[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107998404B - 一种负载抗癌药物的叶酸靶向载体及其制备方法和应用 - Google Patents

一种负载抗癌药物的叶酸靶向载体及其制备方法和应用 Download PDF

Info

Publication number
CN107998404B
CN107998404B CN201711314545.XA CN201711314545A CN107998404B CN 107998404 B CN107998404 B CN 107998404B CN 201711314545 A CN201711314545 A CN 201711314545A CN 107998404 B CN107998404 B CN 107998404B
Authority
CN
China
Prior art keywords
carrier
zif
folic acid
drug
chloroquine phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711314545.XA
Other languages
English (en)
Other versions
CN107998404A (zh
Inventor
雷群芳
方文军
郭永胜
施浙琪
陈雪瑞
张莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711314545.XA priority Critical patent/CN107998404B/zh
Publication of CN107998404A publication Critical patent/CN107998404A/zh
Application granted granted Critical
Publication of CN107998404B publication Critical patent/CN107998404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47064-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种负载抗癌药物的叶酸靶向载体及其制备方法和应用。它首先以硝酸锌和2‑甲基咪唑为载体材料,将抗癌药物通过原味包埋法封装在载体内,合成得到抗癌药物‑沸石咪唑骨架载体;再通过抗癌药物‑沸石咪唑骨架载体中的锌离子与叶酸‑聚乙二醇形成配位键连接上叶酸,成功制备得到负载抗癌药物的叶酸靶向载体。该靶向药物载体生物相容性好,合成方法简单,具有靶向性,而且可以减少药物毒副作用。同时,该载体中磷酸氯喹的载药量高达18%,提高了药物的利用率和药效。

Description

一种负载抗癌药物的叶酸靶向载体及其制备方法和应用
技术领域
本发明属于医药技术领域,具体涉及一种负载抗癌药物的叶酸靶向载体及其制备方法和应用。
背景技术
癌症在全球范围内的危害不断加剧,已成为威胁人类身体健康的头号“杀手”。目前,临床中使用最多的治疗方法是手术、化学疗法还有放射疗法。化学疗法会引起一系列急性和慢性器官毒性。由于许多化疗药物及其代谢物通过肾小管上皮细胞排泄,肾脏很容易受化学治疗药物的损伤。因此,化疗药物的使用有时受到其肾毒性副作用的限制。化疗相关的肾脏损伤通常导致癌症治疗不足,因为肾功能障碍需要临床医生减少化疗剂量以避免进一步的肾损伤。肾脏损害还会造成其他不利的并发症,如水和含氮废物潴留,电解质紊乱,免疫力下降等。
开发有效的药物载体,减少化疗药物的内在不良反应,提高治疗效果,已成为治疗癌症的关键问题之一。目前,为了增强的通透性和保留效应,药物纳米载体已被开发用于改善药物在肿瘤区域的积聚,所述纳米载体包括聚合物囊泡,胶束,聚合物纳米颗粒,无机纳米颗粒和杂化多孔固体。其中,纳米金属有机框架(MOFs)作为具有高载药量的药物纳米载体,其高孔体积,大表面积和在框架内具有可调的孔尺寸而引起了关注。在MOFs中,沸石咪唑骨架ZIF-8作为药物载体特别有前景,因为ZIF-8是由锌离子和2-甲基咪唑盐建立的无毒且生物相容的MOF,其在生理条件下稳定而在pH值较低的肿瘤部位分解。
氯喹作为一种新型的抗肿瘤药物,已经进行或正在进行的一些临床试验显示出有利的作用。 虽然确切的机制尚待确定,但氯喹的抗癌作用可能是由于其对自噬的抑制作用。自噬是受氯喹影响的其中一种生理过程。氯喹抑制溶酶体活性,继而阻止了自噬的后一步骤,即自噬溶酶体的降解,导致无法通过自噬途径提供能量。由于自噬被认为是癌症中细胞存活的途径,因此氯喹已经与多种化疗药物和放射治疗联合使用,已被证明可以增强杀伤肿瘤细胞作用,磷酸氯喹(CQ)为氯喹的一种。
叶酸作为用于递送药物的靶向配体已被广泛研究,其可被癌细胞表面上过表达的叶酸受体选择性识别并刺激受体介导的胞吞作用,从而增加肿瘤对药物的摄取,同时减少全身性毒性。聚乙二醇(PEG)被认为是最好的生物相容性物质,延长循环时间。因此,叶酸-聚乙二醇被认为是改善药物递送系统以实现满意的肿瘤靶向治疗的有前景的稳定剂之一。
发明内容
针对现有技术中存在的上述问题,本发明的目的在于提供一种负载抗癌药物的叶酸靶向载体及其制备方法和应用。
所述的一种负载抗癌药物的叶酸靶向载体,其特征在于先将硝酸锌、2-甲基咪唑和抗癌药物通过化学方法合成得到抗癌药物-沸石咪唑骨架载体;抗癌药物-沸石咪唑骨架载体再通过锌离子与叶酸-聚乙二醇形成配位键连接上叶酸,得到负载抗癌药物的叶酸靶向载体。
所述的一种负载抗癌药物的叶酸靶向载体,其特征在于抗癌药物为磷酸氯喹。
所述的一种负载抗癌药物的叶酸靶向载体,其特征在于化学方法为原位包埋法。
所述的一种负载抗癌药物的叶酸靶向载体,其特征在于抗癌药物采用原位包埋法封装在由硝酸锌和2-甲基咪唑合成的沸石咪唑骨架内。
所述的负载抗癌药物的叶酸靶向载体的制备方法,其特征在于包括如下步骤:
1)先利用硝酸锌的锌离子和抗癌药物形成配位化合物,再向配位化合物中加入2-甲基咪唑与配位化合物的锌离子形成ZIF-8,通过原位包埋法将抗癌药物包埋于ZIF-8中,得到抗癌药物-沸石咪唑骨架载体;
2)将步骤1)得到的抗癌药物-沸石咪唑骨架载体上的锌离子和叶酸-聚乙二醇形成配位键,将叶酸连接到沸石咪唑骨架载体表面,得到载抗癌药物磷酸氯喹的叶酸靶向载体。
所述的负载抗癌药物的叶酸靶向载体的制备方法,其特征在于具体步骤如下:
1)将抗癌药物溶于去离子水中,与水中的硝酸锌混合,室温下搅拌1-5min得到配位化合物体系,再在该配位化合物体系中加入无水甲醇、2-甲基咪唑,室温下继续搅拌15-20min得到混合体系,将该混合体系转入离心机中以10000-12000rmp/min离心10-20min,得到的固体分别用无水甲醇和去离子洗涤洗去未反应的试剂,真空干燥,即得到抗癌药物-ZIF-8载体,优选地,无水甲醇和去离子洗涤次数均为3次;
2)将叶酸-聚乙二醇和去离子水超声震荡均匀,加入步骤1)得到的抗癌药物-ZIF-8载体再超声震荡均匀,室温下搅拌35-50h,离心洗涤除去未反应的叶酸-聚乙二醇,并真空干燥,即得到负载抗癌药物的叶酸靶向载体。
所述的负载抗癌药物的叶酸靶向载体的制备方法,其特征在于步骤1)中的抗癌药物、硝酸锌和去离子水的质量比为35-55:1-2:4-6,优选各55:1:5;2-甲基咪唑和无水甲醇的质量体积比为2-5g:10ml,优选为4g:8ml;抗癌药物与硝酸锌混合后室温搅拌2min,配位化合物体系中加入无水甲醇、2-甲基咪唑后室温下继续搅拌16min;离心转速为11000rmp/min,离心时间为10min。
所述的负载抗癌药物的叶酸靶向载体的制备方法,其特征在于步骤2)中的叶酸-聚乙二醇和去离子水的质量体积比8-10g:5ml,优选为10g:1ml。
所述的负载抗癌药物的叶酸靶向载体的制备方法,其特征在于步骤2)中的叶酸-聚乙二醇和抗癌药物-ZIF-8载体的质量比为2:2-3,优选为1:1。
所述的负载抗癌药物的叶酸靶向载体在制备抗癌药物中的应用。
通过采用上述技术,与现有技术相比,本发明的有益效果如下:
1)本发明将抗癌药物(磷酸氯喹)采用化学反应封装在ZIF-8中,同时CQ-ZIF-8载体再连上叶酸-聚乙二醇构建靶向药物载体(FA-PEG/CQ-ZIF-8),并进行材料表征,采用的表征方法有:傅里叶红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜等,证明了载体构建成功,同时,还研究了磷酸氯喹和FA-PEG/CQ-ZIF-8载体对癌细胞和正常细胞的毒性,利用MTT对比法检测了该载体在癌细胞和正常细胞中的存活率,证明该载体药物中ZIF-8对于抗癌药物还有一种保护作用,使其能够到达病灶,释放磷酸氯喹来治疗癌症,既能靶向增强对癌细胞的毒性,又能减少对正常细胞的毒性;为提高磷酸氯喹的载药率,建立抗癌药物的靶向输送系统及减少器官毒性打下坚实的基础,既解决了抗癌药物磷酸氯喹利利用率低的问题又减少了治疗癌症的毒副作用,并且使药物的治疗具有靶向性,为癌症的治疗开拓了一种新的途径;
2)本发明所使用的沸石咪唑骨架ZIF-8,第一次应用于药物载体系统,ZIF-8直径为10-500 纳米,能够通过细胞膜的内吞作用进入细胞,因结构稳定,能够通过人体代谢排除,故无细胞毒性;ZIF-8 具有巨大的比表面积和孔体积,从而具有较大载药量,特殊的孔道结构又使其具有药物缓释功能;
3)本发明经过抗癌细胞试验验证,结果显示,本发明成功制备了负载抗癌药物磷酸氯喹的叶酸靶向载体,不仅能够靶向地携载抗癌药物磷酸氯喹到达病灶,还能够起到降低药物细胞毒性的作用,而且成功保留了抗癌药物磷酸氯喹对癌细胞的作用,对癌细胞具有很好的抑制作用和疗效。
附图说明
图1为磷酸氯喹的标准曲线图;
图2A为ZIF-8的红外图谱谱图;
图2B为FA-PEG的红外图谱谱图;
图2C为CQ的红外图谱谱图;
图2D为FA-PEG/CQ-ZIF-8的红外图谱谱图;
图3A为沸石咪唑类骨架(ZIF-8)的透射电镜图;
图3B为负载磷酸氯喹的沸石咪唑类骨架(CQ-ZIF-8)的透射电镜图;
图3C为叶酸-聚乙二醇/磷酸氯喹-沸石咪唑骨架载体(FA-PEG/CQ-ZIF-8)的透射电镜图;
图4为CQ-ZIF-8的紫外荧光检测图;
图5A为叶酸-聚乙二醇的细胞毒性结果图 ;
图5B为ZIF-8的细胞毒性结果图;
图5C为磷酸氯喹的细胞毒性结果图;
图5D为CQ-ZIF-8和FA-PEG/CQ-ZIF-8的细胞毒性结果图。
具体实施方式
实施例1负载抗癌药物磷酸氯喹的叶酸靶向载体的制备
1、磷酸氯喹-沸石咪唑骨架载体(CQ-ZIF-8)的制备
通过原位包埋法将抗癌药物磷酸氯喹封装在沸石咪唑骨架中,合成得到磷酸氯喹-沸石咪唑类骨架载体(CQ-ZIF-8),具体反应如下:
(1)将50mg磷酸氯喹溶于5ml去离子水,与硝酸锌混合,室温下搅拌1min,利用硝酸锌的锌离子和抗癌药物形成配位化合物;
(2)加入8ml无水甲醇、4g2-甲基咪唑,室温下继续搅拌15min,2-甲基咪唑与配位化合物的锌离子形成ZIF-8;
(3)在10000rmp/min的转速下离心10min,再分别用无水甲醇和去离子洗涤三遍洗去未反应的试剂,真空干燥,即得到CQ-ZIF-8载体;
2、叶酸-聚乙二醇/磷酸氯喹-沸石咪唑骨架载体(FA-PEG/CQ-ZIF-8)的制备
沸石咪唑骨架中的锌离子与叶酸-聚乙二醇形成配位键,连接上叶酸,其具体反应如下:
(1)将50mg叶酸-聚乙二醇和5ml去离子水超声震荡均匀;
(2)加入50mgCQ-ZIF-8载体,超声震荡均匀,室温下搅拌35h;
(3)离心洗涤除去未反应的叶酸-聚乙二醇,并真空干燥,即得到FA-PEG/CQ-ZIF-8载体。
实施例2载体FA-PEG/CQ-ZIF-8的表征
1、磷酸氯喹的标准曲线如附图1所示
通过紫外分光光度法在257nm处测量不同浓度的磷酸氯喹溶液吸光值,从而得出了图1的标准曲线,图1的R2=0.9988达到了0.99级以上,因此这条标准是可以用的。但标准曲线的使用范围是10-40μg/ml。
2、红外光谱检测
(1)将FA-PEG,CQ,ZIF-8,FA-PEG/CQ-ZIF-8进行干燥处理,然后放入研钵中,加入一定量(多少量)的KBr,研磨均匀使混合物研磨到粒度小于2μm,以免散射光影响,之后放入干燥机中进行干燥处理,在油压机上用40MPa左右的压力将混合物压成透明薄片,上机测定;
(2)红外图谱(FTIR)如附图2A、图2B、图2C及图2D所示,图2A为沸石咪唑类骨架(ZIF-8),图2B为叶酸-聚乙二醇(FA-PEG),图2C为磷酸氯喹(CQ),图2D为叶酸-聚乙二醇/磷酸氯喹-沸石咪唑骨架载体(FA-PEG/CQ-ZIF-8),图2A在1570处有吸收峰代表-C=C-;在1420处有更强的吸收峰代表-N=C-,ZIF-8中应该有这些基团;图2B在3570,1650,1600处有吸收峰代表有-COOH;图2C上有特征吸收峰1090,代表氯苯类的吸收峰;合成后的图2D,在3570处有吸收峰代表叶酸羧酸上的-H,载体上接上了叶酸-聚乙二醇;在1420处有吸收峰代表有ZIF-8的-N=C-;不见有图2C的特征吸收峰,是因为药物是包封在载体内部的。
3、ZIF-8、CQ-ZIF-8及FA-PEG/CQ-ZIF-8透射电镜图如附图3A、图3B、图3C所示,图3A为沸石咪唑类骨架(ZIF-8),图3B为负载磷酸氯喹的沸石咪唑类骨架(CQ-ZIF-8),图3C为叶酸-聚乙二醇/磷酸氯喹-沸石咪唑骨架载体(FA-PEG/CQ-ZIF-8)。
从透射电镜图中可以看出沸石咪唑类骨架为八面体,且大小在纳米级别;图3A和图3B相比可知,单独合成ZIF-8与负载药物后的ZIF-8,八面体晶型更为明显,且粒径减小,并不再黏连。相比图B与图C可见,接叶酸前后的CQ-ZIF-8大小晶型基本保持不变,比较稳定。
实施例3载体FA-PEG/CQ-ZIF-8中ZIF-8负载的CQ装载率
1、ZIF-8负载的CQ装载率的测定
紫外分光光度计检测:查阅文献得知磷酸氯喹的特征吸收峰为254nm
(1)绘制磷酸氯喹的标准曲线具体步骤如下:
① 姜黄素储备液的配制
准确称取磷酸氯喹1mg置于烧杯中,加适量去离子水溶解后,转移至10mL的容量瓶中,再用去离子水定容至刻度,作为磷酸氯喹储备液备用;
② 分别从储备液中量取1.0、1.5、2.0、2.5、3.0、3.5、4.0mL分别置于7个10mL容量瓶中,用去离子水定容至刻度,摇匀。以去离子水为空白对照,在257nm处测定吸光度,并以每一浓度三次吸光度的平均值(A)为纵坐标,浓度(c)为横坐标,绘制校准曲线;
(2)ZIF-8负载的CQ装载率的测定
① 制备得到的CQ-ZIF-8,加入0.9%的盐酸溶液,溶解ZIF-8从而将磷酸氯喹溶于溶液中;
② 将CQ-ZIF-8盐酸溶液后可以测定其在257nm处的吸光值,根据标准曲线计算出溶液中磷酸氯喹的装载率;
CQ-ZIF-8的紫外荧光检测如附图4所示,根据其257nm处吸收峰可得其药物装载率达18%。
实例4细胞毒性检测
将CQ,CQ-ZIF-8,FA-PEG/CQ-ZIF-8进行紫外灯灭菌处理,分别溶于超纯水,并定容于50 mL容量瓶中,配制成浓度为200 µg/mL的溶液。采用浓度梯度逐级稀释法用DMEM培养基将CQ,CQ-ZIF-8,FA-PEG/CQ-ZIF-8溶液稀释到所需浓度(0.1,0.5,1,2,5,10,15,20μg/ml),
(1)取对数期生长的HeLa细胞,用0.25%胰蛋白酶消化单层细胞制成单细胞悬浮液(培养基:DMEM+10%FCS),在96 孔板的细胞测试孔中加入200μL细胞悬液, 1×104细胞/孔,将细胞放入CO2培养箱(37 ℃,5%的CO2)中培养16-18h,达到完全贴壁;
(2)用移液枪吸出96孔板内的培养基,将200 µL含有不同浓度CQ或CQ-ZIF-8或FA-PEG/CQ-ZIF-8的培养基加入测试孔中,空白对照组分别加入相应的培养基和无菌水。所有对照组及待检测组均平行5次。继续将细胞培养在CO2培养箱(37 ℃,5%的CO2)中4h;
(3)弃去培养基,每孔分别加入100 µL 5 mg/mL的MTT溶液,继续在CO2培养箱(37℃,5%的CO2)培养4 h;
(4)翻板弃去上清液,每孔加入100μL DMSO。在震荡器上震荡5 min后,采用酶标仪于570nm波长处测溶液吸光度OD值;
根据下式计算细胞在不同表面活性剂溶液中的成活率(V):
V=(A-A0)/(AC-A0
其中:
V是细胞的存活率(%);
A是经3-MA@ZIF-8溶液培养后细胞的OD值;
A0是用灭菌水替代CQ或CQ-ZIF-8或FA-PEG/CQ-ZIF-8后细胞的OD值,此时细胞生长率为0;
Ac是培养液中不加CQ或CQ-ZIF-8或FA-PEG/CQ-ZIF-8时细胞的OD值,此时细胞生长率为100 %。
(5)细胞毒性实验结果图如图5A、图5B、图5C及图5D所示,图5A为叶酸-聚乙二醇的细胞毒性结果图,图5B为ZIF-8的细胞毒性结果图,图5C为磷酸氯喹的细胞毒性结果图,图5D中,a为CQ-ZIF-8的细胞毒性结果图,b为FA-PEG/CQ-ZIF-8的细胞毒性结果图。
根据图5A可以得到FA-PEG的细胞毒性非常小,细胞存活率在50%对应的试剂浓度(IC50值)为10g/ml;图5A相比于图5B和图5C,FA-PEG的细胞毒性可以忽略不计,而CQ的IC50值明显比ZIF-8的IC50值要大,可见药物比载体毒性要大;从图5D 中的a和b的比较中,可以观察到b的IC50值比图a要小18微克每毫升,这表明接了叶酸的载体使药物具有一定的靶向性。

Claims (1)

1.负载抗癌药物的叶酸靶向载体的制备方法,其特征在于包括如下步骤:
1)磷酸氯喹-沸石咪唑骨架载体CQ-ZIF-8的制备 通过原位包埋法将抗癌药物磷酸氯喹封装在沸石咪唑骨架中,合成得到磷酸氯喹-沸石咪唑类骨架载体(CQ-ZIF-8),具体反应如下:
1.1)将50mg磷酸氯喹溶于5ml去离子水,与硝酸锌混合,室温下搅拌1min,利用硝酸锌的锌离子和磷酸氯喹形成配位化合物;
1.2)加入8ml无水甲醇、4g2-甲基咪唑,室温下继续搅拌15min,2-甲基咪唑与配位化合物的锌离子形成ZIF-8;
1.3)在10000rmp/min的转速下离心10min,再分别用无水甲醇和去离子洗涤三遍洗去未反应的试剂,真空干燥,即得到CQ-ZIF-8载体;
2)叶酸-聚乙二醇/磷酸氯喹-沸石咪唑骨架载体FA-PEG/CQ-ZIF-8的制备沸石咪唑骨架中的锌离子与叶酸-聚乙二醇形成配位键,连接上叶酸,其具体反应如下:
2.1)将50mg叶酸-聚乙二醇和5ml去离子水超声震荡均匀;
2.2)加入50mgCQ-ZIF-8载体,超声震荡均匀,室温下搅拌35h;
2.3)离心洗涤除去未反应的叶酸-聚乙二醇,并真空干燥,得到FA-PEG/CQ-ZIF-8载体。
CN201711314545.XA 2017-12-09 2017-12-09 一种负载抗癌药物的叶酸靶向载体及其制备方法和应用 Active CN107998404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711314545.XA CN107998404B (zh) 2017-12-09 2017-12-09 一种负载抗癌药物的叶酸靶向载体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711314545.XA CN107998404B (zh) 2017-12-09 2017-12-09 一种负载抗癌药物的叶酸靶向载体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107998404A CN107998404A (zh) 2018-05-08
CN107998404B true CN107998404B (zh) 2021-05-04

Family

ID=62058185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711314545.XA Active CN107998404B (zh) 2017-12-09 2017-12-09 一种负载抗癌药物的叶酸靶向载体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107998404B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108837159B (zh) * 2018-07-17 2021-03-30 西北农林科技大学 一种纳米抗菌剂及其制备方法
CN109266636A (zh) * 2018-09-25 2019-01-25 江苏大学 一种纳米酶及其制备方法和用途
CN111265533B (zh) * 2019-11-25 2023-07-18 上海纳米技术及应用国家工程研究中心有限公司 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法
CN111418596B (zh) * 2020-05-29 2021-01-15 中国农业科学院植物保护研究所 一种负载噻呋酰胺的叶酸/硝酸锌凝胶体系及其制备方法和应用
CN111558051B (zh) * 2020-07-08 2021-06-25 中国科学院深圳先进技术研究院 一种具有快速粘液渗透作用的复合纳米微球及其制备方法和应用
EP4351659A1 (en) * 2021-06-08 2024-04-17 University of Georgia Research Foundation, Inc. Nanoparticles for treating prostate cancer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101432070A (zh) * 2006-02-28 2009-05-13 密歇根大学董事会 官能化沸石骨架的制备
EP3006474A1 (en) * 2014-10-08 2016-04-13 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Porous solid with outer surface grafted with a polymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276813B (zh) * 2011-08-19 2013-01-16 江西科技师范学院 含叶酸靶向高分子药物载体及其制备方法
CN102579353B (zh) * 2012-03-30 2013-12-04 吉林大学 叶酸靶向的抗癌药物peg修饰的脂质体及制备方法
CN105816883B (zh) * 2016-02-03 2018-12-14 华南师范大学 一种负载抗癌药物姜黄素的益生菌叶酸靶向载体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101432070A (zh) * 2006-02-28 2009-05-13 密歇根大学董事会 官能化沸石骨架的制备
EP3006474A1 (en) * 2014-10-08 2016-04-13 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Porous solid with outer surface grafted with a polymer

Also Published As

Publication number Publication date
CN107998404A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
CN107998404B (zh) 一种负载抗癌药物的叶酸靶向载体及其制备方法和应用
Shi et al. FA-PEG decorated MOF nanoparticles as a targeted drug delivery system for controlled release of an autophagy inhibitor
Barick et al. Nanoscale assembly of mesoporous ZnO: A potential drug carrier
Ding et al. A multimodal Metal-Organic framework based on unsaturated metal site for enhancing antitumor cytotoxicity through Chemo-Photodynamic therapy
Xiao et al. Core–shell structured 5-FU@ ZIF-90@ ZnO as a biodegradable nanoplatform for synergistic cancer therapy
CN110408047B (zh) 纳米配位聚合物及其制备方法和应用
CN105017445B (zh) 基于β‑环糊精的pH响应星形聚合物及胶束和复合材料
Zhou et al. The combination of S-doped ZIF-8 with graphene oxide for enhanced near-infrared light photocatalytic and photothermal sterilization
Vergaro et al. Synthesis of biocompatible polymeric nano-capsules based on calcium carbonate: A potential cisplatin delivery system
CN111558051B (zh) 一种具有快速粘液渗透作用的复合纳米微球及其制备方法和应用
CN108273068B (zh) 负载表没食子儿茶素没食子酸酯的叶酸靶向载体及其制备方法和应用
CN106362162B (zh) ZnO@PMAA-b-PHPMA量子点纳米材料及其制备和作为药物载体的应用
CN102863557A (zh) 乳糖酸修饰的脂肪酸-三甲基壳聚糖聚合物制备方法及应用
CN114409914B (zh) MOF-On-MOF架构的铁基金属有机框架复合材料的制备方法及所得产品和应用
CN102784397B (zh) 用锂皂石粘土纳米颗粒负载阿霉素盐酸盐抗癌药物的方法
CN101148483B (zh) 叶酸修饰的壳寡糖-硬脂酸嫁接物及制备方法和应用
CN108403641A (zh) 一种载药纳米材料及其制备方法
CN108329404B (zh) 一种ir-780碘化物-壳聚糖硬脂酸嫁接物及制备与应用
Singh et al. Development of a pH-sensitive functionalized metal organic framework: in vitro study for simultaneous delivery of doxorubicin and cyclophosphamide in breast cancer
Dashti et al. Co-delivery of carboplatin and doxorubicin using ZIF-8 coated chitosan-poly (N-isopropyl acrylamide) nanoparticles through a dual pH/thermo responsive strategy to breast cancer cells
Cheng et al. Imine bond-and coordinate bond-linked pH-sensitive cisplatin complex nanoparticles for active targeting to tumor cells
Luo et al. pH-Sensitive Stimulus Responsive ZIF-8 Composites Nanoparticles Coated with Folic Acid-Conjugated Chitosan for Targeted Delivery of Curcumin
CN109939238A (zh) 透明质酸修饰的载药复合纳米材料及其制备方法
CN108144068B (zh) 负载单取代表没食子儿茶素没食子酸酯棕榈酸酯的叶酸靶向载体及其制备方法和应用
Hu et al. Construction and properties of fluorescence imaging and targeted delivery of UIO-66-NH2 based light-responsive CO releasing material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant