CN108270970B - 一种图像采集控制方法及装置、图像采集系统 - Google Patents
一种图像采集控制方法及装置、图像采集系统 Download PDFInfo
- Publication number
- CN108270970B CN108270970B CN201810066893.8A CN201810066893A CN108270970B CN 108270970 B CN108270970 B CN 108270970B CN 201810066893 A CN201810066893 A CN 201810066893A CN 108270970 B CN108270970 B CN 108270970B
- Authority
- CN
- China
- Prior art keywords
- environment
- type
- image
- tof camera
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000007613 environmental effect Effects 0.000 claims abstract description 41
- 238000003062 neural network model Methods 0.000 claims description 14
- 239000004576 sand Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 14
- 238000004590 computer program Methods 0.000 description 7
- 241000533950 Leucojum Species 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000005286 illumination Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000007499 fusion processing Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/33—Transforming infrared radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/35—Categorising the entire scene, e.g. birthday party or wedding scene
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/20—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/61—Control of cameras or camera modules based on recognised objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/64—Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/73—Circuitry for compensating brightness variation in the scene by influencing the exposure time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/703—SSIS architectures incorporating pixels for producing signals other than image signals
- H04N25/705—Pixels for depth measurement, e.g. RGBZ
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/20—Ambient conditions, e.g. wind or rain
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Studio Devices (AREA)
Abstract
本发明公开一种图像采集控制方法及装置、图像采集系统,以解决现有技术无法在恶劣天气下拍摄得到清晰图像的技术问题。方法包括:接收传感器发送的环境信息;根据所述环境信息确定当前环境类型;判断所述当前环境类型是否为预置的恶劣环境类型;若是恶劣环境类型,则控制TOF相机采集图像。
Description
技术领域
本发明涉及图像采集领域,特别涉及一种图像采集控制方法、一种图像采集控制装置、一种图像采集系统。
背景技术
随着无人机、无人船舶、无人驾驶、VR(Virtual Reality,虚拟现实)、三维扫描、机器人避障、SLAM(Simultaneous Localization And Mapping,即时定位与地图构建)等技术领域的发展,相机在这些技术领域被大量使用,而普通相机最大的缺点在于受环境影响较大,当自然光照过强或过弱时相机的成像质量较差,尤其是一些例如暴雨、暴雪、大雾、沙尘暴、重度雾霾天等恶劣环境,这些恶劣环境下的自然光照较差,相机成像质量较差,如何能够在恶劣环境下拍摄得到清晰图像,则成为前述技术领域亟待解决的技术问题。
发明内容
鉴于上述问题,本发明提供一种图像采集控制方法及装置、图像采集系统,以解决现有技术无法在恶劣环境下拍摄得到清晰图像的技术问题。
本发明实施例第一方面,提供一种图像采集控制方法,该方法包括:
接收传感器发送的环境信息;
根据所述环境信息确定当前环境类型;
判断所述当前环境类型是否为预置的恶劣环境类型;
若是恶劣环境类型,则控制TOF相机采集图像。
本发明实施例第二方面,提供一种图像采集控制装置,该装置包括:
接收单元,用于接收传感器发送的环境信息;
确定单元,用于根据所述环境信息确定当前环境类型;
控制单元,用于判断判断所述当前环境类型是否为预置的恶劣环境类型;若是恶劣环境类型,则控制TOF相机采集图像。
本发明实施例第三方面,提供一种图像采集系统,该系统包括普通相机、TOF相机和图像采集控制装置,其中:
图像采集控制装置,用于接收传感器发送的环境信息,并根据所述环境信息确定当前环境类型;判断所述当前环境类型是否为预置的恶劣环境类型;若是恶劣环境类型,则控制TOF相机采集图像;若不是恶劣环境类型,则控制普通相机采集图像;
普通相机,在所述图像采集控制装置的控制下采集图像;
TOF相机,在所述图像采集控制装置的控制下采集图像。
本发明技术方案,能够根据传感器发送的环境信息确定当前环境类型,在当前环境类型为恶劣环境类型时控制TOF相机采集图像。由于TOF相机通过CMOS(ComplementaryMetal Oxide Semiconductor,互补金属氧化物半导体,即图像传感器)像素阵列和主动调制光源技术来提供景深图,通过给目标物体连续发射调制的红外光,并利用图像传感器接收从目标物体返回的发射光来探测光脉冲的飞行时间来得到目标物体的距离,TOF相机不仅能够检测到面积较小的物体(如线、锥形体物体等),而且测距远、分辨率高、响应速度快且不受环境光的影响,因此,通过本发明技术方案可以在确定当前环境为恶劣环境时通过TOF相机拍摄得到清晰的图像,为其他应用处理提供高质量图像。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1为本发明实施例中图像采集系统的结构示意图;
