CN108224535A - 一种火电厂热电联产与压缩空气储能互补集成系统 - Google Patents
一种火电厂热电联产与压缩空气储能互补集成系统 Download PDFInfo
- Publication number
- CN108224535A CN108224535A CN201810047743.2A CN201810047743A CN108224535A CN 108224535 A CN108224535 A CN 108224535A CN 201810047743 A CN201810047743 A CN 201810047743A CN 108224535 A CN108224535 A CN 108224535A
- Authority
- CN
- China
- Prior art keywords
- heat
- energy storage
- air energy
- power plant
- compressed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 65
- 230000006835 compression Effects 0.000 claims abstract description 28
- 238000007906 compression Methods 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 230000005611 electricity Effects 0.000 claims abstract description 24
- 238000000605 extraction Methods 0.000 claims abstract description 20
- 230000008676 import Effects 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 4
- 238000009833 condensation Methods 0.000 claims description 4
- 230000005494 condensation Effects 0.000 claims description 4
- 239000003546 flue gas Substances 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims 1
- 230000005619 thermoelectricity Effects 0.000 description 8
- 230000001172 regenerating effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005622 photoelectricity Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/10—Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B23/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01B23/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K17/00—Using steam or condensate extracted or exhausted from steam engine plant
- F01K17/02—Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D1/00—Feed-water heaters, i.e. economisers or like preheaters
- F22D1/50—Feed-water heaters, i.e. economisers or like preheaters incorporating thermal de-aeration of feed-water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/18—Hot-water central heating systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/13—Heat from a district heating network
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
本发明公开了一种火电厂热电联产与压缩空气储能互补集成系统,包括火电厂热电联产系统和绝热压缩空气储能系统,可同时解决我国北方地区供暖季热负荷和电负荷供需不平衡的状况,容纳更多的可再生电能上网。同时避免热电联产机组供热抽汽参数过高造成高品位能量损失,压缩机组压缩热损失,并取消冷热水罐。高热负荷、低电负荷时所述系统处于“强热弱电”状态,此时所述压缩空气储能机组储电释热,所述热电联产机组和所述压缩空气储能机组共同向热用户供热;高电负荷、低热负荷时所述系统处于“强电弱热”状态,此时所述压缩空气储能机组吸收来自热电联产机组热量,同时释电;其他时刻所述热电联产机组单独工作,可在小幅度内调整供热、供电量。
Description
技术领域
本发明属能量储存、节能技术领域,涉及一种压缩空气储能系统,特别涉及一种火电厂热电联产与压缩空气储能互补集成系统,该系统可利用火电厂热电联产机组的汽轮机抽汽热量和锅炉排烟余热,实现电能和热能的高效存储和利用。
背景技术
压缩空气储能能够实现大容量和长时间电能储存,绝热压缩空气储能是一种不依赖燃料的先进储能系统。在运行过程中会产生大量压缩热,这部分压缩热由于换热器传热温差的限制,不能够完全传递给释能过程的压缩空气,所以会导致储热系统中的储热介质温度上升。这会对系统运行效率产生不利影响,解决方法通常是引入额外的冷却装置,但这会导致系统复杂程度的增加和热能的浪费;且冷热水罐会对系统的投资和占地有影响。
火电厂热电联产机组可以同时提供热能和电能,是一种高效的能源利用方式。然而热电机组在供暖期“以热定电”的原则与用户热、电需求不一致之间的矛盾,会排挤风电、光电等可再生能源的上网量。在满足供热的条件下,提高热电机组的调峰能力,即可提高风电、光电的消纳水平。因此,将热电联产机组热电解耦,增加机组运行的灵活性,对于消纳风电、光电等可再生能源,缓解电力供需关系有着重要的意义。
因此,将两种系统结合,形成一种火电厂热电联产与压缩空气储能互补集成系统,对于减少电网弃风弃光率、提高热电联产机组和绝热压缩空气储能系统、增加二者的系统效率都有着重要意义。
发明内容
针对现有火电厂热电联产机组热电解耦能力的不足,以及优化绝热压缩空气储能系统冷热水罐系统的不足,同时针对我国三北地区过多风电、光电等可再生能源无处消纳的问题,本发明提供了一种火电厂热电联产与压缩空气储能互补集成系统,将火电厂热电联产系统和绝热压缩空气储能系统耦合,可以使火电机组完成热电解耦,将多余的电能储存在绝热压缩空气储能系统里,同时可以通过热量流之间的耦合,摆脱绝热压缩空气储能系统冷热水罐限制,减少系统投资和占地。此外,本发明提供的集成系统对两个子系统的效率均起到提升的作用。本发明的发明目的还在于提高风能、太阳能等可再生能源消纳能力和燃料利用率,增加热电联产机组热电解耦能力,对电网和热力网削峰填谷。
本发明为实现其技术目的所采取的技术方案为:
一种火电厂热电联产与压缩空气储能互补集成系统,包括火电厂热电联产系统和压缩空气储能系统,其特征在于:
所述火电厂热电联产系统,包括汽轮机组、凝汽器、凝结水泵、锅炉,其中,所述汽轮机组包括高压进汽口、中低压蒸汽抽汽口、低压排汽口,所述汽轮机组的高压进汽口与所述锅炉的蒸汽出口通过管路连通,所述汽轮机组的低压排汽口通过管路依次经所述凝汽器、凝结水泵与所述锅炉的进水口连通,
所述压缩空气储能系统,包括压缩机组、压缩机换热器组、膨胀机组、膨胀机换热器组、高压储气罐,其中,所述压缩机组的进气口与大气连通,所述压缩机组的排气口经所述压缩机换热器组的热侧与所述高压储气罐的进气口连通,所述高压储气罐的出气口经所述膨胀机换热器组的冷侧与所述膨胀机组的进气口连通,
所述火电厂热电联产系统中的凝结水泵,其出水口还通过管路与所述压缩机换热器组的冷侧进口连通且二者之间的连通管路上设置有控制阀门,所述压缩机换热器组的冷侧出口排出的热水供应至热用户且二者之间的连通管路上也设置有控制阀门,
所述火电厂热电联产系统中的汽轮机组,所述中低压蒸汽抽汽口分为两路,一路与所述膨胀机换热器组的热侧进口连通且二者之间的连通管路上设置有控制阀门,另一路与热用户连通且二者之间的连通管路上也设置有控制阀门,所述膨胀机换热器组的热侧出口通过管路与所述凝结水泵的进水口连通且二者之间的连通管路上也设置有控制阀门。
优选地,所述火电厂热电联产系统还低压加热器、除氧器、给水泵、高压加热器,所述汽轮机组的低压排汽口通过管路依次经所述凝汽器、凝结水泵、低压加热器、除氧器、给水泵、高压加热器与所述锅炉的进水口连通。
优选地,所述火电厂热电联产系统还包括发电机,所述汽轮机组驱动连接所述发电机,所述发电机与电网连接。
优选地,所述锅炉的排烟管路上设置有烟气换热器,所述汽轮机组的中低压抽汽口通过管路经所述烟气换热器后与所述膨胀机换热器组的热侧进口连通。
优选地,所述高压储气罐的进气口处以及出气口处均设置有控制阀门。
优选地,所述压缩空气储能系统还包括电动机和发电机,所述电动机与电网连接并机械驱动所述压缩机组,所述发电机由所述膨胀机组机械驱动并与电网连接。
优选地,本发明的火电厂热电联产与压缩空气储能互补集成系统,包括两种控制模式,在热力需求较高、电力需求较低时段,所述集成系统处于第一控制模式;在热力需求较低、电力需求较高时段,所述集成系统处于第二控制模式。
进一步地,所述集成系统处于第一控制模式时,启动所述压缩机组,关闭所述膨胀机组,并关闭所述膨胀机换热器组热侧进口管路上的控制阀门,打开所述压缩机换热器组的冷侧进口管路上的控制阀门以及所述汽轮机组的中低压抽汽口与热用户之间、压缩机换热器组的冷侧出口与热用户之间的连通管路上的控制阀门,所述凝结水泵向所述压缩机换热器组的冷侧进口供水,所述汽轮机组的中低压抽汽口与所述压缩机换热器组的冷侧出口共同输送热流体至热用户。
进一步地,所述集成系统处于第二控制模式时,启动所述膨胀机组,关闭所述压缩机组,并关小所述汽轮机组的中低压抽汽口与热用户之间的连通管路上的控制阀门,打开所述膨胀机换热器组的热侧进口管路上的控制阀门,所述汽轮机组的中低压抽汽口向所述膨胀机换热器组的热侧进口供热蒸汽,同时所述膨胀机换热器组热侧出口的凝结水输送至所述凝结水泵的进水口。
进一步地,所述集成系统还包括第三控制模式,在绝热压缩空气储能系统处于待机状态时,所述集成系统处于第三控制模式。
本发明的火电厂热电联产与压缩空气储能互补集成系统,其基本结构为:①将火电厂热电联产系统与绝热压缩空气储能系统进行了耦合;②在第一控制模式(“高热负荷、低电负荷时的强热弱电”,供热功率较高、供电功率较低)工作状态下,此时绝热压缩空气储能机组储电释热,火电厂热电联产系统的汽轮机抽汽口与绝热压缩空气储能系统的压缩机换热器组冷侧出口共同输送热流体给热用户供热,同时火电厂热电联产系统的凝结水泵向绝热压缩空气储能系统的压缩机换热器组冷侧入口供水;③在第二控制模式(“高电负荷、低热负荷时的强电弱热”,供电功率较高、供热功率较低)工作状态下,绝热压缩空气储能机组吸收来自热电联产机组热量,同时释电,火电厂热电联产系统的汽轮机抽汽口向绝热压缩空气储能系统膨胀机换热器组热侧入口供热蒸汽且所述锅炉的热量同时传给热蒸汽,同时绝热压缩空气储能系统膨胀机换热器组热侧出口与所述火电厂热电联产系统的凝汽器出口相连,将换热器中的凝结水输送到凝结水泵中;④在第三控制模式下,火电厂热电联产系统工作方式同传统的热电联产机组,此时绝热压缩空气储能系统处于待机状态。
同现有技术相比,本发明的火电厂热电联产与压缩空气储能互补集成系统其有益效果:①在用户端高热负荷、低电负荷时,所述压缩空气储能机组储电释热,所述热电联产机组和所述压缩空气储能机组共同向热用户供热,相比现有技术可以供给用户更多的热量;②由于热电联产机组的热电耦合原理,原技术多供热之后的电能无处消纳,该技术可以将这部分电能储存起来;③由于用户用热高峰段发生在冬季后半夜,而冬季后半夜通常是风电厂出力最多时刻,该技术会增加风电的消纳,减少弃风率。
附图说明
图1为本发明的火电厂热电联产与压缩空气储能互补集成系统示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
为使本发明的目的、技术方案及优点更加清楚明白,下面结合附图并举实施例,详细描述火电厂热电联产与压缩空气储能互补集成系统的运行流程。需要说明的是,以下仅为本发明的较佳实施例,并不因此而限定本发明的保护范围。
针对现有热电联产机组在冬季供暖季供热量大、上网电量大从而排挤风电上网,以及我国三北地区过多风电无处消纳的问题,本发明的目的是提高风能等可再生能源消纳能力和燃料利用率,增加热电联产机组热电解耦能力,对电网和热力网削峰填谷。
如图1所示,本发明的火电厂热电联产与压缩空气储能互补集成系统包括两个子系统,火电厂热电联产子系统和绝热压缩空气储能子系统。火电厂热电联产子系统包括汽轮机组1,发电机2,凝汽器3,凝结水泵4,低压加热器5,除氧器6,给水泵7,高压加热器8,锅炉9。绝热压缩空气储能子系统包括电动机10,压缩机11、12,换热器13、14,阀门15,储气罐16,阀门17,换热器18、19,膨胀机20、21,发电机22。
在模式1(“强热弱电”)工作状态下,火电厂热电联产系统的汽轮机1抽汽口与绝热压缩空气储能系统的压缩机换热器组13、14的冷侧出口共同输送热流体给热用户供热,同时火电厂热电联产系统的凝结水泵4向绝热压缩空气储能系统的压缩机换热器组13、14的冷侧入口供水;在模式2(“强电弱热”)工作状态下,火电厂热电联产系统的汽轮组机1抽汽口向绝热压缩空气储能系统膨胀机换热器组18、19的热侧入口供热蒸汽且所述锅炉9的热量同时传给热蒸汽,同时绝热压缩空气储能系统膨胀机换热器组18、19的热侧出口与所述火电厂热电联产系统的凝汽器3的出口相连,将换热器中的凝结水输送到凝结水泵4中;在第三控制模式下,火电厂热电联产系统工作方式等同于传统的热电联产机组,此时绝热压缩空气储能系统处于待机状态。
本发明的火电厂热电联产与压缩空气储能互补集成系统,其工作原理为:
在热力需求较高、电力需求较低时段,比如供暖季的凌晨时段,所述集成系统处于模式1工作状态下,此时热电联产机组的汽轮机组1的抽汽向热用户供热;同时绝热压缩空气储能系统处于储电状态:来自火电厂热电联产机组或者风电机组或者电网上其他来源的电能将转化成压力能和热能,压力能储存在储气罐16中,热能将提供给热用户。在热力需求较低、电力需求较高时段,比如供暖季的傍晚时段,所述集成系统处于第二控制模式工作状态下,此时热电联产机组的汽轮机组1的抽汽部分供给热用户,部分供给绝热压缩空气储能系统的膨胀机换热器18、19;同时绝热压缩空气储能系统处于释电状态:其向电网供电,以满足此时的高电负荷需求。
通过上述实施例,完全有效地实现了本发明的目的。该领域的技术人员可以理解本发明包括但不限于附图和以上具体实施方式中描述的内容。虽然本发明就目前认为最为实用且优选的实施例进行说明,但应知道,本发明并不限于所公开的实施例,任何不偏离本发明的功能和结构原理的修改都将包括在权利要求书的范围中。
Claims (10)
1.一种火电厂热电联产与压缩空气储能互补集成系统,包含火电厂热电联产系统和压缩空气储能系统,其特征在于:
所述火电厂热电联产系统,包括汽轮机组、凝汽器、凝结水泵、锅炉,其中,所述汽轮机组包括高压进汽口、中低压蒸汽抽汽口、低压排汽口,所述汽轮机组的高压进汽口与所述锅炉的蒸汽出口通过管路连通,所述汽轮机组的低压排汽口通过管路依次经所述凝汽器、凝结水泵与所述锅炉的进水口连通,
所述压缩空气储能系统,包括压缩机组、压缩机换热器组、膨胀机组、膨胀机换热器组、高压储气罐,其中,所述压缩机组的进气口与大气连通,所述压缩机组的排气口经所述压缩机换热器组的热侧与所述高压储气罐的进气口连通,所述高压储气罐的出气口经所述膨胀机换热器组的冷侧与所述膨胀机组的进气口连通,
所述火电厂热电联产系统中的凝结水泵,其出水口还通过管路与所述压缩机换热器组的冷侧进口连通且二者之间的连通管路上设置有控制阀门,所述压缩机换热器组的冷侧出口排出的热水供应至热用户且二者之间的连通管路上也设置有控制阀门,
所述火电厂热电联产系统中的汽轮机组,所述中低压蒸汽抽汽口分为两路,一路与所述膨胀机换热器组的热侧进口连通且二者之间的连通管路上设置有控制阀门,另一路与热用户连通且二者之间的连通管路上也设置有控制阀门,所述膨胀机换热器组的热侧出口通过管路与所述凝结水泵的进水口连通且二者之间的连通管路上也设置有控制阀门。
2.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述火电厂热电联产系统还低压加热器、除氧器、给水泵、高压加热器,所述汽轮机组的低压排汽口通过管路依次经所述凝汽器、凝结水泵、低压加热器、除氧器、给水泵、高压加热器与所述锅炉的进水口连通。
3.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述火电厂热电联产系统还包括发电机,所述汽轮机组驱动连接所述发电机,所述发电机与电网连接。
4.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述锅炉的排烟管路上设置有烟气换热器,所述汽轮机组的中低压抽汽口通过管路经所述烟气换热器后与所述膨胀机换热器组的热侧进口连通。
5.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述高压储气罐的进气口处以及出气口处均设置有控制阀门。
6.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述压缩空气储能系统还包括电动机和发电机,所述电动机与电网连接并机械驱动所述压缩机组,所述发电机由所述膨胀机组机械驱动并与电网连接。
7.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述集成系统包括两种控制模式,在热力需求较高、电力需求较低时段,所述集成系统处于第一控制模式;在热力需求较低、电力需求较高时段,所述集成系统处于第二控制模式。
8.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述集成系统处于第一控制模式时,启动所述压缩机组,关闭所述膨胀机组,并关闭所述膨胀机换热器组热侧进口管路上的控制阀门,打开所述压缩机换热器组的冷侧进口管路上的控制阀门以及所述汽轮机组的中低压抽汽口与热用户之间、压缩机换热器组的冷侧出口与热用户之间的连通管路上的控制阀门,所述凝结水泵向所述压缩机换热器组的冷侧进口供水,所述汽轮机组的中低压抽汽口与所述压缩机换热器组的冷侧出口共同输送热流体至热用户。
9.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述集成系统处于第二控制模式时,启动所述膨胀机组,关闭所述压缩机组,并关小所述汽轮机组的中低压抽汽口与热用户之间的连通管路上的控制阀门,打开所述膨胀机换热器组的热侧进口管路上的控制阀门,所述汽轮机组的中低压抽汽口向所述膨胀机换热器组的热侧进口供热蒸汽,同时所述膨胀机换热器组热侧出口的凝结水输送至所述凝结水泵的进水口。
10.根据上述权利要求所述的火电厂热电联产与压缩空气储能互补集成系统,其特征在于:所述集成系统还包括第三控制模式,在绝热压缩空气储能系统处于待机状态时,所述集成系统处于第三控制模式。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810047743.2A CN108224535B (zh) | 2018-01-18 | 2018-01-18 | 一种火电厂热电联产与压缩空气储能互补集成系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810047743.2A CN108224535B (zh) | 2018-01-18 | 2018-01-18 | 一种火电厂热电联产与压缩空气储能互补集成系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108224535A true CN108224535A (zh) | 2018-06-29 |
CN108224535B CN108224535B (zh) | 2020-03-24 |
Family
ID=62667559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810047743.2A Active CN108224535B (zh) | 2018-01-18 | 2018-01-18 | 一种火电厂热电联产与压缩空气储能互补集成系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108224535B (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109494772A (zh) * | 2018-12-29 | 2019-03-19 | 西安西热节能技术有限公司 | 一种以空气为介质的储能调峰系统 |
CN110080845A (zh) * | 2019-05-21 | 2019-08-02 | 福建省东锅节能科技有限公司 | 热电联产与压缩空气相结合的储能系统及其工作方法 |
CN111305917A (zh) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | 一种蒸汽补热空气储能调峰系统及方法 |
CN111305919A (zh) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | 一种发电厂空气储能灵活性调峰系统及方法 |
CN111964035A (zh) * | 2020-09-18 | 2020-11-20 | 西安热工研究院有限公司 | 一种火电厂耦合高效压缩式热泵储能调峰系统及方法 |
CN112412561A (zh) * | 2020-11-11 | 2021-02-26 | 贵州电网有限责任公司 | 压缩空气储能系统和火力发电厂控制系统耦合控制方法 |
CN113090509A (zh) * | 2021-04-08 | 2021-07-09 | 西安热工研究院有限公司 | 一种压缩空气储能耦合火电机组深度调峰系统及方法 |
CN114963281A (zh) * | 2022-05-25 | 2022-08-30 | 哈尔滨工业大学 | 一种储能系统与燃煤机组耦合的热电联产系统及运行方法 |
CN114991895A (zh) * | 2022-05-30 | 2022-09-02 | 华能国际电力股份有限公司 | 一种耦合压缩空气储能的燃煤发电机组及其运行方法 |
CN116202128A (zh) * | 2023-02-23 | 2023-06-02 | 中国电建集团河北省电力勘测设计研究院有限公司 | 一种利用压缩空气储能压缩热余热供暖的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014159525A1 (en) * | 2013-03-14 | 2014-10-02 | Dresser-Rand Company | Caes plant using steam injection and bottoming cycle expander |
CN104675458A (zh) * | 2015-02-09 | 2015-06-03 | 山东大学 | 背压式热电机组用的热电联供型压缩空气储能系统及方法 |
CN105221345A (zh) * | 2015-09-26 | 2016-01-06 | 国网山东省电力公司济南供电公司 | 一种热电联供型压缩空气储能系统及其控制方法 |
CN105370408A (zh) * | 2015-12-16 | 2016-03-02 | 中国科学院工程热物理研究所 | 一种新型蓄热式压缩空气储能系统 |
CN106089338A (zh) * | 2016-06-03 | 2016-11-09 | 东南大学 | 一种调节供热与发电的背压机联合系统及方法 |
CN205823355U (zh) * | 2016-06-12 | 2016-12-21 | 铂瑞能源环境工程有限公司 | 一种热电联产系统 |
JP2017008727A (ja) * | 2015-06-16 | 2017-01-12 | 株式会社神戸製鋼所 | 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 |
-
2018
- 2018-01-18 CN CN201810047743.2A patent/CN108224535B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014159525A1 (en) * | 2013-03-14 | 2014-10-02 | Dresser-Rand Company | Caes plant using steam injection and bottoming cycle expander |
CN104675458A (zh) * | 2015-02-09 | 2015-06-03 | 山东大学 | 背压式热电机组用的热电联供型压缩空气储能系统及方法 |
JP2017008727A (ja) * | 2015-06-16 | 2017-01-12 | 株式会社神戸製鋼所 | 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 |
CN105221345A (zh) * | 2015-09-26 | 2016-01-06 | 国网山东省电力公司济南供电公司 | 一种热电联供型压缩空气储能系统及其控制方法 |
CN105370408A (zh) * | 2015-12-16 | 2016-03-02 | 中国科学院工程热物理研究所 | 一种新型蓄热式压缩空气储能系统 |
CN106089338A (zh) * | 2016-06-03 | 2016-11-09 | 东南大学 | 一种调节供热与发电的背压机联合系统及方法 |
CN205823355U (zh) * | 2016-06-12 | 2016-12-21 | 铂瑞能源环境工程有限公司 | 一种热电联产系统 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109494772A (zh) * | 2018-12-29 | 2019-03-19 | 西安西热节能技术有限公司 | 一种以空气为介质的储能调峰系统 |
CN110080845B (zh) * | 2019-05-21 | 2024-03-01 | 福建省东锅节能科技有限公司 | 热电联产与压缩空气相结合的储能系统及其工作方法 |
CN110080845A (zh) * | 2019-05-21 | 2019-08-02 | 福建省东锅节能科技有限公司 | 热电联产与压缩空气相结合的储能系统及其工作方法 |
CN111305917A (zh) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | 一种蒸汽补热空气储能调峰系统及方法 |
CN111305919A (zh) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | 一种发电厂空气储能灵活性调峰系统及方法 |
CN111964035A (zh) * | 2020-09-18 | 2020-11-20 | 西安热工研究院有限公司 | 一种火电厂耦合高效压缩式热泵储能调峰系统及方法 |
CN112412561A (zh) * | 2020-11-11 | 2021-02-26 | 贵州电网有限责任公司 | 压缩空气储能系统和火力发电厂控制系统耦合控制方法 |
CN113090509A (zh) * | 2021-04-08 | 2021-07-09 | 西安热工研究院有限公司 | 一种压缩空气储能耦合火电机组深度调峰系统及方法 |
CN114963281B (zh) * | 2022-05-25 | 2023-08-25 | 哈尔滨工业大学 | 一种储能系统与燃煤机组耦合的热电联产系统及运行方法 |
CN114963281A (zh) * | 2022-05-25 | 2022-08-30 | 哈尔滨工业大学 | 一种储能系统与燃煤机组耦合的热电联产系统及运行方法 |
CN114991895A (zh) * | 2022-05-30 | 2022-09-02 | 华能国际电力股份有限公司 | 一种耦合压缩空气储能的燃煤发电机组及其运行方法 |
CN114991895B (zh) * | 2022-05-30 | 2023-04-28 | 华能国际电力股份有限公司 | 一种耦合压缩空气储能的燃煤发电机组及其运行方法 |
CN116202128A (zh) * | 2023-02-23 | 2023-06-02 | 中国电建集团河北省电力勘测设计研究院有限公司 | 一种利用压缩空气储能压缩热余热供暖的方法 |
CN116202128B (zh) * | 2023-02-23 | 2023-10-03 | 中国电建集团河北省电力勘测设计研究院有限公司 | 一种利用压缩空气储能压缩热余热供暖的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108224535B (zh) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108224535A (zh) | 一种火电厂热电联产与压缩空气储能互补集成系统 | |
CN108625911B (zh) | 一种提升供热机组电出力调节能力的热力系统 | |
CN106979041A (zh) | 一种汽轮机低压缸高真空脱缸运行热电解耦系统的改造方法 | |
CN107514667A (zh) | 采用电动热泵实现热电厂跨季节蓄热放热的集中供热系统 | |
WO2022056990A1 (zh) | 一种火电厂耦合高效压缩式热泵储能调峰系统及方法 | |
CN106870037A (zh) | 一种超临界二氧化碳布雷顿循环系统 | |
CN104832290A (zh) | 一种分布式能源烟气余热深度利用系统 | |
CN109084498A (zh) | 一种绝热压缩空气-高温差热泵耦合系统 | |
CN106499455A (zh) | 联合循环电厂汽水回热及燃料加热集成提效系统 | |
CN112611010B (zh) | 一种多热源热电联产机组发电负荷灵活调节系统的调节方法 | |
CN202267113U (zh) | 一种零能源损耗率的热电厂的燃蒸循环热电冷三联供系统 | |
CN206845247U (zh) | 一种增强电厂灵活性热力系统 | |
CN108757129A (zh) | 一种sofc燃料电池与内燃机燃气分布式耦合系统及其运行方法 | |
CN215170241U (zh) | 一种火电厂储能调峰耦合系统 | |
CN107060914B (zh) | 一种基于超临界co2布雷顿循环的热电联产系统 | |
CN216408920U (zh) | 一种双热源热工混合压缩热泵蒸汽系统 | |
CN105222203A (zh) | 一种新型燃气热电联产集中供热装置 | |
CN207849517U (zh) | 具有串并联转换功能的循环水余热供暖系统 | |
CN201723313U (zh) | 可用于分布式的空气及燃料湿化燃气轮机联合循环装置 | |
CN102278205A (zh) | 可用于分布式的空气及燃料湿化燃气轮机联合循环方法 | |
CN110567025B (zh) | 一种储热罐耦合压缩式热泵的热电解耦系统及运行方法 | |
CN204704011U (zh) | 一种分布式能源烟气余热深度利用系统 | |
CN208502858U (zh) | 一种利用汽轮机低压抽汽替代高压抽汽的供热系统 | |
CN116591791B (zh) | 一种结合火电的压缩空气储能系统及运行方法 | |
CN201246193Y (zh) | 利用太阳能及空气热能提取技术蓄热发电的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |