018-02-09 | Locust-simulated jumping robot with gliding function |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108394484A CN108394484A (en) | 2018-08-14 |
CN108394484B true CN108394484B (en) | 2020-07-17 |
Family
ID=63096058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810135603.0A Active CN108394484B (en) | 2018-02-09 | 2018-02-09 | Locust-simulated jumping robot with gliding function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108394484B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109292023A (en) * | 2018-11-08 | 2019-02-01 | 西北工业大学 | A bionic robot that bounces repeatedly |
CN109850026B (en) * | 2019-02-21 | 2020-11-06 | 北京航空航天大学 | A wall-climbing-gliding robot with retractable wings |
CN113386963B (en) * | 2021-07-19 | 2022-05-13 | 北京理工大学 | Insect-imitating flying robot |
CN113443044A (en) * | 2021-07-30 | 2021-09-28 | 上海大学 | Buffer device with leg structure |
CN113602373B (en) * | 2021-08-01 | 2022-09-09 | 北京工业大学 | A jumping robot and its test platform in complex terrain environment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101734299A (en) * | 2009-12-18 | 2010-06-16 | 东南大学 | Gliding robot capable of autonomously flying in salutatory mode |
CN104015828A (en) * | 2014-06-17 | 2014-09-03 | 东南大学 | Bionic wing-flapping and bouncing multi-mode movement robot |
CN104548608A (en) * | 2015-01-21 | 2015-04-29 | 北京工业大学 | Bionic kangaroo robot |
CN105438306A (en) * | 2015-11-25 | 2016-03-30 | 北京航空航天大学 | Bionic locust jumping robot with buffer performance |
WO2016193666A2 (en) * | 2015-06-01 | 2016-12-08 | Imperial Innovations Limited | Robotic vehicle |
-
2018
- 2018-02-09 CN CN201810135603.0A patent/CN108394484B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101734299A (en) * | 2009-12-18 | 2010-06-16 | 东南大学 | Gliding robot capable of autonomously flying in salutatory mode |
CN104015828A (en) * | 2014-06-17 | 2014-09-03 | 东南大学 | Bionic wing-flapping and bouncing multi-mode movement robot |
CN104548608A (en) * | 2015-01-21 | 2015-04-29 | 北京工业大学 | Bionic kangaroo robot |
WO2016193666A2 (en) * | 2015-06-01 | 2016-12-08 | Imperial Innovations Limited | Robotic vehicle |
CN105438306A (en) * | 2015-11-25 | 2016-03-30 | 北京航空航天大学 | Bionic locust jumping robot with buffer performance |
Also Published As
Publication number | Publication date |
---|---|
CN108394484A (en) | 2018-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108394484B (en) | Locust-simulated jumping robot with gliding function | |
CN105438306A (en) | Bionic locust jumping robot with buffer performance | |
CN107914269B (en) | Software robot based on honeycomb pneumatic network | |
CN102009705B (en) | Self-reset wheel-leg jumping composite mobile robot | |
CN103112513B (en) | Locust-simulating robot with posture adjustment function | |
CN110076754B (en) | Mobile parallel mechanism with multiple motion modes and control method thereof | |
CN107813305B (en) | Snakelike bionic robot based on flexible telescopic joint | |
CN104015828A (en) | Bionic wing-flapping and bouncing multi-mode movement robot | |
CN102381380A (en) | Novel four-footed walker having parallel leg structure | |
CN109533076B (en) | Imitative bullet tail worm jumping robot with ability of crawling | |
CN102579137B (en) | A parallel surgical manipulator capable of three-dimensional translation and one-dimensional rotation | |
Cafolla et al. | Design and simulation of a cable-driven vertebra-based humanoid torso | |
CN109292022A (en) | A Bionic Mechanism That Jumps Continuously | |
Chen et al. | A soft, lightweight flipping robot with versatile motion capabilities for wall-climbing applications | |
CN110909438B (en) | Dynamic model-based control method for light-load joint type parallel robot | |
CN109033600B (en) | Finite element simulation analysis method for unilateral human-shaped rod winding process | |
CN104627263B (en) | Bionic kangaroo-hopping robot | |
CN109533077B (en) | Robot simulating jumping and walking of bombyx | |
CN220114718U (en) | Multi-joint bionic mechanical mantis based on pulley and connecting rod mechanism | |
CN218229399U (en) | Bird leg-imitated auxiliary unmanned aerial vehicle all-terrain landing device | |
Wang et al. | A new bionic structure of inspection robot for high voltage transmission line | |
CN116985928A (en) | Frog robot and multi-pose motion control method implemented by same | |
CN112091940B (en) | An Underactuated Super-Redundant Continuum Robot Driven by a Flexible Board | |
CN112109818B (en) | An Insect-like Bounce Robot Based on Approximate Linear Mechanism | |
CN114955021A (en) | Octopus tentacle-imitating space catching mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20180814 Assignee: Chongqing Jieyike Intelligent Technology Co.,Ltd. Assignor: Beijing University of Technology Contract record no.: X2025980005672 Denomination of invention: A locust like jumping robot with gliding function Granted publication date: 20200717 License type: Open License Record date: 20250318 |
|
EE01 | Entry into force of recordation of patent licensing contract |