图2为本发明实施例中图像采集控制装置的结构示意图;
图3为本发明实施例中控制单元的结构示意图;
图4A为本发明实施例中确定单元确定当前环境类型的示意图之一;
图4B为本发明实施例中确定单元确定当前环境类型的示意图之二;
图5为本发明实施例中图像采集控制方法的流程图之一;
图6为本发明实施例中图像采集控制方法的流程图之二;
图7为本发明实施例中控制TOF相机采集图像的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明提供的图像采集控制方法及其装置可以适用于无人驾驶车辆(包括卡车、公交车、大巴车、小车、拖拉机、洒水车、垃圾车等)、无人机、无人船舶、机器人等,本申请不对本发明技术方案的应用场景作严格限定。
实施例一
参见图1,为本发明实施例中图像采集系统的结构示意图,该系统包括图像采集控制装置1、TOF相机2和普通相机3,其中TOF相机2的数量可以为一个也可以为多个,普通相机3的数量可以为1个也可以为多个,例如,在自动驾驶领域,可以在自动驾驶车辆的前向、后向和侧向分别安装普通相机和TOF相机,本申请不做严格限定。
本申请不对普通相机和TOF相机的具体类型和型号做严格限定,市面上的普通相机和TOF相机均可适用。例如普通相机可以是单目相机、双目相机等。
下面对本发明实施例中图像采集系统中的各个设备进行详细的描述。
图像采集控制装置1,用于接收传感器发送的环境信息,并根据所述环境信息确定当前环境类型;判断所述当前环境类型是否为预置的恶劣环境类型;若是恶劣环境类型,则控制TOF相机2采集图像;若不是恶劣环境类型,则控制普通相机3采集图像。
TOF相机2,在所述图像采集控制装置1的控制下采集图像。
普通相机3,在所述图像采集控制装置1的控制下采集图像。
本发明实施例中,图像采集控制装置1可预先通过参数控制通道配置普通相机3的相机参数,本发明实施例中,图像采集控制装置1只需向普通相机3发送采集指令即可控制普通相机3按照预先设置的相机参数拍摄图像。具体可参见现有技术相关内容。
在一个示例中,本发明实施例中,图像采集控制装置1控制TOF相机2采集图像,可通过但不仅限于以下任意一种方式(方式A1~方式A3)实现。
方式A1、图像采集控制装置1预先通过参数控制通道配置TOF相机2的相机参数;图像采集控制装置1向TOF相机2发送采集指令;图像采集控制装置1接收TOF相机2在接收到采集指令时按照预置的相机参数采集的图像。方式1与前述图像采集控制装置1控制普通相机采集图像的方式的原理一致,在此不再赘述。
在另一个示例中,为满足一些特定需求,例如通过TOF相机2采集得到目标距离范围内的清晰图像。所述图像采集控制装置1可通过以下方式A2控制TOF相机2采集图像。
方式A2:根据预置的目标距离范围确定TOF相机2的红外光源发射时间、曝光开始时间和曝光结束时间;向所述TOF相机2发送携带有所述红外光源发射时间、曝光开始时间和曝光结束时间的参数控制信息;接收所述TOF相机2根据所述参数控制信息采集得到的包含位于所述目标距离范围内的物体的图像。
优选地,若当前环境类型为轻度恶劣环境类型时,普通相机具有一定的视距,在该视距范围内,普通相机采集的图像可用,该视距之外可通过TOF相机采集图像。因此,在一个示例中,本发明实施例中,图像采集控制装置1控制TOF相机采集图像具体可根据以下方式A3实现。
方式A3:若当前环境类型为轻度恶劣环境类型则采用前述方式A2控制TOF相机2采集图像;若当前环境类型为重度恶劣环境类型则采用前述方式A1控制TOF相机2采集图像。
本发明实施例中,与图像采集控制装置1连接的传感器可包括为以下任意一种或多种的组合:相机、湿度传感器、温度传感器、光照传感器、空气质量检测传感器、激光雷达、毫米波雷达、红外传感器等。
本发明实施例中,若传感器为相机,则输出的环境信息为图像数据;若传感器为湿度传感器,则输出的环境信息为湿度信息;若传感器为温度传感器,则输出的环境信息为温度信息;若传感器为光照传感器,则输出的环境信息为光照强度;若传感器为空气质量检测传感器,则输出的环境信息为雾霾浓度信息,若传感器为激光雷达/毫米波雷达,则输出的环境信息为激光点云数据。
本发明实施例中,环境类型可包括良好环境类型和恶劣环境类型,其中恶劣环境类型包括以下一种或多种:暴风雪环境、暴雨环境、沙尘暴环境、重度雾霾环境、低光照环境等。
在一个示例中,本发明实施例中的图像采集控制装置1的结构可如图2所示,图像采集控制装置1可与传感器连接,该装置包括:
接收单元11,用于接收传感器发送的环境信息;
确定单元12,用于根据所述环境信息确定当前环境类型;
控制单元13,用于判断所述当前环境类型是否为预置的恶劣环境类型;若是恶劣环境类型,则控制TOF相机2采集图像;若不是恶劣环境类型,则控制普通相机3采集图像。
本发明实施例中,控制单元13具体结构可如图3所示,包括判断子单元131、第一控制子单元132和第二控制子单元133,其中:
判断子单元131、用于判断所述当前环境类型是否为预置的恶劣环境类型,若是则触发第一控制子单元132,若否则触发第二控制子单元133;
第一控制子单元132,用于控制TOF相机2采集图像;
第二控制子单元133,用于控制普通相机3采集图像。
本发明实施例中,第一控制子单元132控制TOF相机2采集图像可通过前述方式A1、方式A2和方式A3中的任意一种方式实现。
下面对方式A2进行详细的描述。
本发明实施例中,第一控制子单元132向TOF相机2发送参数控制信息的频率大于等于TOF相机2的帧率。假设在一段时间内,第一控制子单元132第一次向TOF相机2发送的参数控制信息中的红外光源发射时间为一个预置的初始值T1,则第i次向TOF相机2发送的参数控制信息中的红外光源发射时间为Ti,其中Ti=T1+(i-1)/f,其中f为第一控制子单元132向TOF相机2发送参数控制信息的频率。
本发明实施例中,目标距离范围是指与TOF相机2的距离范围,目标距离范围可以为预先根据应用场景在第一控制子单元132中设置的固定值;也可以是由第一控制子单元132从客户端前端接收到的参数值,该参数值由操作人员通过在客户端前端的操作界面输入得到;还可以由第一控制子单元132根据当前环境类型确定目标距离范围。本申请对目标距离范围的来源方式不作严格限定。目标距离范围的取值可根据实际需求灵活设置,例如,当前环境类型为轻度恶劣环境类型时该目标距离范围设置为50米~100米,当前环境类型为重度恶劣环境类型时该目标距离范围可设置为0米~50米,本申请不作严格限定。
在一个实施例中,第一控制子单元132具体可包括:
计算模块,用于根据预置的目标距离范围确定TOF相机2的红外光源发射时间、曝光开始时间和曝光结束时间;
控制模块,用于向所述TOF相机2发送携带有所述红外光源发射时间、曝光开始时间和曝光结束时间的参数控制信息;
接收模块,用于接收所述TOF相机2根据所述参数控制信息采集得到的包含位于所述目标距离范围内的物体的图像。
计算模块具体用于:根据目标距离范围的下限距离值,估算TOF相机2在发射红外光源之后接收到距离为下限距离值的物体反射所述红外光源所需的第一时长;根据目标距离范围的上限距离值,估算TOF相机2在发射红外光源之后接收到距离为上限距离值的物体反射所述红外光源所需的第二时长;根据预置的红外光源发射时间、第一时长和第二时长,确定所述TOF相机2的曝光开始时间和曝光结束时间。
假设目标距离范围为[d1,d2],目标距离范围的下限距离值为d1(单位为米),目标距离范围的上限距离为d2(单位为米),第一时长用Δt1表示,第二时长用Δt2表示,则Δt1=d1/c,Δt2=d2/c,其中c为光速3×108米/秒。
在一个示例中,计算模块根据预置的红外光源发射时间、第一时长和第二时长,确定所述TOF相机2的曝光开始时间和曝光结束时间,具体实现可如下:将红外光源发射时间与第一时长的和值,确定为曝光开始时间;将红外光源发射时间与第二时长的和值,确定为曝光结束时间。假设红外光源发射时间为t0,曝光开始时间用t1表示,曝光结束时间用t2表示,则t1=t0+2(d1/c),t2=t0+2(d2/c)。
在另一个示例中,优选地,由于TOF相机2的CMOS对电荷积累需要一定时间,因此,若距离为上限距离值的物体反射光回到CMOS之后立马停止曝光将可能会使得这部分发射光的电荷积累不够导致欠曝光。因此,本发明实施例中,在距离为上限距离值的物体发射光回到CMOS之后不能立即结束曝光,而是继续延长曝光一段时间(该段时间后续称为曝光延长时长,用Δt表示)。前述计算模块根据预置的红外光源发射时间、第一时长和第二时长,确定所述TOF相机2的曝光开始时间和曝光结束时间,具体实现可如下:将红外光源发射时间与第一时长的和值,确定为曝光开始时间;将红外光源发射时间与第二时长、预置的曝光延长时长的和值,确定为曝光结束时间。假设红外光源发射时间为t0,曝光开始时间用t1表示,曝光延长时长为Δt,曝光结束时间用t2表示,则t1=t0+2(d1/c),t2=t0+2(d2/c)+Δt。本发明实施例中曝光延长时长Δt的取值,可根据实验数据或经验值得到,本申请不做严格限定。
本发明实施例中,红外光源从发射到达距离为d1的物体所用时长为d1/c,物体反射光返回到TOF相机2的CMOS表面所用时长为d1/c;红外光源从发射到达距离为d2的物体所用时长为d2/c,物体反射光返回到CMOS表面所用时长为d2/c。TOF相机2在CMOS表面接收到距离为d1的物体返回的反射光开始曝光,并在CMOS表面接收到距离为d2的物体返回的反射光之后的一小段时间后停止曝光;因此,CMOS表面在接收到距离低于d1的物体返回的反射光时TOF相机2还没有开始曝光,TOF相机2的快门处于关闭状态,因此能够过滤距离低于d1的物体返回的反射光;同理,CMOS表面在接收到距离大于d2的物体返回的发射光时TOF相机2已经停止曝光,即TOF相机2的快门处于关闭状态,因此能够过滤距离大于d2的物体返回的反射光;因此,通过本发明技术方案可以过滤目标距离范围以外的物体返回的反射光,而保留目标距离范围内的物体返回的反射光,从而使得TOF相机2得到的图像为包含位于目标距离范围内的物体的图像,而不包含目标距离范围之外的物体。
优选地,本发明实施例中的所述确定单元12具体可通过但不仅限于以下任意一种方式(方式B1~方式B2)实现:
方式B1、将所述环境信息传输至预置的神经网络模型中,通过神经网络模型得到当前环境类型。
方式B2、提取环境信息的环境特征信息;将提取的环境特征信息与预置的各环境类型的环境特征库进行匹配,将匹配成功的环境类型确定为当前环境类型。
下面分别对方式B1和方式B2的具体实现进行详细的描述。
针对不同的情况,方式B1的具体实现方式有所不同:
情况1、与图像采集控制装置1连接的传感器为一个传感器时。方式B1通过以下预处理方式得到所述传感器对应的一个神经网络模型:首先,建立每个环境类型对应的样本集;其次,将各环境类型对应的样本集的并集作为样本库;最后,基于样本库对初始神经网络进行迭代训练(迭代训练方式可参见现有的神经网络训练技术,本申请不作严格限定),得到能够根据传感器输入的环境信息即可确定出该环境信息所属的环境类型的神经网络模型,该神经网络模型与所述传感器对应。如图4A所示,确定单元12将接收到的当前环境信息输入到预先训练得到的神经网络模型中得到当前环境类型。
情况1中,通过以下方式得到各环境类型对应的样本集:针对每个环境类型,在该环境类型的环境下通过所述传感器采集一定数量的该环境下的环境信息,并对该环境信息标定其所属的环境类型,将一定数量的环境信息及其所属环境类型构成所述环境类型对应的样本集。例如,传感器为相机,则通过该相机采集的一定数量的环境信息为一定数量的图像数据。
情况2、与图像采集控制装置1连接的传感器为多个不同类型的传感器。方式B1针对每个传感器,通过前述情况1中的预先处理方式得到各传感器分别对应的一个神经网络模型,在此不再赘述。如图4B所示,确定单元12将接收到的每个传感器反馈的当前环境信息输入到与该传感器对应的神经网络模型中得到相应的环境类型;对根据各神经网络得到的多个环境类型进行融合处理得到当前环境类型,例如,可采用多数服从少数的融合处理方式确定当前环境类型。
方式B2,通过机器学习或算法预处理得到每种环境类型对应的环境特征库,各环境类型对应的环境特征库中包含表征该环境类型对应的环境的特征信息。例如,低光照环境对应的环境特征库包含光照度低于预置的光照度阈值的特征信息;暴风雪环境对应的环境特征包含雪花的特征信息以及雪花密度大于雪花密度阈值;暴雨环境对应的环境特征库包含雨点特征信息以及湿度值大于湿度阈值等,本领域技术人员可以根据实际需求灵活设置,本申请不作严格限定。
以传感器为相机、当前环境类型为暴雪环境为例;确定单元12在接收到相机采集的图像时,采用ROI算法确定该图像的感兴趣区域(即前景与背景亮度值差别较大的区域),滤除感兴趣区域内图像噪声;将图像灰度点强度值有显著变化的点凸显出来,得到目标物体的轮廓;将目标物体的轮廓与各环境类型对应的特征库进行比对,得到该目标物体为雪花;并判断雪花的密集度是否大于预置的雪花密度阈值,若是则确定当前环境类型为暴雪环境。
优选地,本发明实施例中的TOF相机2可包括数据处理器、红外光源发射器和图像传感器,其中:
数据处理器,用于接收包含红外光源发射时间、曝光开始时间和曝光结束时间的参数控制信息;根据所述红外光源发射时间配置所述红外光源发射器的发射时间,以及根据所述曝光开始时间和曝光结束时间配置所述图像传感器的曝光参数;
红外光源发射器,用于根据所述红外光源发射时间发射红外光源;
图像传感器,用于根据所述曝光开始时间和曝光结束时间进行曝光,以生成包含位于所述目标距离范围内的物体的图像数据。
本发明实施例中,数据处理器可通过DVP接口或MIPI(Mobile IndustryProcessor Interface,移动产业处理器接口)接口向图像采集控制装置传输图像数据(包括像素点的亮度数据和深度数据)。图像采集控制装置可通过参数控制通道向数据处理器传输参数控制信息
实施例二
基于前述实施例一提供的图像采集控制装置的相同构思,本发明实施例二提供一种图像采集控制方法,该方法的流程图如图5所示,包括:
步骤101、接收传感器发送的环境信息;
步骤102、根据所述环境信息确定当前环境类型;
步骤103、判断所述当前环境类型是否为预置的恶劣环境类型;若是恶劣环境类型则执行步骤104;
步骤104、控制TOF相机采集图像。
优选地,图4所示的方法流程中还可包括步骤105,如图6所示:
步骤103还包括:若不是恶劣环境类型则执行步骤105;
步骤105、控制普通相机采集图像。
在一个示例中,所述步骤102,具体实现可如下:将所述环境信息传输至预置的神经网络模型中,通过神经网络模型得到当前环境类型。具体实现细节可参见实施例一中的方式B1,在此不再赘述。
在另一个示例中,所述步骤102,具体实现可如下:提取环境信息的环境特征信息;将提取的环境特征信息与预置的各环境类型的环境特征库进行匹配,将匹配成功的环境类型确定为当前环境类型。具体实现细节可参见实施例一中的方式B2,在此不再赘述。
在一个示例中,步骤104中,控制TOF相机采集图像,具体可通过如图7所示的方法流程得到:
步骤104A、根据预置的目标距离范围确定TOF相机的红外光源发射时间、曝光开始时间和曝光结束时间;
步骤104B、向所述TOF相机发送携带有所述红外光源发射时间、曝光开始时间和曝光结束时间的参数控制信息;
步骤104C、接收所述TOF相机根据所述参数控制信息采集得到的包含位于所述目标距离范围内的物体的图像。
本发明实施例中,前述步骤104A具体实现可参见实施例一中计算模块的相关内容,在此不再赘述。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域普通技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或者部件可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件固件、软件或者他们的组合加以实现,这是本领域普通技术人员在阅读了本发明的说明的情况下运用它们的基本编程技能就能实现的。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的上述实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括上述实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (11)
1.一种图像采集控制方法,其特征在于,包括:
接收传感器发送的环境信息;
根据所述环境信息确定当前环境类型;
判断所述当前环境类型是否为预置的恶劣环境类型;
若是恶劣环境类型,则控制TOF相机采集图像;
控制TOF相机采集图像,具体包括:
根据预置的目标距离范围确定TOF相机的红外光源发射时间、曝光开始时间和曝光结束时间;
向所述TOF相机发送携带有所述红外光源发射时间、曝光开始时间和曝光结束时间的参数控制信息;
接收所述TOF相机根据所述参数控制信息采集得到的包含位于所述目标距离范围内的物体的图像。
2.根据权利要求1所述的方法,其特征在于,根据所述环境信息确定当前环境类型,具体包括:
将所述环境信息传输至预置的神经网络模型中,通过神经网络模型得到当前环境类型。
3.根据权利要求1所述的方法,其特征在于,根据所述环境信息确定当前环境类型,具体包括:
提取环境信息的环境特征信息;
将提取的环境特征信息与预置的各环境类型的环境特征库进行匹配,将匹配成功的环境类型确定为当前环境类型。
4.根据权利要求1所述的方法,其特征在于,还包括:
若不是恶劣环境类型,则控制普通相机采集图像。
5.根据权利要求1~4任意一项所述的方法,其特征在于,所述恶劣环境类型包括以下一种或多种:暴风雪环境、暴雨环境、沙尘暴环境、重度雾霾环境、低光照环境。
6.一种图像采集控制装置,其特征在于,包括:
接收单元,用于接收传感器发送的环境信息;
确定单元,用于根据所述环境信息确定当前环境类型;
控制单元,用于判断所述当前环境类型是否为预置的恶劣环境类型;若是恶劣环境类型,则控制TOF相机采集图像;
所述控制单元控制TOF相机采集图像,具体用于:
根据预置的目标距离范围确定TOF相机的红外光源发射时间、曝光开始时间和曝光结束时间;
向所述TOF相机发送携带有所述红外光源发射时间、曝光开始时间和曝光结束时间的参数控制信息;
接收所述TOF相机根据所述参数控制信息采集得到的包含位于所述目标距离范围内的物体的图像。
7.根据权利要求6所述的装置,其特征在于,所述确定单元具体用于:
将所述环境信息传输至预置的神经网络模型中,通过神经网络模型得到当前环境类型。
8.根据权利要求6所述的装置,其特征在于,所述确定单元具体用于:
提取环境信息的环境特征信息;
将提取的环境特征信息与预置的各环境类型的环境特征库进行匹配,将匹配成功的环境类型确定为当前环境类型。
9.根据权利要求6所述的装置,其特征在于,所述控制单元进一步用于:
若不是恶劣环境类型,则控制普通相机采集图像。
10.根据权利要求6~9任意一项所述的装置,其特征在于,所述恶劣环境类型包括以下一种或多种:暴风雪环境、暴雨环境、沙尘暴环境、重度雾霾环境、低光照环境。
11.一种图像采集系统,其特征在于,该系统包括普通相机、TOF相机和图像采集控制装置,其中:
图像采集控制装置,用于接收传感器发送的环境信息,并根据所述环境信息确定当前环境类型;判断所述当前环境类型是否为预置的恶劣环境类型;若是恶劣环境类型,则控制TOF相机采集图像;若不是恶劣环境类型,则控制普通相机采集图像;
普通相机,在所述图像采集控制装置的控制下采集图像;
TOF相机,在所述图像采集控制装置的控制下采集图像;
所述图像采集控制装置控制TOF相机采集图像,具体用于:
根据预置的目标距离范围确定TOF相机的红外光源发射时间、曝光开始时间和曝光结束时间;
向所述TOF相机发送携带有所述红外光源发射时间、曝光开始时间和曝光结束时间的参数控制信息;
接收所述TOF相机根据所述参数控制信息采集得到的包含位于所述目标距离范围内的物体的图像。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810066893.8A CN108270970B (zh) | 2018-01-24 | 2018-01-24 | 一种图像采集控制方法及装置、图像采集系统 |
US16/250,823 US11070756B2 (en) | 2018-01-24 | 2019-01-17 | Method, device and system for image acquisition control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810066893.8A CN108270970B (zh) | 2018-01-24 | 2018-01-24 | 一种图像采集控制方法及装置、图像采集系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108270970A CN108270970A (zh) | 2018-07-10 |
CN108270970B true CN108270970B (zh) | 2020-08-25 |
Family
ID=62776509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810066893.8A Active CN108270970B (zh) | 2018-01-24 | 2018-01-24 | 一种图像采集控制方法及装置、图像采集系统 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11070756B2 (zh) |
CN (1) | CN108270970B (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018215053A1 (en) * | 2017-05-23 | 2018-11-29 | Brainlab Ag | Determining the relative position between a point cloud generating camera and another camera |
US11023742B2 (en) * | 2018-09-07 | 2021-06-01 | Tusimple, Inc. | Rear-facing perception system for vehicles |
US11019274B2 (en) | 2018-09-10 | 2021-05-25 | Tusimple, Inc. | Adaptive illumination for a time-of-flight camera on a vehicle |
US11038895B2 (en) | 2018-09-28 | 2021-06-15 | Intel Corporation | Trust management mechanisms |
CN109459734B (zh) * | 2018-10-30 | 2020-09-11 | 百度在线网络技术(北京)有限公司 | 一种激光雷达定位效果评估方法、装置、设备及存储介质 |
CN109782373B (zh) * | 2018-12-14 | 2020-04-21 | 内蒙古工业大学 | 一种基于改进的Naive Bayesian-CNN多目标分类算法的沙尘暴预测方法 |
CN110032979A (zh) * | 2019-04-18 | 2019-07-19 | 北京迈格威科技有限公司 | Tof传感器的工作频率的控制方法、装置、设备及介质 |
CN110462631A (zh) * | 2019-06-24 | 2019-11-15 | 深圳市汇顶科技股份有限公司 | 身份合法性认证装置、身份合法性认证方法以及门禁系统 |
DE102019214217B4 (de) * | 2019-09-18 | 2024-06-27 | Zf Friedrichshafen Ag | Computerimplementiertes Verfahren zum maschinellen Lernen eines Wetters, Steuergerät für automatisierte Fahrfunktionen, Überwachungssystem für ein Fahrzeug und Verfahren und Computerprogrammprodukt zum Bestimmen eines Wetters |
CN112544072A (zh) * | 2019-12-13 | 2021-03-23 | 深圳市大疆创新科技有限公司 | 设备/集成设备的工作方法、装置、可移动设备、介质 |
CN111050081B (zh) * | 2019-12-27 | 2021-06-11 | 维沃移动通信有限公司 | 拍摄方法及电子设备 |
CN111414829B (zh) * | 2020-03-13 | 2024-03-15 | 珠海格力电器股份有限公司 | 一种发送报警信息的方法和装置 |
WO2021217334A1 (zh) * | 2020-04-27 | 2021-11-04 | 深圳市大疆创新科技有限公司 | 可移动平台及其避障方法和装置 |
US12135565B2 (en) | 2020-06-26 | 2024-11-05 | Tusimple, Inc. | Adaptive sensor control |
US11932238B2 (en) | 2020-06-29 | 2024-03-19 | Tusimple, Inc. | Automated parking technology |
CN117268170B (zh) * | 2023-10-23 | 2024-03-22 | 广州天海翔航空科技有限公司 | 一种无人机弹射控制方法、装置、设备和存储介质 |
CN117495695B (zh) * | 2023-11-10 | 2024-05-03 | 苏州清研浩远汽车科技有限公司 | 基于毫米波和红外图像融合的低光照环境检测系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590821A (zh) * | 2010-12-21 | 2012-07-18 | 微软公司 | 多阳极飞行时间传感器 |
CN204314826U (zh) * | 2014-12-15 | 2015-05-06 | 成都凌感科技有限公司 | 一种暴雨中识别人体动作的3d识别装置 |
CN205230349U (zh) * | 2015-12-24 | 2016-05-11 | 北京万集科技股份有限公司 | 一种基于tof相机的交通车速检测与抓拍系统 |
CN106826833A (zh) * | 2017-03-01 | 2017-06-13 | 西南科技大学 | 基于3d立体感知技术的自主导航机器人系统 |
CN107229625A (zh) * | 2016-03-23 | 2017-10-03 | 北京搜狗科技发展有限公司 | 一种拍摄处理方法和装置、一种用于拍摄处理的装置 |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6975923B2 (en) | 2002-10-01 | 2005-12-13 | Roke Manor Research Limited | Autonomous vehicle guidance on or near airports |
US8078338B2 (en) | 2004-10-22 | 2011-12-13 | Irobot Corporation | System and method for behavior based control of an autonomous vehicle |
WO2006090896A1 (en) | 2005-02-23 | 2006-08-31 | Matsushita Electric Works, Ltd. | Autonomous vehicle and planar obstacle recognition method |
KR100802511B1 (ko) | 2005-10-11 | 2008-02-13 | 주식회사 코리아 와이즈넛 | 토픽 기반의 검색 서비스 제공 시스템 및 그 방법 |
US8050863B2 (en) | 2006-03-16 | 2011-11-01 | Gray & Company, Inc. | Navigation and control system for autonomous vehicles |
US7808538B2 (en) | 2007-01-22 | 2010-10-05 | Omnivision Technologies, Inc. | Image sensors with blooming reduction mechanisms |
US8384803B2 (en) | 2007-12-13 | 2013-02-26 | Keigo Iizuka | Camera system and method for amalgamating images to create an omni-focused image |
KR100917012B1 (ko) | 2008-02-27 | 2009-09-10 | 주식회사 아이닉스 | 영상 획득 장치 및 방법 |
US8126642B2 (en) | 2008-10-24 | 2012-02-28 | Gray & Company, Inc. | Control and systems for autonomously driven vehicles |
DE102009046124A1 (de) | 2009-10-28 | 2011-05-05 | Ifm Electronic Gmbh | Verfahren und Vorrichtung zur Kalibrierung eines 3D-TOF-Kamerasystems |
US8726305B2 (en) | 2010-04-02 | 2014-05-13 | Yahoo! Inc. | Methods and systems for application rendering and management on internet television enabled displays |
KR101145112B1 (ko) | 2010-05-11 | 2012-05-14 | 국방과학연구소 | 자율이동차량의 조향제어장치, 이를 구비하는 자율이동차량 및 자율이동차량의 조향제어방법 |
US9753128B2 (en) | 2010-07-23 | 2017-09-05 | Heptagon Micro Optics Pte. Ltd. | Multi-path compensation using multiple modulation frequencies in time of flight sensor |
WO2012095658A1 (en) | 2011-01-14 | 2012-07-19 | Bae Systems Plc | Data transfer system and method thereof |
US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
JP2012235332A (ja) | 2011-05-02 | 2012-11-29 | Sony Corp | 撮像装置、および撮像装置制御方法、並びにプログラム |
GB2492848A (en) | 2011-07-15 | 2013-01-16 | Softkinetic Sensors Nv | Optical distance measurement |
JP5947507B2 (ja) | 2011-09-01 | 2016-07-06 | キヤノン株式会社 | 撮像装置及びその制御方法 |
US9214084B2 (en) | 2011-12-05 | 2015-12-15 | Brightway Vision Ltd. | Smart traffic sign system and method |
FR2984254B1 (fr) | 2011-12-16 | 2016-07-01 | Renault Sa | Controle de vehicules autonomes |
US8718861B1 (en) | 2012-04-11 | 2014-05-06 | Google Inc. | Determining when to drive autonomously |
US9723233B2 (en) | 2012-04-18 | 2017-08-01 | Brightway Vision Ltd. | Controllable gated sensor |
US9549158B2 (en) | 2012-04-18 | 2017-01-17 | Brightway Vision Ltd. | Controllable single pixel sensors |
CN107690050B (zh) | 2012-04-18 | 2020-07-31 | 布莱特瓦维森有限公司 | 用于提供白天场景和夜间场景的改进的图像的系统 |
EP2856207B1 (en) | 2012-05-29 | 2020-11-11 | Brightway Vision Ltd. | Gated imaging using an adaptive depth of field |
US9620010B2 (en) | 2012-08-21 | 2017-04-11 | Brightway Vision Ltd. | Simultaneously illuminating traffic light signals at different ranges |
WO2014088997A1 (en) | 2012-12-03 | 2014-06-12 | Abb Technology Ag | Teleoperation of machines having at least one actuated mechanism and one machine controller comprising a program code including instructions for transferring control of the machine from said controller to a remote control station |
DE102013225676B4 (de) | 2012-12-17 | 2018-06-07 | pmdtechnologies ag | Lichtlaufzeitkamera mit einer Bewegungserkennung |
US9602807B2 (en) | 2012-12-19 | 2017-03-21 | Microsoft Technology Licensing, Llc | Single frequency time of flight de-aliasing |
CN103198128A (zh) | 2013-04-11 | 2013-07-10 | 苏州阔地网络科技有限公司 | 一种云教育平台的数据搜索方法及系统 |
US9729860B2 (en) | 2013-05-24 | 2017-08-08 | Microsoft Technology Licensing, Llc | Indirect reflection suppression in depth imaging |
IL227265A0 (en) | 2013-06-30 | 2013-12-31 | Brightway Vision Ltd | Smart flash for the camera |
KR102111784B1 (ko) | 2013-07-17 | 2020-05-15 | 현대모비스 주식회사 | 차량 위치 인식 장치 및 방법 |
CN108919294B (zh) * | 2013-11-20 | 2022-06-14 | 新唐科技日本株式会社 | 测距摄像系统以及固体摄像元件 |
EP2887311B1 (en) | 2013-12-20 | 2016-09-14 | Thomson Licensing | Method and apparatus for performing depth estimation |
US9739609B1 (en) | 2014-03-25 | 2017-08-22 | Amazon Technologies, Inc. | Time-of-flight sensor with configurable phase delay |
IL233356A (en) | 2014-06-24 | 2015-10-29 | Brightway Vision Ltd | Sensor-based imaging system with minimum wait time between sensor exposures |
US9628565B2 (en) | 2014-07-23 | 2017-04-18 | Here Global B.V. | Highly assisted driving platform |
US9766625B2 (en) | 2014-07-25 | 2017-09-19 | Here Global B.V. | Personalized driving of autonomously driven vehicles |
US9779276B2 (en) | 2014-10-10 | 2017-10-03 | Hand Held Products, Inc. | Depth sensor based auto-focus system for an indicia scanner |
US9773155B2 (en) | 2014-10-14 | 2017-09-26 | Microsoft Technology Licensing, Llc | Depth from time of flight camera |
US9547985B2 (en) | 2014-11-05 | 2017-01-17 | Here Global B.V. | Method and apparatus for providing access to autonomous vehicles based on user context |
US9494935B2 (en) | 2014-11-13 | 2016-11-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Remote operation of autonomous vehicle in unexpected environment |
KR102312273B1 (ko) | 2014-11-13 | 2021-10-12 | 삼성전자주식회사 | 거리영상 측정용 카메라 및 그 동작방법 |
US9347779B1 (en) | 2014-12-10 | 2016-05-24 | Here Global B.V. | Method and apparatus for determining a position of a vehicle based on driving behavior |
US9805294B2 (en) | 2015-02-12 | 2017-10-31 | Mitsubishi Electric Research Laboratories, Inc. | Method for denoising time-of-flight range images |
US9649999B1 (en) | 2015-04-28 | 2017-05-16 | Sprint Communications Company L.P. | Vehicle remote operations control |
US10345809B2 (en) | 2015-05-13 | 2019-07-09 | Uber Technologies, Inc. | Providing remote assistance to an autonomous vehicle |
US9690290B2 (en) | 2015-06-04 | 2017-06-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Situation-based transfer of vehicle sensor data during remote operation of autonomous vehicles |
US9754490B2 (en) | 2015-11-04 | 2017-09-05 | Zoox, Inc. | Software application to request and control an autonomous vehicle service |
US9507346B1 (en) | 2015-11-04 | 2016-11-29 | Zoox, Inc. | Teleoperation system and method for trajectory modification of autonomous vehicles |
EP3381182B1 (en) | 2015-11-26 | 2020-02-19 | Odos Imaging Ltd. | Imaging system, distance measuring device, method for operating the imaging system and the distance measuring device |
US9760837B1 (en) | 2016-03-13 | 2017-09-12 | Microsoft Technology Licensing, Llc | Depth from time-of-flight using machine learning |
US10578719B2 (en) * | 2016-05-18 | 2020-03-03 | James Thomas O'Keeffe | Vehicle-integrated LIDAR system |
US10753754B2 (en) | 2017-01-19 | 2020-08-25 | Andrew DeLizio | Managing autonomous vehicles |
US10009554B1 (en) | 2017-02-24 | 2018-06-26 | Lighthouse Ai, Inc. | Method and system for using light emission by a depth-sensing camera to capture video images under low-light conditions |
US10267899B2 (en) * | 2017-03-28 | 2019-04-23 | Luminar Technologies, Inc. | Pulse timing based on angle of view |
US20190064800A1 (en) * | 2017-08-28 | 2019-02-28 | nuTonomy Inc. | Mixed-mode driving of a vehicle having autonomous driving capabilities |
US11019274B2 (en) | 2018-09-10 | 2021-05-25 | Tusimple, Inc. | Adaptive illumination for a time-of-flight camera on a vehicle |
-
2018
- 2018-01-24 CN CN201810066893.8A patent/CN108270970B/zh active Active
-
2019
- 2019-01-17 US US16/250,823 patent/US11070756B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590821A (zh) * | 2010-12-21 | 2012-07-18 | 微软公司 | 多阳极飞行时间传感器 |
CN204314826U (zh) * | 2014-12-15 | 2015-05-06 | 成都凌感科技有限公司 | 一种暴雨中识别人体动作的3d识别装置 |
CN205230349U (zh) * | 2015-12-24 | 2016-05-11 | 北京万集科技股份有限公司 | 一种基于tof相机的交通车速检测与抓拍系统 |
CN107229625A (zh) * | 2016-03-23 | 2017-10-03 | 北京搜狗科技发展有限公司 | 一种拍摄处理方法和装置、一种用于拍摄处理的装置 |
CN106826833A (zh) * | 2017-03-01 | 2017-06-13 | 西南科技大学 | 基于3d立体感知技术的自主导航机器人系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108270970A (zh) | 2018-07-10 |
US11070756B2 (en) | 2021-07-20 |
US20190230303A1 (en) | 2019-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108270970B (zh) | 一种图像采集控制方法及装置、图像采集系统 | |
CN108259744B (zh) | 图像采集控制方法及其装置、图像采集系统和tof相机 | |
US11915502B2 (en) | Systems and methods for depth map sampling | |
TWI703064B (zh) | 用於在不良照明狀況下定位運輸工具的系統和方法 | |
CN111223135B (zh) | 通过使用雷达和运动数据的单目相机来增强距离估计的系统和方法 | |
US11841434B2 (en) | Annotation cross-labeling for autonomous control systems | |
CN109934108B (zh) | 一种多目标多种类的车辆检测和测距系统及实现方法 | |
CN109213138B (zh) | 一种避障方法、装置及系统 | |
CN104335244A (zh) | 对象物识别装置 | |
CN209014726U (zh) | 一种无人驾驶变视场固态面阵激光雷达测距系统 | |
US20210133947A1 (en) | Deep neural network with image quality awareness for autonomous driving | |
CN209991983U (zh) | 一种障碍物检测设备及无人机 | |
CN114675295A (zh) | 一种障碍物判定的方法、装置、设备及存储介质 | |
US20230394692A1 (en) | Method for estimating depth, electronic device, and storage medium | |
WO2022193154A1 (zh) | 雨刷控制方法、汽车及计算机可读存储介质 | |
CN114162083A (zh) | 雨刮器控制方法及相关装置、部件、系统、设备和介质 | |
CN115083152A (zh) | 一种车辆编队感知系统、方法、装置、设备及介质 | |
WO2021232031A2 (en) | Detection of hidden object using non-line-of-sight (nlos) imaging | |
CN117314993A (zh) | 深度估计模型训练方法、深度估计方法及电子设备 | |
CN117360493A (zh) | 车辆的泊车方法、装置、及车辆 | |
CN116580300A (zh) | 一种障碍物识别方法、自移动设备及存储介质 | |
CN112666365A (zh) | 测速方法、装置、计算机设备和存储介质 | |
CN116246235A (zh) | 基于行泊一体的目标检测方法、装置、电子设备和介质 | |
CN114689029A (zh) | 距离测量方法以及用于对距离进行测量的系统 | |
CN118906960A (zh) | 一种车灯控制方法、装置及车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200327 Address after: 101300, No. two, 1 road, Shunyi Park, Zhongguancun science and Technology Park, Beijing, Shunyi District Applicant after: BEIJING TUSENZHITU TECHNOLOGY Co.,Ltd. Address before: 101300, No. two, 1 road, Shunyi Park, Zhongguancun science and Technology Park, Beijing, Shunyi District Applicant before: TuSimple |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |