[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108318871B - Cold air calibration correction method for satellite-borne microwave radiometer - Google Patents

Cold air calibration correction method for satellite-borne microwave radiometer Download PDF

Info

Publication number
CN108318871B
CN108318871B CN201810296883.3A CN201810296883A CN108318871B CN 108318871 B CN108318871 B CN 108318871B CN 201810296883 A CN201810296883 A CN 201810296883A CN 108318871 B CN108318871 B CN 108318871B
Authority
CN
China
Prior art keywords
count value
brightness temperature
cold
cold air
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810296883.3A
Other languages
Chinese (zh)
Other versions
CN108318871A (en
Inventor
金旭
王丛丛
邢妍
胡泰洋
李延明
李�浩
吕容川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Institute of Space Radio Technology
Original Assignee
Xian Institute of Space Radio Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Institute of Space Radio Technology filed Critical Xian Institute of Space Radio Technology
Priority to CN201810296883.3A priority Critical patent/CN108318871B/en
Publication of CN108318871A publication Critical patent/CN108318871A/en
Application granted granted Critical
Publication of CN108318871B publication Critical patent/CN108318871B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种定标修正方法,尤其是一种星载微波辐射计冷空定标修正方法,通过利用海洋区域冷空观测数据拟合出仅随接收机温度变化的冷空观测计数值,对实际受到地球旁瓣辐射贡献影响的每个扫描周期冷空观测计数值进行定标,得到冷空定标亮温修正值,然后利用冷空定标亮温修正值、原始冷空观测计数值、原始热源观测计数值和热源亮温对场景观测计数值进行定标,修正了由冷空亮温误差带来的定标误差,提高了定标精度。

Figure 201810296883

A calibration and correction method, especially a cold-space calibration and correction method for a spaceborne microwave radiometer, by using the cold-air observation data in the ocean area to fit the cold-air observation count value that only changes with the temperature of the receiver. The cold space observation count value of each scanning period affected by the contribution of the earth's side lobe radiation is calibrated to obtain the cold space calibration brightness temperature correction value, and then use the cold space calibration brightness temperature correction value, the original cold space observation count value, and the original heat source. The observation count value and the heat source brightness temperature are used to calibrate the scene observation count value, which corrects the calibration error caused by the cold air brightness temperature error and improves the calibration accuracy.

Figure 201810296883

Description

一种星载微波辐射计冷空定标修正方法A cold space calibration correction method for spaceborne microwave radiometer

技术领域technical field

本发明涉及一种星载微波辐射计冷空定标修正方法,属于微波遥感领域。The invention relates to a cold space calibration and correction method for a space-borne microwave radiometer, belonging to the field of microwave remote sensing.

背景技术Background technique

目前在微波辐射计地面数据处理系统定标模块中冷空亮温通常采用标准的2.73K辐射亮温。但由于冷空观测通过指向宇宙冷空背景的天线实现,具有较高辐射亮温的地球辐射从冷空观测天线方向图旁瓣方向进入冷空观测视场,导致辐射计实际接收亮温高于2.73K的冷空标称辐射亮温。若直接采用2.73K的冷空辐射亮温进行定标,将直接带来目标亮温的定标误差,进而导致海洋环境参数的反演误差,降低了数据处理结果的精度。在修正每个扫描周期内冷空定标亮温时,首先需要将部分天线方向图副瓣投影至地球,然后将投影至地球各点的方向图数据与对应的地球辐射亮温加权求和,从而计算得到地球区域辐射亮温贡献。但是这种方法在每个扫描周期均要完成一次冷空观测天线副瓣向对地面的投影,运算量较大,难以满足高效数据处理的需要。At present, in the calibration module of the microwave radiometer ground data processing system, the cold air brightness temperature usually adopts the standard 2.73K radiation brightness temperature. However, since the cold space observation is realized by the antenna pointing to the cosmic cold space background, the earth radiation with higher radiation brightness temperature enters the cold space observation field of view from the direction of the side lobe of the cold space observation antenna pattern, resulting in the actual received brightness temperature of the radiometer is higher than The cold air nominal radiant brightness temperature of 2.73K. If the cold air radiation brightness temperature of 2.73K is directly used for calibration, it will directly bring about the calibration error of the target brightness temperature, which will lead to the inversion error of the marine environmental parameters and reduce the accuracy of the data processing results. When correcting the brightness temperature of the cold space calibration in each scanning period, it is necessary to first project some side lobes of the antenna pattern to the earth, and then weighted summation of the pattern data projected to each point on the earth and the corresponding earth radiation brightness temperature, Thus, the radiant brightness temperature contribution of the Earth region can be calculated. However, this method needs to complete the projection of the sidelobe of the cold-space observation antenna to the ground in each scanning period, which requires a large amount of computation and is difficult to meet the needs of efficient data processing.

发明内容SUMMARY OF THE INVENTION

本发明解决的技术问题是:克服现有技术的不足,提供了一种星载微波辐射计冷空定标修正方法,通过拟合出仅随接收机温度变化的冷空观测计数值,对实际受到地球旁瓣辐射贡献影响的每个扫描周期冷空观测计数值进行定标,得到冷空定标亮温修正值,然后利用冷空亮温修正值和原始热源观测计数值对场景观测计数值进行定标,修正了由冷空亮温误差带来的定标误差,提高了定标精度。The technical problem solved by the invention is: overcoming the deficiencies of the prior art, and providing a cold space calibration correction method for a spaceborne microwave radiometer. The cold space observation count value affected by the contribution of the earth's sidelobe radiation is calibrated to obtain the cold space calibration brightness temperature correction value, and then the scene observation count value is calculated by using the cold space brightness temperature correction value and the original heat source observation count value. The calibration is carried out, the calibration error caused by the cold air brightness temperature error is corrected, and the calibration accuracy is improved.

本发明方法的技术解决方案步骤如下:The technical solution steps of the inventive method are as follows:

S1,使用微波辐射计对目标进行观测,得到原始冷空观测计数值、原始热源观测计数值、热源亮温和原始场景观测计数值,由所述原始冷空观测计数值分别计算出星下点位于海洋区域和陆地区域的冷空观测平均计数值;再结合所述原始热源观测计数值和原始场景观测计数值分别计算出海洋区域和陆地区域的场景亮温平均值,由所述海洋区域和陆地区域的场景亮温平均值、星下点位于海洋区域和陆地区域的冷空观测平均计数值以及微波辐射计系统平均增益计算出地球比例因子,所述地球比例因子为当微波辐射计进行冷空定标观测时,地球区域在整个冷空天线方向图中所占比例系数;S1, use the microwave radiometer to observe the target, obtain the original cold air observation count value, the original heat source observation count value, the heat source brightness temperature and the original scene observation count value, and calculate the sub-satellite point at The average count value of cold air observations in the ocean area and the land area; then combined with the original heat source observation count value and the original scene observation count value, the average brightness temperature of the scene in the ocean area and the land area are calculated respectively. The average brightness temperature of the scene in the area, the average count value of the cold air observations at the sub-satellite point in the ocean area and the land area, and the average gain of the microwave radiometer system calculate the earth scale factor. The proportional coefficient of the earth area in the whole cold space antenna pattern when the observation is calibrated;

S2,对星下点位于海洋区域的原始冷空观测计数值随星下点纬度变化关系进行拟合,再结合微波辐射计每个扫描周期星下点纬度计算出每个扫描周期内冷空观测计数值;S2, fit the relationship between the original cold sky observation count value of the sub-satellite point located in the ocean area and the latitude of the sub-satellite point, and then combine the latitude of the sub-satellite point in each scanning period of the microwave radiometer to calculate the cold sky observation in each scanning period. count value;

S3,根据所述地球比例因子和全球海洋区域亮温模拟值的平均值计算出海洋区域冷空亮温修正值;S3, according to the earth scale factor and the average value of the global ocean area brightness temperature simulation value, calculate the ocean area cold air brightness temperature correction value;

S4,根据所述每个扫描周期内冷空观测计数值、海洋区域冷空亮温修正值、原始热源观测计数值和热源亮温对原始冷空观测计数值进行定标,得到冷空定标亮温修正值;S4, the original cold air observation count value is calibrated according to the cold air observation count value, the cold air brightness temperature correction value of the ocean region, the original heat source observation count value and the heat source brightness temperature in each scanning period, to obtain the cold air calibration Brightness temperature correction value;

S5,根据所述冷空定标亮温修正值、原始冷空观测计数值、原始热源观测计数值和热源亮温对原始场景观测计数值进行定标,得到场景亮温修正值。S5, the original scene observation count value is calibrated according to the cold air calibration brightness temperature correction value, the original cold air observation count value, the original heat source observation count value and the heat source brightness temperature to obtain a scene brightness temperature correction value.

S1中所述地球比例因子fCsE的计算方法为

Figure BDA0001618831830000021
The calculation method of the earth scale factor f CsE described in S1 is:
Figure BDA0001618831830000021

其中,

Figure BDA0001618831830000022
为微波辐射计系统平均增益,且
Figure BDA0001618831830000023
Figure BDA0001618831830000024
为热源观测平均计数值,
Figure BDA0001618831830000025
为冷空观测平均计数值,
Figure BDA0001618831830000026
为热源平均亮温,TC0为冷空标称辐射亮温,所述冷空标称辐射亮温TC0为2.73K;
Figure BDA0001618831830000027
为星下点位于陆地区域时的冷空观测平均计数值,
Figure BDA0001618831830000028
为陆地区域场景亮温平均值,
Figure BDA0001618831830000029
为星下点位于海洋区域时冷空观测平均计数值,
Figure BDA00016188318300000210
为海洋区域场景亮温平均值。in,
Figure BDA0001618831830000022
is the average gain of the microwave radiometer system, and
Figure BDA0001618831830000023
Figure BDA0001618831830000024
is the observed mean count value for the heat source,
Figure BDA0001618831830000025
is the average count value of cold air observations,
Figure BDA0001618831830000026
is the average brightness temperature of the heat source, T C0 is the nominal radiant brightness temperature of the cold air, and the nominal radiant brightness temperature of the cold air, T C0 , is 2.73K;
Figure BDA0001618831830000027
is the average count value of cold sky observations when the sub-satellite point is located in the land area,
Figure BDA0001618831830000028
is the average brightness temperature of the scene in the land area,
Figure BDA0001618831830000029
is the average count value of cold sky observations when the subsatellite point is located in the ocean area,
Figure BDA00016188318300000210
It is the average brightness temperature of the marine area scene.

进一步地,所述场景观测计数值与场景亮温的关系式为:Further, the relationship between the scene observation count value and the scene brightness temperature is:

Figure BDA0001618831830000031
Figure BDA0001618831830000031

其中,CS为场景观测计数值,

Figure BDA0001618831830000032
Figure BDA0001618831830000033
CH为原始热源观测计数值,CC为原始冷空观测计数值,TH为热源亮温,u为地面试验室测得的通道非线性系数。Among them, CS is the scene observation count value,
Figure BDA0001618831830000032
Figure BDA0001618831830000033
CH is the observed count value of the original heat source, C C is the original cold air observation count value, TH is the brightness temperature of the heat source, and u is the channel nonlinear coefficient measured by the ground laboratory.

进一步地,所述S3中海洋区域冷空亮温修正值TC0cor的计算方法为

Figure BDA0001618831830000034
其中,
Figure BDA0001618831830000035
为全球海洋区域亮温模拟值的平均值。Further, the calculation method of the cold air brightness temperature correction value T C0cor in the ocean area in the S3 is:
Figure BDA0001618831830000034
in,
Figure BDA0001618831830000035
is the average value of the simulated brightness temperature in the global ocean area.

进一步地,所述S4中冷空定标亮温修正值TCcor的计算方法为

Figure BDA0001618831830000036
其中,
Figure BDA0001618831830000037
Figure BDA0001618831830000038
CC,Sat为每个扫描周期内冷空观测计数值。Further, the calculation method of the cold air calibration brightness temperature correction value T Ccor in the S4 is:
Figure BDA0001618831830000036
in,
Figure BDA0001618831830000037
Figure BDA0001618831830000038
C C, Sat is the count value of cold air observations in each scan period.

进一步地,所述S5中场景亮温修正值的计算方法为其 中,

Figure BDA00016188318300000312
Further, the calculation method of the scene brightness temperature correction value in the S5 is wherein,
Figure BDA00016188318300000312

本发明方法与现有技术相比的优点在于:The advantages of the method of the present invention compared with the prior art are:

(1)传统冷空定标亮温修正采用冷空修正比例因子和地球辐射亮温简单相乘计算得到冷空修正亮温,但无法准确修正冷空天线方向图副瓣同时包含海洋和陆地情况下的冷空定标亮温误差。本发明能够克服传统修正方法不足,准确地修正冷空天线方向图副瓣同时包含海洋和陆地情况下冷空亮温误差,进一步提高了整体数据处理精度。(1) The traditional cold-space calibration brightness temperature correction uses the cold-space correction scale factor and the earth's radiation brightness temperature to simply multiply the cold-space correction brightness temperature, but it cannot accurately correct the cold-space antenna pattern. Sidelobes include both ocean and land conditions The cold air calibration brightness temperature error below. The invention can overcome the deficiency of the traditional correction method, accurately correct the cold air brightness temperature error in the case where the side lobe of the cold air antenna pattern contains both the ocean and the land, and further improves the overall data processing accuracy.

(2)传统冷空定标亮温修正法中为获得精确的地球辐射亮温,需要将冷空天线方向图部分旁瓣投影至地球并对地球各点辐射亮温积分,数据处理效率低。本发明不需要在每个扫描周期中通过积分的方法计算地球辐射对冷空定标温度的贡献,只需要基于拟合数据对实际冷空观测计数值进行定标实现冷空定标亮温的精确修正,在保证数据处理结果精度的同时避免了大量的投影计算,提高了数据处理的效率。(2) In the traditional cold-space calibration brightness temperature correction method, in order to obtain the accurate earth radiation brightness temperature, it is necessary to project the side lobes of the cold-space antenna pattern to the earth and integrate the radiation brightness temperature of each point on the earth, and the data processing efficiency is low. The invention does not need to calculate the contribution of the earth radiation to the calibration temperature of the cold space by the method of integration in each scanning period, and only needs to calibrate the actual cold space observation count value based on the fitting data to realize the calibration of the brightness temperature of the cold space. Accurate correction avoids a large number of projection calculations while ensuring the accuracy of data processing results, improving the efficiency of data processing.

(3)本发明中的冷空定标亮温修正方法原理简单,修正计算过程实现简便可行,便于地面数据处理系统中实现,可进一步提高地面系统数据处理结果精度。(3) The cold air calibration brightness temperature correction method in the present invention is simple in principle, simple and feasible to implement in the correction calculation process, convenient for implementation in the ground data processing system, and can further improve the accuracy of the ground system data processing results.

附图说明Description of drawings

图1为微波辐射计定标原理框图;Figure 1 is a block diagram of the calibration principle of the microwave radiometer;

图2为本发明方法实施流程框图。FIG. 2 is a flow chart of the implementation of the method of the present invention.

具体实施方式Detailed ways

星载微波辐射计通过被动接收海面微波辐射信号对海洋环境参数如海面温度、风速、大气液态水含量和大气水气含量等进行遥感测量。星载微波辐射计通过天线周期性旋转实现海洋目标的连续扫描观测,在每个扫描周期中,微波辐射计依次对场景、热源和冷空进行观测。热源利用受到精密温控处于恒定温度的微波吸收体实现,冷空由波束指向宇宙冷空背景的天线实现。在每个扫描周期中通过观测热源和冷空并结合地面测试参数可确定系统定标参数,进而将场景观测计数值转换为亮温,如图1所示。The spaceborne microwave radiometer performs remote sensing measurement of marine environmental parameters such as sea surface temperature, wind speed, atmospheric liquid water content and atmospheric water vapor content by passively receiving sea surface microwave radiation signals. The spaceborne microwave radiometer realizes continuous scanning and observation of ocean targets through periodic rotation of the antenna. In each scanning period, the microwave radiometer observes the scene, heat source and cold air in turn. The heat source is realized by a microwave absorber that is precisely temperature-controlled at a constant temperature, and the cold space is realized by an antenna whose beam points to the background of the cold space of the universe. In each scan cycle, the system calibration parameters can be determined by observing the heat source and cold air combined with the ground test parameters, and then the scene observation count value is converted into brightness temperature, as shown in Figure 1.

在星载微波辐射计地面数据处理系统中需要利用辐射计在轨原始热源观测计数值、原始冷空观测计数值、热源亮温、冷源辐射亮温和非线性系数对同一扫描周期中的场景观测计数值进行定标,得到场景观测亮温:In the spaceborne microwave radiometer ground data processing system, it is necessary to use the radiometer on-orbit original heat source observation count value, original cold space observation count value, heat source brightness temperature, cold source radiation brightness temperature and nonlinear coefficient to observe the scene in the same scanning period. The count value is calibrated to obtain the scene observation brightness temperature:

Figure BDA0001618831830000041
Figure BDA0001618831830000041

Figure BDA0001618831830000042
Figure BDA0001618831830000042

Figure BDA0001618831830000043
Figure BDA0001618831830000043

Figure BDA0001618831830000044
Figure BDA0001618831830000044

Figure BDA0001618831830000051
Figure BDA0001618831830000051

CH和CC分别为原始热源观测计数值和原始冷空观测计数值,TH0和TC0分别为热源和冷源辐射亮温,CS为场景观测计数值,u为地面实验室测得的非线性系数。 CH and C C are the original heat source observation count value and the original cold air observation count value, respectively, T H0 and T C0 are the heat source and cold source radiation brightness temperature, C S is the scene observation count value, and u is measured in the ground laboratory. The nonlinear coefficient of .

目前在微波辐射计地面数据处理系统定标模块中冷空亮温通常采用标准的2.73K辐射亮温。但由于冷空通过指向宇宙冷空背景的天线实现,具有较高辐射亮温的地球辐射从冷空观测天线方向图旁瓣方向进入冷空观测视场,导致辐射计实际接收亮温高于2.73K的冷空标称辐射亮温,即:At present, in the calibration module of the microwave radiometer ground data processing system, the cold air brightness temperature usually adopts the standard 2.73K radiation brightness temperature. However, because the cold space is realized by the antenna pointing to the cosmic cold space background, the earth radiation with higher radiation brightness temperature enters the cold space observation field from the side lobe direction of the cold space observation antenna pattern, resulting in the actual received brightness temperature of the radiometer higher than 2.73 The cold air nominal radiant brightness temperature of K is:

Figure BDA0001618831830000052
Figure BDA0001618831830000052

Figure BDA0001618831830000053
Figure BDA0001618831830000053

其中

Figure BDA0001618831830000054
表示地球辐射亮温分布,
Figure BDA0001618831830000055
表示冷空观测天线方向图,SL表示天线方向图副瓣中地球所占立体角区域,ML表示除地球所占立体角区域外天线方向图其它指向冷空的立体角区域,TC0为2.73K。in
Figure BDA0001618831830000054
represents the distribution of the Earth's radiant brightness temperature,
Figure BDA0001618831830000055
Indicates the antenna pattern for cold space observation, SL represents the solid angle area occupied by the earth in the side lobe of the antenna pattern, ML represents the solid angle area of the antenna pattern pointing to the cold air except the solid angle area occupied by the earth, and T C0 is 2.73K .

由于地球辐射亮温通常较高,导致T′C0大于TC0。若直接采用2.73K的冷空辐射亮温进行定标,将直接带来目标亮温的定标误差,进而导致海洋环境参数的反演误差,降低了数据处理结果的精度。Because the Earth's radiant brightness temperature is usually high, T' C0 is greater than T C0 . If the cold air radiation brightness temperature of 2.73K is directly used for calibration, it will directly bring about the calibration error of the target brightness temperature, which will lead to the inversion error of the marine environmental parameters and reduce the accuracy of the data processing results.

本发明方法步骤如图2所示,具体如下:The method steps of the present invention are shown in Figure 2, and the details are as follows:

(1)计算地球比例因子(1) Calculate the earth scale factor

地球比例因子表示当微波辐射计进行冷空定标观测时,地球区域在整个冷空观测天线方向图中所占比例系数。可利用在轨实测数据计算该比例因子。The earth scale factor indicates the scale factor of the earth area in the whole cold space observation antenna pattern when the microwave radiometer performs the cold space calibration observation. The scale factor can be calculated using on-orbit measured data.

a)利用冷空标称亮温TC0(2.73K)﹑热源观测计数值CH、冷空观测计数值CC﹑热源亮温TH和通道非线性系数u对场景观测计数值CS进行定标,得到场景亮温估值T′Ba) Use the cold air nominal brightness temperature T C0 (2.73K), the heat source observation count value CH , the cold air observation count value C C , the heat source brightness temperature TH and the channel nonlinear coefficient u to perform the scene observation count value C S . Calibration is performed to obtain the scene brightness temperature estimate T′ B .

Figure BDA0001618831830000056
Figure BDA0001618831830000056

Figure BDA0001618831830000061
Figure BDA0001618831830000061

Figure BDA0001618831830000062
Figure BDA0001618831830000062

Figure BDA0001618831830000063
Figure BDA0001618831830000063

Figure BDA0001618831830000064
Figure BDA0001618831830000064

b)利用冷空标称辐射亮温TC0、热源观测平均计数值

Figure BDA0001618831830000065
冷源观测平均计数值
Figure BDA0001618831830000066
和热源平均亮温
Figure BDA0001618831830000067
计算得到辐射计系统平均增益
Figure BDA0001618831830000068
b) Using the cold air nominal radiant brightness temperature T C0 and the observed average count value of the heat source
Figure BDA0001618831830000065
Average counts of cold source observations
Figure BDA0001618831830000066
and the average brightness temperature of the heat source
Figure BDA0001618831830000067
Calculate the average gain of the radiometer system
Figure BDA0001618831830000068

Figure BDA0001618831830000069
Figure BDA0001618831830000069

c)设星下点位于海洋区域时冷空观测平均计数值为

Figure BDA00016188318300000610
对应的海洋观测亮温平均值为
Figure BDA00016188318300000611
星下点位于陆地区域时的冷空观测平均计数值为
Figure BDA00016188318300000612
对应陆地观测亮温平均值为
Figure BDA00016188318300000613
c) When the sub-satellite point is located in the ocean area, the average count of cold sky observations is set to be
Figure BDA00016188318300000610
The corresponding average value of ocean observation brightness temperature is
Figure BDA00016188318300000611
When the sub-satellite point is located in the land area, the average count of cold sky observations is
Figure BDA00016188318300000612
The corresponding average brightness temperature of land observations is
Figure BDA00016188318300000613

d)根据

Figure BDA00016188318300000614
Figure BDA00016188318300000615
可以计算出地球比例因子fCsE。d) according to
Figure BDA00016188318300000614
and
Figure BDA00016188318300000615
The earth scale factor f CsE can be calculated.

Figure BDA00016188318300000616
Figure BDA00016188318300000616

(2)冷空观测计数值拟合(2) Fitting of cold air observation count values

在热源温度较为平稳的情况下,根据热源观测计数值随星下点纬度变化特性可以推出微波辐射计通道增益(温度)随星下点纬度变化关系。将每轨所有星下点位于海洋区域的冷空观测计数值随星下点纬度变化关系进行拟合,拟合出冷源观测计数值随星下点纬度θ变化关系:When the temperature of the heat source is relatively stable, the relationship between the channel gain (temperature) of the microwave radiometer and the latitude of the sub-satellite point can be deduced according to the variation of the observed count value of the heat source with the latitude of the sub-satellite point. Fit the cold sky observation count value of all sub-satellite points located in the ocean area in each orbit with the latitude variation relationship of the sub-satellite point, and fit the variation relationship of the cold source observation count value with the sub-satellite point latitude θ:

CC=F(θ) (4-8)C C = F(θ) (4-8)

(3)冷空观测计数值推算(3) Calculation of cold air observation count value

当微波辐射计在任意一个扫描周期中进行冷空观测时,设相应星下点纬度为θSat,则根据拟合出的冷空观测计数值与星下点纬度θ变化关系式(4-8),可以推算出每个扫描周期冷空观测计数值为:When the microwave radiometer conducts cold sky observations in any scanning period, set the latitude of the corresponding sub-satellite point to be θ Sat , then according to the relationship between the fitted cold sky observation count value and the sub-satellite point latitude θ (4-8 ), it can be deduced that the cold air observation count value of each scanning period is:

CC,Sat=F(θSar) (4-9)C C,Sat =F(θ Sar ) (4-9)

(4)海洋区域冷空亮温修正(4) Brightness temperature correction of cold air in ocean areas

根据式(4-7)中计算出的地球比例因子fCsE可计算出星下点位于海洋区域时的冷空修正亮温:According to the earth scale factor f CsE calculated in Equation (4-7), the corrected brightness temperature of cold air when the sub-satellite point is located in the ocean area can be calculated:

Figure BDA0001618831830000071
Figure BDA0001618831830000071

Figure BDA0001618831830000072
为基于全球海洋区域模式亮温数据计算出的平均值。所述全球海洋区域模式亮温(brightness temperature computed from RTM)为将全球海洋环境参数如海面温度、海面风速、大气液态水含量、大气水蒸气和海水盐度等参数作为输入,代入现有的辐射传输模型函数RTM(Radiative Transfer Model)计算得到海面模式亮温。然后通过对海面模式亮温进行统计平均即可得到均值
Figure BDA0001618831830000073
Figure BDA0001618831830000072
Average value calculated based on global ocean area model brightness temperature data. The global ocean region model brightness temperature (brightness temperature computed from RTM) is to take global ocean environment parameters such as sea surface temperature, sea surface wind speed, atmospheric liquid water content, atmospheric water vapor and seawater salinity as input, and substitute existing radiation The transfer model function RTM (Radiative Transfer Model) calculates the brightness temperature of the sea surface model. Then, the mean value can be obtained by statistically averaging the brightness temperature of the sea surface model.
Figure BDA0001618831830000073

(5)冷空定标亮温修正(5) Cold air calibration brightness temperature correction

利用每个扫描周期中推出的冷空观测计数值CC,Sat﹑海洋区域冷空亮温修正值TC0cor﹑原始热源观测计数值CH和热源亮温TH对每个扫描周期内原始冷空观测计数值CC进行定标,得到冷空观测亮温修正值TCcorUsing the cold air observation count value C C,Sat , the cold air brightness temperature correction value T C0cor in the ocean area, the original heat source observation count value CH and the heat source brightness temperature TH derived in each scanning period, the original cold air temperature in each scanning period is calculated. The empty observation count value C C is calibrated to obtain the cold air observation brightness temperature correction value T Ccor .

Figure BDA0001618831830000074
Figure BDA0001618831830000074

Figure BDA0001618831830000075
Figure BDA0001618831830000075

Figure BDA0001618831830000076
Figure BDA0001618831830000076

Figure BDA0001618831830000077
Figure BDA0001618831830000077

Figure BDA0001618831830000078
Figure BDA0001618831830000078

(6)场景观测亮温定标(6) Scene observation brightness temperature calibration

利用每个扫描周期中原始冷空观测计数值CC﹑式(4-15)冷空修正亮温值TCcor﹑热源观测计数值CH﹑热源亮温TH和通道非线性系数对每个扫描周期场景观测计数值数值CS重新进行定标,得到冷空亮温修正后再次对场景计数值进行定标后的场景亮温校正值

Figure BDA0001618831830000081
Using the original cold air observation count value C C , formula (4-15) cold air correction brightness temperature value T Ccor , the heat source observation count value CH , the heat source brightness temperature TH and the channel nonlinear coefficient in each scanning period The scene observation count value C S of the scanning period is re-scaled to obtain the scene brightness temperature correction value after the cold air brightness temperature is corrected and the scene count value is calibrated again.
Figure BDA0001618831830000081

Figure BDA0001618831830000082
Figure BDA0001618831830000082

Figure BDA0001618831830000083
Figure BDA0001618831830000083

Figure BDA0001618831830000084
Figure BDA0001618831830000084

Figure BDA0001618831830000085
Figure BDA0001618831830000085

Figure BDA0001618831830000086
Figure BDA0001618831830000086

本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。The content not described in detail in the specification of the present invention belongs to the well-known technology of those skilled in the art.

Claims (6)

1.一种星载微波辐射计冷空定标修正方法,其特征在于:包括如下步骤:1. a cold space calibration correction method for a space-borne microwave radiometer, is characterized in that: comprise the steps: S1,使用微波辐射计对目标进行观测,得到原始冷空观测计数值、原始热源观测计数值、热源亮温和原始场景观测计数值,由所述原始冷空观测计数值分别计算出星下点位于海洋区域和陆地区域的冷空观测平均计数值;再结合所述原始热源观测计数值和原始场景观测计数值分别计算出海洋区域和陆地区域的场景亮温平均值,由所述海洋区域和陆地区域的场景亮温平均值、星下点位于海洋区域和陆地区域的冷空观测平均计数值以及微波辐射计系统平均增益计算出地球比例因子,所述地球比例因子为当微波辐射计进行冷空定标观测时,地球区域在整个冷空天线方向图中所占比例系数;S1, use the microwave radiometer to observe the target, obtain the original cold air observation count value, the original heat source observation count value, the heat source brightness temperature and the original scene observation count value, and calculate the sub-satellite point at The average count value of cold air observations in the ocean area and the land area; then combined with the original heat source observation count value and the original scene observation count value, the average brightness temperature of the scene in the ocean area and the land area are calculated respectively. The average brightness temperature of the scene in the area, the average count value of the cold air observations at the sub-satellite point in the ocean area and the land area, and the average gain of the microwave radiometer system calculate the earth scale factor. The proportional coefficient of the earth area in the whole cold space antenna pattern when the observation is calibrated; S2,对星下点位于海洋区域的原始冷空观测计数值随星下点纬度变化关系进行拟合,再结合微波辐射计每个扫描周期星下点纬度计算出每个扫描周期内冷空观测计数值;S2, fit the relationship between the original cold sky observation count value of the sub-satellite point located in the ocean area and the latitude of the sub-satellite point, and then combine the latitude of the sub-satellite point in each scanning period of the microwave radiometer to calculate the cold sky observation in each scanning period. count value; S3,根据所述地球比例因子和全球海洋区域亮温模拟值的平均值计算出海洋区域冷空亮温修正值;S3, according to the earth scale factor and the average value of the global ocean area brightness temperature simulation value, calculate the ocean area cold air brightness temperature correction value; S4,根据所述每个扫描周期内冷空观测计数值、海洋区域冷空亮温修正值、原始热源观测计数值和热源亮温对原始冷空观测计数值进行定标,得到冷空定标亮温修正值;S4, the original cold air observation count value is calibrated according to the cold air observation count value, the cold air brightness temperature correction value of the ocean region, the original heat source observation count value and the heat source brightness temperature in each scanning period, to obtain the cold air calibration Brightness temperature correction value; S5,根据所述冷空定标亮温修正值、原始冷空观测计数值、原始热源观测计数值和热源亮温对原始场景观测计数值进行定标,得到场景亮温修正值。S5, the original scene observation count value is calibrated according to the cold air calibration brightness temperature correction value, the original cold air observation count value, the original heat source observation count value and the heat source brightness temperature to obtain a scene brightness temperature correction value. 2.根据权利要求1所述的星载微波辐射计冷空定标修正方法,其特征在于:S1中所述地球比例因子fCsE的计算方法为
Figure FDA0002210417090000011
2. the cold space calibration correction method of spaceborne microwave radiometer according to claim 1, is characterized in that: the calculation method of earth scale factor f CsE described in S1 is:
Figure FDA0002210417090000011
其中,
Figure FDA0002210417090000012
为微波辐射计系统平均增益,且
Figure FDA0002210417090000013
Figure FDA0002210417090000014
为热源观测平均计数值,
Figure FDA0002210417090000015
为冷空观测平均计数值,
Figure FDA0002210417090000016
为热源平均亮温,TC0为冷空标称辐射亮温,所述冷空标称辐射亮温TC0为2.73K;
Figure FDA0002210417090000021
为星下点位于陆地区域时的冷空观测平均计数值,
Figure FDA0002210417090000022
为陆地区域场景亮温平均值,
Figure FDA0002210417090000023
为星下点位于海洋区域时冷空观测平均计数值,
Figure FDA0002210417090000024
为海洋区域场景亮温平均值。
in,
Figure FDA0002210417090000012
is the average gain of the microwave radiometer system, and
Figure FDA0002210417090000013
Figure FDA0002210417090000014
is the observed mean count value for the heat source,
Figure FDA0002210417090000015
is the average count value of cold air observations,
Figure FDA0002210417090000016
is the average brightness temperature of the heat source, T C0 is the nominal radiant brightness temperature of the cold air, and the nominal radiant brightness temperature of the cold air, T C0 , is 2.73K;
Figure FDA0002210417090000021
is the average count value of cold sky observations when the sub-satellite point is located in the land area,
Figure FDA0002210417090000022
is the average brightness temperature of the land area scene,
Figure FDA0002210417090000023
is the average count value of cold sky observations when the subsatellite point is located in the ocean area,
Figure FDA0002210417090000024
It is the average brightness temperature of the marine area scene.
3.根据权利要求2所述的星载微波辐射计冷空定标修正方法,其特征在于:所述场景观测计数值与场景亮温的关系式为:3. The cold-space calibration correction method of the spaceborne microwave radiometer according to claim 2, wherein the relational expression between the scene observation count value and the scene brightness temperature is:
Figure FDA0002210417090000025
Figure FDA0002210417090000025
其中,CS为场景观测计数值,
Figure FDA0002210417090000026
Figure FDA0002210417090000027
CH为原始热源观测计数值,CC为原始冷空观测计数值,TH为热源亮温,u为地面试验室测得的通道非线性系数。
Among them, CS is the scene observation count value,
Figure FDA0002210417090000026
Figure FDA0002210417090000027
CH is the observed count value of the original heat source, C C is the original cold air observation count value, TH is the brightness temperature of the heat source, and u is the channel nonlinear coefficient measured by the ground laboratory.
4.根据权利要求2所述的星载微波辐射计冷空定标修正方法,其特征在于:所述S3中海洋区域冷空亮温修正值TC0cor的计算方法为
Figure FDA0002210417090000028
其中,
Figure FDA0002210417090000029
为全球海洋区域亮温模拟值的平均值。
4. The cold space calibration correction method of spaceborne microwave radiometer according to claim 2 is characterized in that: the calculation method of the cold space brightness temperature correction value T C0cor of the ocean area in the described S3 is:
Figure FDA0002210417090000028
in,
Figure FDA0002210417090000029
is the average value of the simulated brightness temperature in the global ocean area.
5.根据权利要求3所述的星载微波辐射计冷空定标修正方法,其特征在于:所述S4中冷空定标亮温修正值TCcor的计算方法为
Figure FDA00022104170900000210
其中,
Figure FDA00022104170900000211
Figure FDA00022104170900000212
CC,Sat为每个扫描周期内冷空观测计数值,TC0cor为所述海洋区域冷空亮温修正值。
5. The cold space calibration correction method for spaceborne microwave radiometer according to claim 3, is characterized in that: the calculation method of cold space calibration brightness temperature correction value T Ccor in the described S4 is:
Figure FDA00022104170900000210
in,
Figure FDA00022104170900000211
Figure FDA00022104170900000212
C C, Sat is the count value of cold air observations in each scanning period, and T C0cor is the correction value of the cold air brightness temperature in the ocean area.
6.根据权利要求5所述的星载微波辐射计冷空定标修正方法,其特征在于:所述S5中场景亮温修正值
Figure FDA00022104170900000213
的计算方法为
Figure FDA00022104170900000214
其中,
Figure FDA00022104170900000215
6. The cold space calibration correction method of the spaceborne microwave radiometer according to claim 5, characterized in that: the scene brightness temperature correction value in the S5
Figure FDA00022104170900000213
The calculation method is
Figure FDA00022104170900000214
in,
Figure FDA00022104170900000215
CN201810296883.3A 2018-04-04 2018-04-04 Cold air calibration correction method for satellite-borne microwave radiometer Active CN108318871B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810296883.3A CN108318871B (en) 2018-04-04 2018-04-04 Cold air calibration correction method for satellite-borne microwave radiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810296883.3A CN108318871B (en) 2018-04-04 2018-04-04 Cold air calibration correction method for satellite-borne microwave radiometer

Publications (2)

Publication Number Publication Date
CN108318871A CN108318871A (en) 2018-07-24
CN108318871B true CN108318871B (en) 2020-05-12

Family

ID=62896563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810296883.3A Active CN108318871B (en) 2018-04-04 2018-04-04 Cold air calibration correction method for satellite-borne microwave radiometer

Country Status (1)

Country Link
CN (1) CN108318871B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212496B (en) * 2018-09-26 2021-02-09 西安空间无线电技术研究所 Antenna error correction method for satellite-borne microwave radiometer
CN110456295B (en) * 2019-08-21 2021-04-02 国家卫星气象中心(国家空间天气监测预警中心) Microwave radiometer on-orbit calibration method based on real-time monitoring of antenna directional diagram
CN110617889B (en) * 2019-08-28 2020-11-20 西安空间无线电技术研究所 A High Stability Test Method Applied to Synthetic Aperture Microwave Radiometer
CN111695085B (en) * 2020-05-20 2023-06-02 国家卫星气象中心(国家空间天气监测预警中心) Method, system and electronic equipment for constructing radiometric calibration coefficient sequence
CN111947790B (en) * 2020-07-17 2021-10-22 中国科学院国家空间科学中心 Internal and external calibration system and internal and external calibration method of spaceborne microwave radiometer
CN111982299B (en) * 2020-08-14 2021-08-17 国家卫星气象中心(国家空间天气监测预警中心) A method and system for dynamic scoring of data quality of spaceborne microwave radiometer
CN112485738B (en) * 2020-11-12 2022-09-20 国家卫星气象中心(国家空间天气监测预警中心) Method, system and apparatus for verifying stability of a geostationary orbit microwave radiometer system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777481A (en) * 1996-04-01 1998-07-07 University Corporation For Atmospheric Research Ice detection using radiometers
CN101349719A (en) * 2007-07-20 2009-01-21 中国科学院空间科学与应用研究中心 Fully Polarization Synthetic Aperture Microwave Radiometer
CN101975971A (en) * 2010-09-30 2011-02-16 中国科学院国家天文台 On-star calibration method for lunar microwave sounder
CN106569186A (en) * 2015-10-13 2017-04-19 中国科学院国家空间科学中心 Offset correction method for spaceborne microwave radiometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777481A (en) * 1996-04-01 1998-07-07 University Corporation For Atmospheric Research Ice detection using radiometers
CN101349719A (en) * 2007-07-20 2009-01-21 中国科学院空间科学与应用研究中心 Fully Polarization Synthetic Aperture Microwave Radiometer
CN101975971A (en) * 2010-09-30 2011-02-16 中国科学院国家天文台 On-star calibration method for lunar microwave sounder
CN106569186A (en) * 2015-10-13 2017-04-19 中国科学院国家空间科学中心 Offset correction method for spaceborne microwave radiometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"海洋二号扫描微波辐射计数据预处理方法研究";邢妍 等;《第四届高分辨率对地观测学术年会》;20170917;第888-896页 *

Also Published As

Publication number Publication date
CN108318871A (en) 2018-07-24

Similar Documents

Publication Publication Date Title
CN108318871B (en) Cold air calibration correction method for satellite-borne microwave radiometer
CN109212496B (en) Antenna error correction method for satellite-borne microwave radiometer
CN102279393B (en) A cross-radiation calibration method for hyperspectral sensors based on multispectral sensors
CN102540166B (en) Cross radiation calibration method based on optimization algorithm of hyper-spectral sensor
CN109752696B (en) RCS correction method for corner reflector in high-resolution synthetic aperture radar satellite image
CN103438900A (en) Three-line-array camera image collaborative absolute radiometric calibration and compensation method
CN105527620B (en) The automatic calibration method that a kind of aerosol thickness postpones with laser radar range
CN108562882B (en) Geometric cross calibration method and system for satellite-borne SAR (synthetic aperture radar) image
CN106569186A (en) Offset correction method for spaceborne microwave radiometer
CN108957377B (en) A calibration device and calibration method for a fully polarized microwave radiometer
CN104977024B (en) A kind of day blind in-orbit modification method of ultraviolet remote sensing camera Absolute Radiometric Calibration Coefficients
CN108919151A (en) A kind of microwave radiometer cross polarization error correcting method
CN102621532B (en) Correction method for visibility phase error of synthetic aperture radiometer based on array rotation
CN103869296A (en) Polarization SAR (Synthetic Aperture Radar) terrain radiation correction and geometric correction method based on imaging surface representation
CN109883957A (en) Construction method, system and calibration method of apparent reflectance model based on MODIS image
CN114049570B (en) Method and system for space inversion of water vapor in spaceborne remote sensing based on neural network
CN105606128A (en) External-field calibration method of space-borne laser altimeter
CN104482939A (en) Time sequence-based space-borne camera radiometric cross-calibration method
CN109597040A (en) A kind of field-free geometric calibration method of satellite-borne SAR image
CN108107002A (en) The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target
CN110793542A (en) An in-orbit geometric calibration method for surface array optical remote sensing satellites based on generalized probe pointing angle
CN111060139A (en) Satellite-borne laser altimeter field-free geometric calibration method and system
CN104865274A (en) Soil water content inversion method and system based on single polarization radar data
CN110764153B (en) System and method for correcting on-orbit error of hot mirror back lobe of satellite-borne microwave imager
CN110793649A (en) Method for correcting brightness and temperature of rough sea surface by using backscattering cross section

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant