CN108010038B - 基于自适应阈值分割的直播服饰装扮方法及装置 - Google Patents
基于自适应阈值分割的直播服饰装扮方法及装置 Download PDFInfo
- Publication number
- CN108010038B CN108010038B CN201711376447.9A CN201711376447A CN108010038B CN 108010038 B CN108010038 B CN 108010038B CN 201711376447 A CN201711376447 A CN 201711376447A CN 108010038 B CN108010038 B CN 108010038B
- Authority
- CN
- China
- Prior art keywords
- image
- foreground
- dress
- information
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/21—Server components or server architectures
- H04N21/218—Source of audio or video content, e.g. local disk arrays
- H04N21/2187—Live feed
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于自适应阈值分割的直播服饰装扮方法、装置、计算设备及计算机存储介质,该方法包括:实时获取视频中包含特定对象的当前帧图像;对当前帧图像进行场景分割处理,得到针对特定对象的前景概率信息,根据前景概率信息,确定前景区域占比,并依据前景区域占比,对前景概率信息进行映射处理,得到与当前帧图像对应的图像分割结果;根据图像分割结果,确定处理后的前景图像,并依据处理后的前景图像,确定处理后的前景图像中的肢体区域;根据用户选择的服饰装扮,对肢体区域添加服饰装扮效果,得到帧处理图像;将帧处理图像覆盖当前帧图像得到处理后的视频数据;显示处理后的视频数据。该技术方案能够精准地对人物添加服饰装扮效果。
Description
技术领域
本发明涉及图像处理技术领域,具体涉及一种基于自适应阈值分割的直播服饰装扮方法、装置、计算设备及计算机存储介质。
背景技术
现有技术中,当用户需要对视频进行个性化处理时,例如为视频中的人物添加服饰装扮效果等,经常会使用到图像分割方法对视频中的帧图像进行场景分割处理,其中,采用基于深度学习的图像分割方法可以达到像素级别的分割效果。然而现有的图像分割方法在进行场景分割处理时,并不考虑前景图像在帧图像中所占比例,因此当前景图像在帧图像中所占比例较小时,利用现有的图像分割方法很容易将实际属于前景图像边缘处的像素点划分为背景图像,所得到的图像分割结果的分割精度较低、分割效果较差。因此,现有技术中的图像分割方式存在着图像场景分割的分割精度低下的问题,那么利用所得到的图像分割结果也无法很好地、精准地对视频中的人物的肢体区域添加服饰装扮效果,所得到的处理后的视频数据的显示效果较差。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的基于自适应阈值分割的直播服饰装扮方法、装置、计算设备及计算机存储介质。
根据本发明的一个方面,提供了一种基于自适应阈值分割的直播服饰装扮方法,该方法包括:
实时获取图像采集设备所拍摄和/或所录制的视频中包含特定对象的当前帧图像;
对当前帧图像进行场景分割处理,得到针对特定对象的前景概率信息,根据前景概率信息,确定前景区域占比,并依据前景区域占比,对前景概率信息进行映射处理,得到与当前帧图像对应的图像分割结果;
根据图像分割结果,确定处理后的前景图像,并依据处理后的前景图像,确定处理后的前景图像中的肢体区域;
根据用户选择的服饰装扮,对肢体区域添加服饰装扮效果,得到帧处理图像;
将帧处理图像覆盖当前帧图像得到处理后的视频数据;
显示处理后的视频数据。
进一步地,前景概率信息记录了用于反映当前帧图像中各个像素点属于前景图像的概率。
进一步地,根据用户选择的服饰装扮,对肢体区域添加服饰装扮效果,得到帧处理图像进一步包括:
根据用户选择的服饰装扮,确定与服饰装扮对应的基础服饰装扮效果贴图;
从肢体区域中提取出肢体区域的关键信息;
根据肢体区域的关键信息,对基础服饰装扮效果贴图进行处理,得到服饰装扮效果贴图;
根据肢体区域的关键信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像。
进一步地,关键信息为关键点信息;
根据肢体区域的关键信息,对基础服饰装扮效果贴图进行处理进一步包括:
根据关键点信息,计算具有对称关系的至少两个关键点之间的位置信息;
依据位置信息中的距离信息,对基础服饰装扮效果贴图进行缩放处理;和/或,依据位置信息中的旋转角度信息,对基础服饰装扮效果贴图进行旋转处理。
进一步地,根据肢体区域的关键信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像进一步包括:
根据肢体区域的关键信息,确定与服饰装扮效果贴图对应的融合位置信息;
按照融合位置信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像。
进一步地,该方法还包括:
从视频中选取包含特定对象的帧图像,将帧图像确定为待识别帧图像;
对待识别帧图像进行分析,确定待推荐服饰装扮;
向用户推荐待推荐服饰装扮。
进一步地,对待识别帧图像进行分析,确定待推荐服饰装扮进一步包括:
对待识别帧图像进行场景分割处理,得到针对特定对象的待识别区域图像;
对待识别区域图像进行识别,得到特定对象的特征信息;
利用预设匹配规则将特征信息与直播服饰装扮进行匹配,确定待推荐服饰装扮。
进一步地,根据前景概率信息,确定前景区域占比进一步包括:
根据前景概率信息,确定属于前景图像的像素点;
计算属于前景图像的像素点在当前帧图像中所有像素点中的比例,将比例确定为前景区域占比。
进一步地,根据前景概率信息,确定属于前景图像的像素点进一步包括:
将前景概率信息中概率高于预设概率阈值的像素点确定为属于前景图像的像素点。
进一步地,依据前景区域占比,对前景概率信息进行映射处理,得到与当前帧图像对应的图像分割结果进一步包括:
依据前景区域占比,调整映射函数的参数;
利用调整后的映射函数对前景概率信息进行映射处理,得到映射结果;
根据映射结果,得到与当前帧图像对应的图像分割结果。
进一步地,映射函数在预设定义区间内的斜率大于预设斜率阈值。
进一步地,显示处理后的视频数据进一步包括:将处理后的视频数据实时显示;
该方法还包括:将处理后的视频数据上传至云服务器。
进一步地,将处理后的视频数据上传至云服务器进一步包括:
将处理后的视频数据上传至云视频平台服务器,以供云视频平台服务器在云视频平台进行展示视频数据。
进一步地,将处理后的视频数据上传至云服务器进一步包括:
将处理后的视频数据上传至云直播服务器,以供云直播服务器将视频数据实时推送给观看用户客户端。
进一步地,将处理后的视频数据上传至云服务器进一步包括:
将处理后的视频数据上传至云公众号服务器,以供云公众号服务器将视频数据推送给公众号关注客户端。
根据本发明的另一方面,提供了一种基于自适应阈值分割的直播服饰装扮装置,该装置包括:
获取模块,适于实时获取图像采集设备所拍摄和/或所录制的视频中包含特定对象的当前帧图像;
分割模块,适于对当前帧图像进行场景分割处理,得到针对特定对象的前景概率信息,根据前景概率信息,确定前景区域占比,并依据前景区域占比,对前景概率信息进行映射处理,得到与当前帧图像对应的图像分割结果;
第一确定模块,适于根据图像分割结果,确定处理后的前景图像,并依据处理后的前景图像,确定处理后的前景图像中的肢体区域;
处理模块,适于根据用户选择的服饰装扮,对肢体区域添加服饰装扮效果,得到帧处理图像;
覆盖模块,适于将帧处理图像覆盖当前帧图像得到处理后的视频数据;
显示模块,适于显示处理后的视频数据。
进一步地,前景概率信息记录了用于反映当前帧图像中各个像素点属于前景图像的概率。
进一步地,处理模块进一步适于:
根据用户选择的服饰装扮,确定与服饰装扮对应的基础服饰装扮效果贴图;
从肢体区域中提取出肢体区域的关键信息;
根据肢体区域的关键信息,对基础服饰装扮效果贴图进行处理,得到服饰装扮效果贴图;
根据肢体区域的关键信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像。
进一步地,关键信息为关键点信息;
处理模块进一步适于:
根据关键点信息,计算具有对称关系的至少两个关键点之间的位置信息;
依据位置信息中的距离信息,对基础服饰装扮效果贴图进行缩放处理;和/或,依据位置信息中的旋转角度信息,对基础服饰装扮效果贴图进行旋转处理。
进一步地,处理模块进一步适于:
根据肢体区域的关键信息,确定与服饰装扮效果贴图对应的融合位置信息;
按照融合位置信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像。
进一步地,该装置还包括:
选取模块,适于从视频中选取包含特定对象的帧图像,将帧图像确定为待识别帧图像;
第二确定模块,适于对待识别帧图像进行分析,确定待推荐服饰装扮;
推荐模块,适于向用户推荐待推荐服饰装扮。
进一步地,第二确定模块进一步适于:
对待识别帧图像进行场景分割处理,得到针对特定对象的待识别区域图像;
对待识别区域图像进行识别,得到特定对象的特征信息;
利用预设匹配规则将特征信息与直播服饰装扮进行匹配,确定待推荐服饰装扮。
进一步地,分割模块进一步适于:
根据前景概率信息,确定属于前景图像的像素点;
计算属于前景图像的像素点在当前帧图像中所有像素点中的比例,将比例确定为前景区域占比。
进一步地,分割模块进一步适于:
将前景概率信息中概率高于预设概率阈值的像素点确定为属于前景图像的像素点。
进一步地,分割模块进一步适于:
依据前景区域占比,调整映射函数的参数;
利用调整后的映射函数对前景概率信息进行映射处理,得到映射结果;
根据映射结果,得到与当前帧图像对应的图像分割结果。
进一步地,映射函数在预设定义区间内的斜率大于预设斜率阈值。
进一步地,显示模块进一步适于:将处理后的视频数据实时显示;
该装置还包括:上传模块,适于将处理后的视频数据上传至云服务器。
进一步地,上传模块进一步适于:
将处理后的视频数据上传至云视频平台服务器,以供云视频平台服务器在云视频平台进行展示视频数据。
进一步地,上传模块进一步适于:
将处理后的视频数据上传至云直播服务器,以供云直播服务器将视频数据实时推送给观看用户客户端。
进一步地,上传模块进一步适于:
将处理后的视频数据上传至云公众号服务器,以供云公众号服务器将视频数据推送给公众号关注客户端。
根据本发明的又一方面,提供了一种计算设备,包括:处理器、存储器、通信接口和通信总线,处理器、存储器和通信接口通过通信总线完成相互间的通信;
存储器用于存放至少一可执行指令,可执行指令使处理器执行上述基于自适应阈值分割的直播服饰装扮方法对应的操作。
根据本发明的再一方面,提供了一种计算机存储介质,存储介质中存储有至少一可执行指令,可执行指令使处理器执行如上述基于自适应阈值分割的直播服饰装扮方法对应的操作。
根据本发明提供的技术方案,依据前景区域占比对针对特定对象的前景概率信息进行映射处理,实现了对前景概率信息的自适应映射,利用映射处理后的前景概率信息能够快速、精准地得到帧图像对应的图像分割结果,有效地提高了图像场景分割的分割精度以及处理效率,优化了图像场景分割处理方式,并且基于所得到的图像分割结果能够更为精准、快速地对帧图像中的人物的肢体区域添加服饰装扮效果,美化了视频数据显示效果,提高了视频数据处理效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本发明一个实施例的基于自适应阈值分割的直播服饰装扮方法的流程示意图;
图2示出了根据本发明另一个实施例的基于自适应阈值分割的直播服饰装扮方法的流程示意图;
图3示出了根据本发明一个实施例的基于自适应阈值分割的直播服饰装扮装置的结构框图;
图4示出了根据本发明实施例的一种计算设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图1示出了根据本发明一个实施例的基于自适应阈值分割的直播服饰装扮方法的流程示意图,如图1所示,该方法包括如下步骤:
步骤S100,实时获取图像采集设备所拍摄和/或所录制的视频中包含特定对象的当前帧图像。
本实施例中图像采集设备以终端设备所使用的摄像头为例进行说明。实时获取到终端设备摄像头在拍摄视频时的当前帧图像或者录制视频时的当前帧图像。由于本发明对特定对象进行处理,因此获取当前帧图像时仅获取包含特定对象的当前帧图像。其中,特定对象可为人体等。本领域技术人员可根据实际需要对特定对象进行设置,此处不做限定。
步骤S101,对当前帧图像进行场景分割处理,得到针对特定对象的前景概率信息,根据前景概率信息,确定前景区域占比,并依据前景区域占比,对前景概率信息进行映射处理,得到与当前帧图像对应的图像分割结果。
其中,在对当前帧图像进行场景分割处理时,可以利用深度学习方法。深度学习是机器学习中一种基于对数据进行表征学习的方法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务。可利用深度学习的分割方法对当前帧图像进行场景分割处理,得到当前帧图像针对于特定对象的前景概率信息。具体地,可利用深度学习方法得到的场景分割网络等对当前帧图像进行场景分割处理,得到当前帧图像针对于特定对象的前景概率信息,其中,前景概率信息记录了用于反映当前帧图像中各个像素点属于前景图像的概率,具体地,各个像素点属于前景图像的概率的取值范围可为[0,1]。
在本发明中,前景图像可以仅包含特定对象,背景图像为当前帧图像中除前景图像之外的图像。根据前景概率信息可区分出当前帧图像中哪些像素点属于前景图像,哪些像素点属于背景图像,哪些像素点既可能属于前景图像也可能属于背景图像。例如,若某个像素点对应的前景概率信息接近0,则说明该像素点属于背景图像;若某个像素点对应的前景概率信息接近1,则说明该像素点属于前景图像;若某个像素点对应的前景概率信息接近0.5,则说明该像素点既可能属于前景图像也可能属于背景图像。
在得到了前景概率信息之后,就可根据前景概率信息确定出当前帧图像中哪些像素点属于前景图像,从而确定出前景区域占比。其中,前景区域占比是用于反映前景图像在当前帧图像中所占面积的比例。依据前景区域占比,对前景概率信息进行适应性的映射处理,例如,当前景区域占比较小时,比如前景区域占比为0.2,说明前景图像在当前帧图像中所占的面积较小,那么可对前景概率信息进行映射处理,将前景概率信息中较小的概率适应性地映射为较大一些的概率,将前景概率信息中较大的概率适应性地映射为较为平滑的概率;又如,当前景区域占比较大时,比如前景区域占比为0.8,说明前景图像在当前帧图像中所占的面积较大,那么可对前景概率信息进行映射处理,将前景概率信息中的概率适应性地映射为较为平滑的概率。在对前景概率信息进行映射处理后,根据映射处理后的前景概率信息得到与当前帧图像对应的图像分割结果,与现有技术相比,本发明提供的这种处理方式能够有效地提高图像场景分割的分割精度,使得分割边缘更加平滑。
步骤S102,根据图像分割结果,确定处理后的前景图像,并依据处理后的前景图像,确定处理后的前景图像中的肢体区域。
根据图像分割结果可清楚地确定出当前帧图像中哪些像素点属于前景图像,哪些像素点属于背景图像,从而确定出处理后的前景图像,然后对处理后的前景图像进行识别,从而确定出处理后的前景图像中的肢体区域。具体地,可采用现有技术中的图像识别方法对处理后的前景图像进行识别,还可利用经过训练的识别网络识别处理后的前景图像中的肢体区域。由于识别网络是经过训练的,所以将处理后的前景图像输入至识别网络中,就可方便地得到处理后的前景图像中的肢体区域。其中,以特定对象为人体为例,肢体区域可包括头部区域、上身区域、下身区域以及脚部区域等区域。
步骤S103,根据用户选择的服饰装扮,对肢体区域添加服饰装扮效果,得到帧处理图像。
具体地,可向用户推荐待推荐服饰装扮,用户可从待推荐服饰装扮中选择一个服饰装扮。在确定了肢体区域之后,根据用户选择的服饰装扮,对肢体区域添加服饰装扮效果,得到帧处理图像。本领域技术人员可根据实际需要添加服饰装扮效果,此处不做限定。具体地,可通过绘制与肢体区域对应的服饰装扮效果贴图,然后将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像,例如,针对肢体区域中的头部区域,可绘制与头部区域对应的帽子效果贴图;针对肢体区域中的上身区域,可绘制与上身区域对应的上衣效果贴图;针对肢体区域中的下身区域,可绘制与下身区域对应的下衣效果贴图或者裙装效果贴图;针对肢体区域中的脚部区域,可绘制与脚部区域对应的鞋子效果贴图。
步骤S104,将帧处理图像覆盖当前帧图像得到处理后的视频数据。
使用帧处理图像直接覆盖掉原来的当前帧图像,直接可以得到处理后的视频数据。同时,录制的用户还可以直接看到帧处理图像。
在得到帧处理图像时,会将帧处理图像直接覆盖原来的当前帧图像。覆盖时的速度较快,一般在1/24秒之内完成。对于用户而言,由于覆盖处理的时间相对短,人眼没有明显的察觉,即人眼没有察觉到视频数据中的原当前帧图像被覆盖的过程。这样在后续显示处理后的视频数据时,相当于一边拍摄和/或录制和/或播放视频数据时,一边实时显示的为处理后的视频数据,用户不会感觉到视频数据中帧图像发生覆盖的显示效果。
步骤S105,显示处理后的视频数据。
得到处理后的视频数据后,可以将其实时的进行显示,用户可以直接看到处理后的视频数据的显示效果。
根据本实施例提供的基于自适应阈值分割的直播服饰装扮方法,依据前景区域占比对针对特定对象的前景概率信息进行映射处理,实现了对前景概率信息的自适应映射,利用映射处理后的前景概率信息能够快速、精准地得到帧图像对应的图像分割结果,有效地提高了图像场景分割的分割精度以及处理效率,优化了图像场景分割处理方式,并且基于所得到的图像分割结果能够更为精准、快速地对帧图像中的人物的肢体区域添加服饰装扮效果,美化了视频数据显示效果,提高了视频数据处理效率。
图2示出了根据本发明另一个实施例的基于自适应阈值分割的直播服饰装扮方法的流程示意图,如图2所示,该方法包括如下步骤:
步骤S200,实时获取图像采集设备所拍摄和/或所录制的视频中包含特定对象的当前帧图像。
步骤S201,对当前帧图像进行场景分割处理,得到针对特定对象的前景概率信息,根据前景概率信息,确定前景区域占比。
其中,可根据前景概率信息,确定属于前景图像的像素点,然后计算属于前景图像的像素点在当前帧图像中所有像素点中的比例,将比例确定为前景区域占比。具体地,前景概率信息记录了用于反映当前帧图像中各个像素点属于前景图像的概率,各个像素点属于前景图像的概率的取值范围可为[0,1],那么可将前景概率信息中概率高于预设概率阈值的像素点确定为属于前景图像的像素点。本领域技术人员可根据实际需要对预设概率阈值进行设置,此处不做限定。例如当预设概率阈值为0.7时,那么可将前景概率信息高于0.7的像素点确定为属于前景图像的像素点。在确定了属于前景图像的像素点之后,可计算属于前景图像的像素点的数量和当前帧图像中所有像素点的数量,属于前景图像的像素点的数量与所有像素点的数量的比值即为前景区域占比。
步骤S202,依据前景区域占比,调整映射函数的参数,并利用调整后的映射函数对前景概率信息进行映射处理,得到映射结果。
其中,可利用映射函数对前景概率信息进行映射处理,本领域技术人员可根据实际需要设置映射函数,此处不做限定。例如,映射函数可为分段线性变换函数或非线性变换函数。对于不同的前景区域占比,所对应的映射函数的参数不同。在调整了映射函数之后,可将前景概率信息作为调整后的映射函数的自变量,那么所得到的函数值即为映射结果。
具体地,当前景区域占比较小时,说明前景图像在当前帧图像中所占的面积较小,那么在步骤S202中依据前景区域占比,对映射函数的参数进行调整,使得利用调整后的映射函数对前景概率信息进行映射处理时,能够将前景概率信息中较小的概率适应性地映射为较大一些的概率,将前景概率信息中较大的概率适应性地映射为较为平滑的概率;当前景区域占比较大时,说明前景图像在当前帧图像中所占的面积较大,那么在步骤S202中依据前景区域占比,对映射函数的参数进行调整,使得利用调整后的映射函数对前景概率信息进行映射处理时,能够将前景概率信息中的概率适应性地映射为较为平滑的概率。
其中,映射函数在预设定义区间内的斜率大于预设斜率阈值。本领域技术人员可根据实际需要设置预设定义区间和预设斜率阈值,此处不做限定,例如,当预设定义区间为(0,0.5),预设斜率阈值为1时,映射函数在定义区间(0,0.5)内的斜率大于1,从而能够将前景概率信息中较小的概率适应性地映射为较大一些的概率,例如,将0.1映射为0.3。
以映射函数为非线性变换函数为例,在一个具体实施例中,其具体公式可以为如下公式:
y=1/(1+exp(-(k*x-a)))
其中,k为第一参数,a为第二参数,具体地,第一参数为需要依据前景区域占比进行调整的参数,第二参数为预设固定参数,本领域技术人员可根据实际需要对具体调整方式和预设固定参数进行设置,此处不做限定。假设前景区域占比用参数r表示,那么可以设置k=2/r,a=4,从而对于不同的前景区域占比,所对应的k的值也会不同。
步骤S203,根据映射结果,得到与当前帧图像对应的图像分割结果。
在得到了映射结果之后,就可根据映射结果得到与当前帧图像对应的图像分割结果。与现有技术相比,本发明根据映射结果所得到的与当前帧图像对应的图像分割结果具有更高的分割精度,分割边缘更加平滑。
步骤S204,根据图像分割结果,确定处理后的前景图像,并依据处理后的前景图像,确定处理后的前景图像中的肢体区域。
步骤S205,根据用户选择的服饰装扮,确定与服饰装扮对应的基础服饰装扮效果贴图。
为了能够方便、快速地绘制出服饰装扮效果贴图,可预先绘制许多的基础服饰装扮效果贴图,那么在绘制与肢体区域对应的服饰装扮效果贴图时,根据用户选择的服饰装扮,确定与服饰装扮对应的基础服饰装扮效果贴图,然后对基础服饰装扮效果贴图进行处理,从而快速地得到服饰装扮效果贴图。其中,这些基础服饰装扮效果贴图可包括不同服饰风格的帽子效果贴图、围巾效果贴图、上衣效果贴图、下衣效果贴图、裙装效果贴图和鞋子效果贴图等。另外,为了便于管理这些基础服饰装扮效果贴图,可建立一个效果贴图库,将这些基础服饰装扮效果贴图存储至该效果贴图库中。
步骤S206,从肢体区域中提取出肢体区域的关键信息。
其中,该关键信息可以具体为关键点信息、关键区域信息、和/或关键线信息等。本发明的实施例以关键信息为关键点信息为例进行说明,但本发明的关键信息不限于是关键点信息。使用关键点信息可以提高根据关键点信息绘制服饰装扮效果贴图的处理速度和效率,可以直接根据关键点信息绘制服饰装扮效果贴图,不需要再对关键信息进行后续计算、分析等复杂操作。同时,关键点信息便于提取,且提取准确,使得绘制服饰装扮效果贴图的效果更精准。具体地,可从肢体区域中提取出肢体区域边缘的关键点信息。
步骤S207,根据肢体区域的关键信息,对基础服饰装扮效果贴图进行处理,得到服饰装扮效果贴图。
具体地,以关键信息为关键点信息为例,在从肢体区域中提取出肢体区域的关键点信息之后,可根据关键点信息,计算具有对称关系的至少两个关键点之间的位置信息,其中,位置信息可包括距离信息和旋转角度信息,然后依据位置信息中的距离信息,对基础服饰装扮效果贴图进行缩放处理,和/或,依据位置信息中的旋转角度信息,对基础服饰装扮效果贴图进行旋转处理。通过这种方式能够精准地绘制得到服饰装扮效果贴图。
由于特定对象在拍摄或录制视频时与图像采集设备的距离不同,导致特定对象在当前帧图像中的大小不一致,从而导致根据图像分割结果所确定的处理后的前景图像的大小也不一致。以特定对象为人体为例,当人体在录制视频时与图像采集设备的距离较远时,人体在当前帧图像中呈现较小,那么处理后的包含人体的前景图像也较小;当人体在录制视频时与图像采集设备的距离较近时,人体在当前帧图像中呈现较大,那么处理后的包含人体的前景图像也较大。依据具有对称关系的至少两个关键点之间的位置信息中的距离信息,对基础服饰装扮效果贴图进行缩放处理,以使得到的服饰装扮效果贴图更切合处理后的前景图像中特定对象的大小。例如,当处理后的前景图像较小时,可以对基础服饰装扮效果贴图进行缩小处理,以更切合处理后的前景图像;当处理后的前景图像较大时,可以对基础服饰装扮效果贴图进行放大处理,以更切合处理后的前景图像。
另外,考虑到特定对象在图像采集设备拍摄或录制视频时获取到的当前帧图像中可能存在不是正向面对的情况,如人体以扭头的形式在当前帧图像中呈现时,为使服饰装扮效果贴图更切合处理后的前景图像,也需要对基础服饰装扮效果贴图进行旋转处理。以肢体区域中的上身区域为例,如果计算出两个肩头的连线向左旋转了15度,对应的将基础上衣效果贴图向左旋转15度,以更切合处理后的前景图像。
步骤S208,根据肢体区域的关键信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像。
具体地,可根据肢体区域的关键信息,确定与服饰装扮效果贴图对应的融合位置信息,然后按照融合位置信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像。
步骤S209,将帧处理图像覆盖当前帧图像得到处理后的视频数据。
使用帧处理图像直接覆盖掉原来的当前帧图像,直接可以得到处理后的视频数据。同时,录制的用户还可以直接看到帧处理图像。
步骤S210,显示处理后的视频数据。
得到处理后的视频数据后,可以将其实时的进行显示,用户可以直接看到处理后的视频数据的显示效果。
步骤S211,将处理后的视频数据上传至云服务器。
将处理后的视频数据可以直接上传至云服务器,具体的,可以将处理后的视频数据上传至一个或多个的云视频平台服务器,如爱奇艺、优酷、快视频等云视频平台服务器,以供云视频平台服务器在云视频平台进行展示视频数据。或者还可以将处理后的视频数据上传至云直播服务器,当有直播观看端的用户进入云直播服务器进行观看时,可以由云直播服务器将视频数据实时推送给观看用户客户端。或者还可以将处理后的视频数据上传至云公众号服务器,当有用户关注该公众号时,由云公众号服务器将视频数据推送给公众号关注客户端;进一步,云公众号服务器还可以根据关注公众号的用户的观看习惯,推送符合用户习惯的视频数据给公众号关注客户端。
可选地,该方法还可包括:从视频中选取包含特定对象的帧图像,将帧图像确定为待识别帧图像,对待识别帧图像进行分析,确定待推荐服饰装扮,然后向用户推荐待推荐服饰装扮的步骤。考虑到在拍摄视频过程中,特定对象可能会对穿着的服饰进行更换,为了能够更加精准地推荐直播服饰装扮,可每隔预设时间间隔从视频中选取包含特定对象的帧图像。本领域技术人员可根据实际需要设置预设时间间隔,此处不做限定。例如,可将预设时间间隔设置为5分钟。
具体地,可对待识别帧图像进行场景分割处理,得到针对特定对象的待识别区域图像,接着对待识别区域图像进行识别,得到特定对象的特征信息,然后利用预设匹配规则将特征信息与直播服饰装扮进行匹配,确定待推荐服饰装扮。
以特定对象为人体为例,特定对象的待识别区域图像可包含有人体的肢体区域和脸部区域等区域的图像。在得到了待识别区域图像之后,对待识别区域图像进行识别,得到特定对象的特征信息。其中,特征信息包括以下信息的一种或多种:服饰特征信息、肤色特征信息、年龄特征信息、性别特征信息以及体形特征信息。为了便于用户在直播过程中进行装扮,已预先为用户设置了各种类型的直播服饰装扮,每个直播服饰装扮都具有对应的装扮特征信息,可利用预设匹配规则将特征信息与直播服饰装扮的装扮特征信息进行匹配,从各种直播服饰装扮中确定待推荐服饰装扮。其中,本领域技术人员可根据实际需要设置预设匹配规则,此处不做限定。本发明结合用户的特征信息进行直播服饰装扮的推荐,使得所推荐的直播服饰装扮能够符合用户喜好,有效地提高了直播服饰装扮推荐效果。
根据本实施例提供的基于自适应阈值分割的直播服饰装扮方法,能够依据前景区域占比对映射函数的参数进行调整,使得前景区域占比不同时,所对应映射函数的参数不同,实现了依据前景区域占比对前景概率信息的自适应映射;并且利用映射结果能够快速、精准地得到帧图像对应的图像分割结果,有效地提高了图像场景分割的分割精度以及处理效率,使得分割边缘更加平滑;并且基于所得到的图像分割结果能够更为精准、快速地对帧图像中的人物的肢体区域添加服饰装扮效果,美化了视频数据显示效果;并且依据提取到的肢体区域的关键信息,能够精准地对服饰装扮效果贴图进行缩放、旋转处理,使其更加切合特定对象,进一步提高了视频数据显示效果。另外,还能够结合用户的特征信息进行直播服饰装扮的推荐,使得所推荐的直播服饰装扮能够符合用户喜好,有效地提高了直播服饰装扮推荐效果。
图3示出了根据本发明一个实施例的基于自适应阈值分割的直播服饰装扮装置的结构框图,如图3所示,该装置包括:获取模块301、分割模块302、第一确定模块303、处理模块304、覆盖模块305和显示模块306。
获取模块301适于:实时获取图像采集设备所拍摄和/或所录制的视频中包含特定对象的当前帧图像。
分割模块302适于:对当前帧图像进行场景分割处理,得到针对特定对象的前景概率信息,根据前景概率信息,确定前景区域占比,并依据前景区域占比,对前景概率信息进行映射处理,得到与当前帧图像对应的图像分割结果。
其中,前景概率信息记录了用于反映当前帧图像中各个像素点属于前景图像的概率。分割模块302进一步适于:根据前景概率信息,确定属于前景图像的像素点;计算属于前景图像的像素点在当前帧图像中所有像素点中的比例,将比例确定为前景区域占比。具体地,分割模块302将前景概率信息中概率高于预设概率阈值的像素点确定为属于前景图像的像素点。
可选地,分割模块302进一步适于:依据前景区域占比,调整映射函数的参数;利用调整后的映射函数对前景概率信息进行映射处理,得到映射结果;根据映射结果,得到与当前帧图像对应的图像分割结果。其中,映射函数在预设定义区间内的斜率大于预设斜率阈值。
第一确定模块303适于:根据图像分割结果,确定处理后的前景图像,并依据处理后的前景图像,确定处理后的前景图像中的肢体区域。
处理模块304适于:根据用户选择的服饰装扮,对肢体区域添加服饰装扮效果,得到帧处理图像。
可选地,处理模块304进一步适于:根据用户选择的服饰装扮,确定与服饰装扮对应的基础服饰装扮效果贴图;从肢体区域中提取出肢体区域的关键信息;根据肢体区域的关键信息,对基础服饰装扮效果贴图进行处理,得到服饰装扮效果贴图;根据肢体区域的关键信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像。
其中,关键信息可以具体为关键点信息、关键区域信息、和/或关键线信息等。本发明的实施例以关键信息为关键点信息为例进行说明。处理模块304进一步适于:根据关键点信息,计算具有对称关系的至少两个关键点之间的位置信息;依据位置信息中的距离信息,对基础服饰装扮效果贴图进行缩放处理;和/或,依据位置信息中的旋转角度信息,对基础服饰装扮效果贴图进行旋转处理。
可选地,处理模块304进一步适于:根据肢体区域的关键信息,确定与服饰装扮效果贴图对应的融合位置信息;按照融合位置信息,将服饰装扮效果贴图与处理后的前景图像进行融合处理,得到帧处理图像。
覆盖模块305适于:将帧处理图像覆盖当前帧图像得到处理后的视频数据。
显示模块306适于:显示处理后的视频数据。
显示模块306得到处理后的视频数据后,可以将其实时的进行显示,用户可以直接看到处理后的视频数据的显示效果。
该装置还可包括:选取模块307、第二确定模块308和推荐模块309。
其中,选取模块307适于:从视频中选取包含特定对象的帧图像,将帧图像确定为待识别帧图像;第二确定模块308适于:对待识别帧图像进行分析,确定待推荐服饰装扮;推荐模块309适于:向用户推荐待推荐服饰装扮。
可选地,第二确定模块308进一步适于:对待识别帧图像进行场景分割处理,得到针对特定对象的待识别区域图像;对待识别区域图像进行识别,得到特定对象的特征信息;利用预设匹配规则将特征信息与直播服饰装扮进行匹配,确定待推荐服饰装扮。
该装置还可包括:上传模块310,适于将处理后的视频数据上传至云服务器。
上传模块310将处理后的视频数据可以直接上传至云服务器,具体的,上传模块310可以将处理后的视频数据上传至一个或多个的云视频平台服务器,如爱奇艺、优酷、快视频等云视频平台服务器,以供云视频平台服务器在云视频平台进行展示视频数据。或者上传模块310还可以将处理后的视频数据上传至云直播服务器,当有直播观看端的用户进入云直播服务器进行观看时,可以由云直播服务器将视频数据实时推送给观看用户客户端。或者上传模块310还可以将处理后的视频数据上传至云公众号服务器,当有用户关注该公众号时,由云公众号服务器将视频数据推送给公众号关注客户端;进一步,云公众号服务器还可以根据关注公众号的用户的观看习惯,推送符合用户习惯的视频数据给公众号关注客户端。
根据本实施例提供的基于自适应阈值分割的直播服饰装扮装置,依据前景区域占比对针对特定对象的前景概率信息进行映射处理,实现了对前景概率信息的自适应映射,利用映射处理后的前景概率信息能够快速、精准地得到帧图像对应的图像分割结果,有效地提高了图像场景分割的分割精度以及处理效率,优化了图像场景分割处理方式,并且基于所得到的图像分割结果能够更为精准、快速地对帧图像中的人物的肢体区域添加服饰装扮效果,美化了视频数据显示效果,提高了视频数据处理效率。
本发明还提供了一种非易失性计算机存储介质,计算机存储介质存储有至少一可执行指令,可执行指令可执行上述任意方法实施例中的基于自适应阈值分割的直播服饰装扮方法。
图4示出了根据本发明实施例的一种计算设备的结构示意图,本发明具体实施例并不对计算设备的具体实现做限定。
如图4所示,该计算设备可以包括:处理器(processor)402、通信接口(Communications Interface)404、存储器(memory)406、以及通信总线408。
其中:
处理器402、通信接口404、以及存储器406通过通信总线408完成相互间的通信。
通信接口404,用于与其它设备比如客户端或其它服务器等的网元通信。
处理器402,用于执行程序410,具体可以执行上述基于自适应阈值分割的直播服饰装扮方法实施例中的相关步骤。
具体地,程序410可以包括程序代码,该程序代码包括计算机操作指令。
处理器402可能是中央处理器CPU,或者是特定集成电路ASIC(ApplicationSpecific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。计算设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。
存储器406,用于存放程序410。存储器406可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
程序410具体可以用于使得处理器402执行上述任意方法实施例中的基于自适应阈值分割的直播服饰装扮方法。程序410中各步骤的具体实现可以参见上述基于自适应阈值分割的直播服饰装扮实施例中的相应步骤和单元中对应的描述,在此不赘述。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备和模块的具体工作过程,可以参考前述方法实施例中的对应过程描述,在此不再赘述。
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
Claims (30)
1.一种基于自适应阈值分割的直播服饰装扮方法,所述方法包括:
实时获取图像采集设备所拍摄和/或所录制的视频中包含特定对象的当前帧图像;
对所述当前帧图像进行场景分割处理,得到针对特定对象的前景概率信息,根据所述前景概率信息,确定前景区域占比,并依据所述前景区域占比,对所述前景概率信息进行映射处理,得到与所述当前帧图像对应的图像分割结果;
根据所述图像分割结果,确定处理后的前景图像,并依据所述处理后的前景图像,确定所述处理后的前景图像中的肢体区域;
根据用户选择的服饰装扮,对所述肢体区域添加服饰装扮效果,得到帧处理图像;
将所述帧处理图像覆盖所述当前帧图像得到处理后的视频数据;
显示处理后的视频数据;
其中,所述依据所述前景区域占比,对所述前景概率信息进行映射处理,得到与所述当前帧图像对应的图像分割结果进一步包括:
依据所述前景区域占比,调整映射函数的参数;
利用调整后的映射函数对所述前景概率信息进行映射处理,得到映射结果;
根据所述映射结果,得到与所述当前帧图像对应的图像分割结果。
2.根据权利要求1所述的方法,其中,所述前景概率信息记录了用于反映所述当前帧图像中各个像素点属于前景图像的概率。
3.根据权利要求1或2所述的方法,其中,所述根据用户选择的服饰装扮,对所述肢体区域添加服饰装扮效果,得到帧处理图像进一步包括:
根据用户选择的服饰装扮,确定与所述服饰装扮对应的基础服饰装扮效果贴图;
从所述肢体区域中提取出所述肢体区域的关键信息;
根据所述肢体区域的关键信息,对所述基础服饰装扮效果贴图进行处理,得到服饰装扮效果贴图;
根据所述肢体区域的关键信息,将所述服饰装扮效果贴图与所述处理后的前景图像进行融合处理,得到帧处理图像。
4.根据权利要求3所述的方法,其中,所述关键信息为关键点信息;
所述根据所述肢体区域的关键信息,对所述基础服饰装扮效果贴图进行处理进一步包括:
根据所述关键点信息,计算具有对称关系的至少两个关键点之间的位置信息;
依据所述位置信息中的距离信息,对所述基础服饰装扮效果贴图进行缩放处理;和/或,依据所述位置信息中的旋转角度信息,对所述基础服饰装扮效果贴图进行旋转处理。
5.根据权利要求4所述的方法,其中,所述根据所述肢体区域的关键信息,将所述服饰装扮效果贴图与所述处理后的前景图像进行融合处理,得到帧处理图像进一步包括:
根据所述肢体区域的关键信息,确定与所述服饰装扮效果贴图对应的融合位置信息;
按照所述融合位置信息,将所述服饰装扮效果贴图与所述处理后的前景图像进行融合处理,得到帧处理图像。
6.根据权利要求5所述的方法,其中,所述方法还包括:
从所述视频中选取包含特定对象的帧图像,将所述帧图像确定为待识别帧图像;
对所述待识别帧图像进行分析,确定待推荐服饰装扮;
向用户推荐待推荐服饰装扮。
7.根据权利要求6所述的方法,其中,所述对所述待识别帧图像进行分析,确定待推荐服饰装扮进一步包括:
对所述待识别帧图像进行场景分割处理,得到针对所述特定对象的待识别区域图像;
对所述待识别区域图像进行识别,得到所述特定对象的特征信息;
利用预设匹配规则将所述特征信息与直播服饰装扮进行匹配,确定待推荐服饰装扮。
8.根据权利要求7所述的方法,其中,所述根据所述前景概率信息,确定前景区域占比进一步包括:
根据所述前景概率信息,确定属于前景图像的像素点;
计算属于前景图像的像素点在所述当前帧图像中所有像素点中的比例,将所述比例确定为前景区域占比。
9.根据权利要求8所述的方法,其中,所述根据所述前景概率信息,确定属于前景图像的像素点进一步包括:
将所述前景概率信息中概率高于预设概率阈值的像素点确定为属于前景图像的像素点。
10.根据权利要求1所述的方法,其中,所述映射函数在预设定义区间内的斜率大于预设斜率阈值。
11.根据权利要求10所述的方法,其中,所述显示处理后的视频数据进一步包括:将处理后的视频数据实时显示;
所述方法还包括:将处理后的视频数据上传至云服务器。
12.根据权利要求11中所述的方法,其中,所述将处理后的视频数据上传至云服务器进一步包括:
将处理后的视频数据上传至云视频平台服务器,以供云视频平台服务器在云视频平台进行展示视频数据。
13.根据权利要求11中所述的方法,其中,所述将处理后的视频数据上传至云服务器进一步包括:
将处理后的视频数据上传至云直播服务器,以供云直播服务器将视频数据实时推送给观看用户客户端。
14.根据权利要求11中所述的方法,其中,所述将处理后的视频数据上传至云服务器进一步包括:
将处理后的视频数据上传至云公众号服务器,以供云公众号服务器将视频数据推送给公众号关注客户端。
15.一种基于自适应阈值分割的直播服饰装扮装置,所述装置包括:
获取模块,适于实时获取图像采集设备所拍摄和/或所录制的视频中包含特定对象的当前帧图像;
分割模块,适于对所述当前帧图像进行场景分割处理,得到针对特定对象的前景概率信息,根据所述前景概率信息,确定前景区域占比,并依据所述前景区域占比,对所述前景概率信息进行映射处理,得到与所述当前帧图像对应的图像分割结果;
第一确定模块,适于根据所述图像分割结果,确定处理后的前景图像,并依据所述处理后的前景图像,确定所述处理后的前景图像中的肢体区域;
处理模块,适于根据用户选择的服饰装扮,对所述肢体区域添加服饰装扮效果,得到帧处理图像;
覆盖模块,适于将所述帧处理图像覆盖所述当前帧图像得到处理后的视频数据;
显示模块,适于显示处理后的视频数据;
其中,所述分割模块进一步适于:
依据所述前景区域占比,调整映射函数的参数;
利用调整后的映射函数对所述前景概率信息进行映射处理,得到映射结果;
根据所述映射结果,得到与所述当前帧图像对应的图像分割结果。
16.根据权利要求15所述的装置,其中,所述前景概率信息记录了用于反映所述当前帧图像中各个像素点属于前景图像的概率。
17.根据权利要求15或16所述的装置,其中,所述处理模块进一步适于:
根据用户选择的服饰装扮,确定与所述服饰装扮对应的基础服饰装扮效果贴图;
从所述肢体区域中提取出所述肢体区域的关键信息;
根据所述肢体区域的关键信息,对所述基础服饰装扮效果贴图进行处理,得到服饰装扮效果贴图;
根据所述肢体区域的关键信息,将所述服饰装扮效果贴图与所述处理后的前景图像进行融合处理,得到帧处理图像。
18.根据权利要求17所述的装置,其中,所述关键信息为关键点信息;
所述处理模块进一步适于:
根据所述关键点信息,计算具有对称关系的至少两个关键点之间的位置信息;
依据所述位置信息中的距离信息,对所述基础服饰装扮效果贴图进行缩放处理;和/或,依据所述位置信息中的旋转角度信息,对所述基础服饰装扮效果贴图进行旋转处理。
19.根据权利要求17所述的装置,其中,所述处理模块进一步适于:
根据所述肢体区域的关键信息,确定与所述服饰装扮效果贴图对应的融合位置信息;
按照所述融合位置信息,将所述服饰装扮效果贴图与所述处理后的前景图像进行融合处理,得到帧处理图像。
20.根据权利要求19所述的装置,其中,所述装置还包括:
选取模块,适于从所述视频中选取包含特定对象的帧图像,将所述帧图像确定为待识别帧图像;
第二确定模块,适于对所述待识别帧图像进行分析,确定待推荐服饰装扮;
推荐模块,适于向用户推荐所述待推荐服饰装扮。
21.根据权利要求20所述的装置,其中,所述第二确定模块进一步适于:
对所述待识别帧图像进行场景分割处理,得到针对所述特定对象的待识别区域图像;
对所述待识别区域图像进行识别,得到所述特定对象的特征信息;
利用预设匹配规则将所述特征信息与直播服饰装扮进行匹配,确定待推荐服饰装扮。
22.根据权利要求21所述的装置,其中,所述分割模块进一步适于:
根据所述前景概率信息,确定属于前景图像的像素点;
计算属于前景图像的像素点在所述当前帧图像中所有像素点中的比例,将所述比例确定为前景区域占比。
23.根据权利要求22所述的装置,其中,所述分割模块进一步适于:
将所述前景概率信息中概率高于预设概率阈值的像素点确定为属于前景图像的像素点。
24.根据权利要求15所述的装置,其中,所述映射函数在预设定义区间内的斜率大于预设斜率阈值。
25.根据权利要求24所述的装置,其中,所述显示模块进一步适于:将处理后的视频数据实时显示;
所述装置还包括:上传模块,适于将处理后的视频数据上传至云服务器。
26.根据权利要求25中所述的装置,其中,所述上传模块进一步适于:
将处理后的视频数据上传至云视频平台服务器,以供云视频平台服务器在云视频平台进行展示视频数据。
27.根据权利要求25中所述的装置,其中,所述上传模块进一步适于:
将处理后的视频数据上传至云直播服务器,以供云直播服务器将视频数据实时推送给观看用户客户端。
28.根据权利要求25中所述的装置,其中,所述上传模块进一步适于:
将处理后的视频数据上传至云公众号服务器,以供云公众号服务器将视频数据推送给公众号关注客户端。
29.一种计算设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;
所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如权利要求1-14中任一项所述的基于自适应阈值分割的直播服饰装扮方法对应的操作。
30.一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行如权利要求1-14中任一项所述的基于自适应阈值分割的直播服饰装扮方法对应的操作。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711376447.9A CN108010038B (zh) | 2017-12-19 | 2017-12-19 | 基于自适应阈值分割的直播服饰装扮方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711376447.9A CN108010038B (zh) | 2017-12-19 | 2017-12-19 | 基于自适应阈值分割的直播服饰装扮方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108010038A CN108010038A (zh) | 2018-05-08 |
CN108010038B true CN108010038B (zh) | 2021-07-23 |
Family
ID=62060087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711376447.9A Active CN108010038B (zh) | 2017-12-19 | 2017-12-19 | 基于自适应阈值分割的直播服饰装扮方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108010038B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110263213B (zh) * | 2019-05-22 | 2023-07-18 | 腾讯科技(深圳)有限公司 | 视频推送方法、装置、计算机设备及存储介质 |
CN113963000B (zh) * | 2021-10-21 | 2024-03-15 | 抖音视界有限公司 | 图像分割方法、装置、电子设备及程序产品 |
CN114191813A (zh) * | 2021-11-18 | 2022-03-18 | 北京达佳互联信息技术有限公司 | 一种游戏录制方法、装置及电子设备 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7929729B2 (en) * | 2007-04-02 | 2011-04-19 | Industrial Technology Research Institute | Image processing methods |
US20110125691A1 (en) * | 2009-11-24 | 2011-05-26 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | System and method for output of comparison of physical entities of a received selection and associated with a social network |
CN106611412A (zh) * | 2015-10-20 | 2017-05-03 | 成都理想境界科技有限公司 | 贴图视频生成方法及装置 |
WO2017088340A1 (zh) * | 2015-11-25 | 2017-06-01 | 腾讯科技(深圳)有限公司 | 图像信息处理方法、装置和计算机存储介质 |
CN105631417B (zh) * | 2015-12-24 | 2018-11-09 | 武汉鸿瑞达信息技术有限公司 | 应用于互联网视频直播的视频美化系统及方法 |
-
2017
- 2017-12-19 CN CN201711376447.9A patent/CN108010038B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN108010038A (zh) | 2018-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107393000B (zh) | 图像处理方法、装置、服务器及计算机可读存储介质 | |
CN111787242B (zh) | 用于虚拟试衣的方法和装置 | |
US20090251484A1 (en) | Avatar for a portable device | |
CN108109161B (zh) | 基于自适应阈值分割的视频数据实时处理方法及装置 | |
CN107507155B (zh) | 视频分割结果边缘优化实时处理方法、装置及计算设备 | |
CN107665482B (zh) | 实现双重曝光的视频数据实时处理方法及装置、计算设备 | |
CN108111911B (zh) | 基于自适应跟踪框分割的视频数据实时处理方法及装置 | |
CN108830892B (zh) | 人脸图像处理方法、装置、电子设备及计算机可读存储介质 | |
CN109299658B (zh) | 脸部检测方法、脸部图像渲染方法、装置及存储介质 | |
CN109089038B (zh) | 增强现实拍摄方法、装置、电子设备及存储介质 | |
CN110928411B (zh) | 一种基于ar的交互方法、装置、存储介质及电子设备 | |
CN105808774A (zh) | 信息提供方法及装置 | |
CN108010038B (zh) | 基于自适应阈值分割的直播服饰装扮方法及装置 | |
CN108171716B (zh) | 基于自适应跟踪框分割的视频人物装扮方法及装置 | |
CN107959798B (zh) | 视频数据实时处理方法及装置、计算设备 | |
CN111862116A (zh) | 动漫人像的生成方法及装置、存储介质、计算机设备 | |
CN107610149B (zh) | 图像分割结果边缘优化处理方法、装置及计算设备 | |
CN107808372B (zh) | 图像穿越处理方法、装置、计算设备及计算机存储介质 | |
CN113298956A (zh) | 图像处理方法、美甲方法、美妆方法和装置、终端设备 | |
CN107563357A (zh) | 基于场景分割的直播服饰装扮推荐方法、装置及计算设备 | |
CN107766803B (zh) | 基于场景分割的视频人物装扮方法、装置及计算设备 | |
CN112036209A (zh) | 一种人像照片处理方法及终端 | |
CN110266926B (zh) | 图像处理方法、装置、移动终端以及存储介质 | |
CN110177216B (zh) | 图像处理方法、装置、移动终端以及存储介质 | |
CN107680105B (zh) | 基于虚拟世界的视频数据实时处理方法及装置、计算设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |