CN107900349A - A kind of method that powder hotforging prepares Fe 6.5%Si soft magnetic materials thin strips - Google Patents
A kind of method that powder hotforging prepares Fe 6.5%Si soft magnetic materials thin strips Download PDFInfo
- Publication number
- CN107900349A CN107900349A CN201711369208.0A CN201711369208A CN107900349A CN 107900349 A CN107900349 A CN 107900349A CN 201711369208 A CN201711369208 A CN 201711369208A CN 107900349 A CN107900349 A CN 107900349A
- Authority
- CN
- China
- Prior art keywords
- powder
- sintering
- prepares
- hotforging
- soft magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000843 powder Substances 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 43
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 42
- 239000000696 magnetic material Substances 0.000 title claims abstract description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000005245 sintering Methods 0.000 claims abstract description 46
- 238000005242 forging Methods 0.000 claims abstract description 39
- 229910000976 Electrical steel Inorganic materials 0.000 claims abstract description 26
- 238000009692 water atomization Methods 0.000 claims abstract description 14
- 238000009792 diffusion process Methods 0.000 claims abstract description 13
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011812 mixed powder Substances 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 238000005275 alloying Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 11
- 238000000280 densification Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 9
- 229910017082 Fe-Si Inorganic materials 0.000 claims description 8
- 229910017133 Fe—Si Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000013001 point bending Methods 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 6
- 238000000748 compression moulding Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000003595 mist Substances 0.000 claims description 5
- 239000012188 paraffin wax Substances 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 239000010431 corundum Substances 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 230000009471 action Effects 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000004519 grease Substances 0.000 claims description 2
- 238000000713 high-energy ball milling Methods 0.000 claims description 2
- 239000011229 interlayer Substances 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 238000002161 passivation Methods 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011863 silicon-based powder Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims 1
- 239000000956 alloy Substances 0.000 abstract description 18
- 229910045601 alloy Inorganic materials 0.000 abstract description 17
- 238000005097 cold rolling Methods 0.000 abstract description 13
- 239000007767 bonding agent Substances 0.000 abstract description 2
- 239000002270 dispersing agent Substances 0.000 abstract 1
- 238000009766 low-temperature sintering Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910005331 FeSi2 Inorganic materials 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910005347 FeSi Inorganic materials 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000009704 powder extrusion Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004801 process automation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910006585 β-FeSi Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/17—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
-
- B22F1/0003—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/18—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/17—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
- B22F2003/175—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging by hot forging, below sintering temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
A kind of method that powder hotforging prepares Fe 6.5%Si soft magnetic materials thin strips, the present invention use water atomization Fe powder and Si contents for 70~80% HIGH-PURITY SILICON iron powder, Fe Si mixed powders are formed, HIGH-PURITY SILICON iron powder is adhered to by water-atomized iron powder surface by bonding agent and dispersant.By being molded squarely base; it is heated to 980~1050 DEG C and realizes Fe phase austenitizings; repeatedly final forging temperature is 880~950 DEG C after forging again; powder hotforging base is subjected to vacuum or protection of reducing atmosphere sintering in 1060~1160 DEG C of temperature ranges; by multiple cold rolling, low-temperature sintering, finally sintered in 1250~1320 DEG C of High temperature diffusions, realize homogeneous alloy; it is thick to obtain 0.1~0.5mm containing 4.5~6.7%Si, density >=7.38g/cm3High silicon steel band.
Description
Technical field
Preparation and manufacture field the invention belongs to metal material, and in particular to the powder hotforging of high silicon steel thin belt material and roll
The method for making deformation.
Technical background
Remanent magnetism and coercive force all very littles of soft magnetic material, i.e. hysteresis curve is very narrow, it and fundamental magnetization curve are almost
Overlap, be mainly used for the iron core of inductance coil, transformer, relay and motor.Fe-Si alloys maximum permeability is sent out with Si contents
Changing, respectively Si mass percent it is (the same below) for 2% and 6.5% nearby there is the peak of two maximum permeabilities
Value, respectively reaches 10000 and 25000.The maximum permeability of Fe-Si alloys does not have absolute predominance, such as slope in soft magnetic materials
The maximum permeability of alloy can not reach 200000.But the Fe-Si lattens of Si < 4.5% manufacture cost is low, therefore
Silicon steel sheet is also known as electrical sheet or silicon steel thin slice, is a kind of very important magnetic material.
And Si>When 4.5%, below 540 DEG C of temperature B can occur for Fe-Si alloys2The eutectoid decomposition reaction of ordered phase, it is raw
Into the unordered phases of α-Fe and DO3Ordered phase so that alloy becomes fragile and is difficult to deform.
For iron Si system alloy of the Si contents between 4.5~6.7%, commonly referred to as high silicon steel, wherein silicone content 6.5%
High silicon steel it is mostly important.Its reason is Fe-Si alloy grains edge<100>The magnetostriction coefficient in direction is with the increase of Si contents
And reduce, disappear substantially at about 6.3%, and<111>The magnetostriction coefficient in direction increases and increases with Si contents, about
When 6.1% with<100>The magnetostriction coefficient in direction is equal so that high silicon steel shows excellent low in higher frequency operation
Iron loss characteristic.
The transformer of normal operation can occur continuous uniform " drone " sound, this is because alternating current by transformer around
Group when, in the core between generate periodically variable alternating flux, cause iron core magnetostriction and shake the sound sent.Greatly
The sound that amount or large-scale iron core are sent in vibrations not only causes the loss of energy, also creates noise pollution.Especially
It is to play particularly important role in the military aviation such as spacecraft, submarine and guided missile field, Fe-Si systems alloy.20th century 60
Age Mo, the alloy of Si contents 6.5% are appeared on No. 11 airships of Apollo as transformer material, are completed the mankind and are landed on the moon first
Heroic undertaking.As it can be seen that high silicon steel is the environment-friendly type soft magnetic materials of a kind of consumption reduction of function admirable, noise reduction.
Compared to other alloys, the research and development process of high silicon steel is relatively very long.Late 1920s
A.Schulze studies discovery first, and the iron Si system alloy of silicone content 6.5% has the almost nil characteristic of magnetostriction coefficient.
In the 1980s, professor K.I.Arail etc. has found the high silicon steel alloy low compared to traditional Si content in exchange dynamic magnetic field
In there is the magnetic conductivity of lower iron loss and higher.Hereafter between many decades, in order to overcome the brittleness of high silicon steel, in technology of preparing side
There are many trials in face.As the special rolled method of jacket or temperature control, rapid solidification method, chemical vapour deposition technique (CVD method),
Plasma chemical vapor deposition (PCVD methods), hot dipping ooze a diffusion annealing method, powder metallurgic method, microalloying and are modified
Etc. various methods.
Wherein CVD is the successful example of comparison.NKK companies of Japan in 1988 have produced thickness for the first time using CVD technology
It is the No yield point 6.5%Si steel discs of 400mm to spend for 0.1~0.5mm, width.Phase early 1990s, global first commercialization
Can realize that the CVD production lines of continuous siliconising are developed, the product size of production can reach 0.1~0.3mm ×
600mm。
The principle of CVD is:Under specific temperature conditions, silicon-containing gas (SiCl4) can react generation Fe- with silicon strip
Si compounds, and alloy is reached required content to alloy diffusion inside by elevated furnace temperature.Although oneself uses this
Technology realizes small-scale industrialized production, but its scale and yield all can not much meet the need in international soft magnetic materials market
Ask, and this preparation method technical process is sufficiently complex, energy consumption and of high cost, operating environment and its severe, it is impossible to meet ring
Guaranteed request.
High silicon steel is " the steel art work ", its technology of preparing is all always and everywhere state-of-the-art steel and iron manufacturing technology, and
It is the hot spot of development and exploitation.For 6.5%Si high silicon steel, its excellent magnetic performance and wide application prospect are even more to inhale
Draw scientific worker and carry out substantial amounts of research-and-development activity.The development of preparation process and ripe and can be cost-effectively
Production, is that 6.5%Si high silicon steel move towards to be commercialized widely applied key, also the always emphasis of research work.Once grope
Go out simple, economic, effective, ripe preparation process, will just produce huge economic benefit and social benefit.
The content of the invention
The object of the present invention is to provide a kind of method that powder hotforging prepares Fe-6.5%Si soft magnetic materials thin strips, for
Fe-4.5~6.7%Si alloy thin band materials be difficult to shaping the problem of, using water atomization Fe powder with Si contents as 70~80% height
Pure silicon iron powder uniformly mixes, and is molded into hot forging green compact after adding binder, then prepare certain thickness using powder hotforging method
Slab, using powder hotforging large deformation act on so that green density improve, structure refinement, and thermal diffusion effect under realize
It is partially-alloyed, form the α-Fe crystal grain of poor Si and the heterogeneous structure of the high Si phases of brittleness with plastic deformation ability.Follow-up warp
Thin plate is obtained after crossing multi-pass cold rolling-sintering, is finally sintered using High temperature diffusion and obtains the high silicon steel band of homogeneous single phase.
The present invention is achieved by the following technical solutions:Using subsphaeroidal water atomization Fe powder, fine Si contents are
70~80% HIGH-PURITY SILICON iron powder is raw material, forms Fe-4.5~6.7%Si mixed powders.By suitable bonding agent, disperse
Fine HIGH-PURITY SILICON iron powder is adhered to water-atomized iron powder surface by agent in mixed process.Since water atomization Fe powder is with high pressure
The big particle of contracting, occupies larger volume ratio in mixed powder, its plastic deformation ability is not significantly reduced after adding ferrosilicon powder
Power, can be by being molded squarely base.It is heated to 980~1050 DEG C and realizes Fe phase austenitizings, then places into closed die
Has hot forging, repeatedly final forging temperature is 880~950 DEG C after forging so that pressed compact is close complete fine and close, about 6.84~7.16g/cm3。
Then powder hotforging base is subjected to vacuum in 1060~1160 DEG C of temperature ranges or protection of reducing atmosphere sinters, make Fe powder particles smeltings
Gold combine, and ferrosilicon powder particles realized with Fe it is partially-alloyed, formed densification, with the poor Si of plastic deformation ability α-Fe crystalline substance
The high silicon steel blank of heterogeneous structure of grain and the high Si phases of brittleness.Sintered subsequently through multiple cold rolling, low temperature diffusion, the density liter of slab
High, plate thickness is reduced, and the alloying level of Si is also continuously improved.Finally vacuum or reduction in 1250~1320 DEG C of temperature ranges
Gas-protecting sintering, realizes the homogeneous alloy of high silicon steel with the help of thermal diffusion, obtain containing 4.5~6.7%Si 0.1~
0.5mm is thick, density >=7.38g/cm3High silicon steel band.
The method specifically comprises the following steps:
(1) raw material powder prepares
Using -100 mesh water-atomized iron powders, Fe >=99.0% in water-atomized iron powder, remaining for Si, Mn, P, S and other can not
The impurity avoided, uses Si contents as 70~80% HIGH-PURITY SILICON iron powder, particle diameter≤10 μm, this ferrosilicon powder except containing 70~
Beyond 80%Si, major impurity is~0.25%Al ,~0.08%Ca ,~and 0.02%C, remaining is Fe.
Water atomization Fe powder is a kind of widely used Industrial iron powder, has subsphaeroidal pattern, impurity content is less than reduction Fe
Powder, has the compressibility and mobility of higher, is conducive to the Uniform Flow of powder extrusion process course powder.Water atomization Fe powder
In low impurity content it is favourable to the soft magnetic characteristic of high silicon steel.
Fe-70~80%Si high purity ferrosilicons are in process of setting in addition to primary silicon crystal grain, and at 1207 DEG C, there are eutectic
Reaction, forms the β-FeSi with tP3 structures2It is very crisp with Si phase eutectic structures, this tissue, it is easy to pass through Mechanical Crushing
Technique refines.Fe-70~80%Si high purity ferrosilicons are crushed to≤10 μm of ferrosilicon powder, the Si phases in its actual tissue, FeSi2
It is mutually more tiny, be conducive to the thermal diffusion homogenization of Si elements during subsequent high temperature sintering, it is single-phase to form homogeneous Fe-4.5~6.7%Si
Alloy.Meanwhile 20~30%Fe present in powder can effectively reduce the degree of oxidation of Si, be conducive to improve the production of high silicon steel
Quality.
By Fe-70~80%Si high purity ferrosilicons Mechanical Crushing to particle diameter≤10 μm, be conducive to it and be adhered to water atomization Fe powder
Surface, tiny Si, FeSi2The mutually Dispersed precipitate in blank, plays the role of the Strengthening and Toughening of structure refinement, after being conducive to raising
Continuous blank toughness, cracking is not easily caused in densification process is rolled.But still suffered from Fe-70~80%Si high purity ferrosilicons compared with
More Si phases, Si are easily absorbing oxygen, and SiO is formed in exposed Si phase surfaces2Film, thus it is high-purity in Fe-70~80%Si
In the preparation of ferrosilicon powder, storage and transfer process, and inert gas shielding should be used in follow-up batch mixing, hot forging, the operation of rolling,
Used instrument must also take dehydration, drying process in advance.
On the premise of oxygen content is controlled, influence of the impurity such as other Al, Ca, Mn to alloy magnetic property is little, during
The possibility for introducing other alloying elements is also little.
(2) powder mixes
According to the ratio of Fe-4.5~6.7%Si, water atomization Fe powder and Fe-70~80%Si HIGH-PURITY SILICON iron powders are weighed;
Mixed under inert protective atmosphere using low energy mixer, mixing velocity and time, should try one's best mitigation depending on mixing uniformity
Processing hardening occurs in mixed process for Fe powder.
(3) powder hotforging
Square pressed compact is prepared using compression-moulding methods, the green density of acquisition is 6.47~6.64g/cm3;Before hot forging
Molding square billet is heated to 980~1050 DEG C under nitrogen protective effect, keeps the temperature 2~4h, the hot forging densification in square dies,
Repeatedly final forging temperature is 880~950 DEG C after forging, and pressed compact is close complete fine and close, and density reaches 6.84~7.16g/cm3。
Under impact force action, hot forging pressed compact is close complete fine and close.Make the plasticity of plate after hot forging in order to avoid alloying
Decline, relatively low heating-up temperature is have selected before hot forging.Fe phase and complexity FeSi phase composition of the alloy structure for high-ductility after hot forging
Complex tissue, which possesses the high-ductility characteristic of simple substance Fe.
(4) cold rolling-sintering
By above-mentioned hot forged plate cold rolling-sintering, progressively it is thinned.
Single pass rolling reduction≤8%, after multi- pass rolling reaches 30~50% to total reduction, then in sintering furnace in
1060~1160 DEG C of 0.5~2h of heat preservation sintering, after multiple cold rolling-sintering, the thickness of plate reaches 0.1~0.5mm, with Si's
Alloying is gradually completing, and strip density improves, and reaches 7.37~7.51g/cm3。
There are a large amount of deformable Fe phases in blank, slab can bear cold-rolling deformation.But there is also more in slab
High Si phases, its performance is more crisp, therefore amount cannot be too high under every time rolling, and accumulation total reduction reaches 30~50%, takes around 8
~25 passages.
Since existing hard crisp phase, cold deformation process can form some micro-cracks.In order to realize the closing of pores and crackle
Repair, and the homogenization diffusion of a degree of Si elements.Cold rolling reduction accumulation needs to sinter 1 again to a certain extent afterwards
It is secondary, 0.1~0.5mm is rolled down to from 36~54mm hot forging plates, takes around and sinters 12~20 times again.
Sintering temperature is too low, is unfavorable for metallurgical binding and the Si element thermal diffusions of Fe powder particles;And sintering temperature is excessive then
Si elements can be caused quickly to spread, cause crystal grain excessive high hardness, embrittlement, follow-up rolling deformation is difficult to realize.
Take reproducibility, inert gas shielding or vacuum-sintering.W, Mo, heat resisting steel etc. can be used during sintering as support
Plate (or burning boat), can also use the ceramic wafers such as corundum, zirconium oxide, but metallic plate thermal conductivity is good, and be beneficial to Even Sintering.
The texture of coarse crystal containing the second phase is formed after sintering.X-ray diffraction Discriminating materials are heterogeneous Fe (Si)
Phase, body-centred cubic several characteristic peaks have obvious separating phenomenon, illustrate there are 2 kinds of different Fe phases of Si solid solubility, wherein must
There are the Si contents in a kind of Fe phases low, there is plastic deformation ability.
(5) full alloying high temperature sintering
Vacuum or restitutive protection 1~4h of atmosphere sintering in 1250~1320 DEG C of temperature ranges, in the effect of thermal diffusion
Under, to realize the full alloyings of Si, form single-phase alloy, obtain the high silicon steel of homogeneous, the thickness of plate is almost unchanged after densification sintering,
For 0.1~0.5mm, density reaches 7.38~7.52g/cm3。
The HIGH-PURITY SILICON iron powder of particle diameter≤10 μm is by high-energy ball milling or rushes the acquisition of rotation method.
The low energy mixer is conical mixer, V-arrangement batch mixer or drum mixer.
The square pressed compact prepared in step (3), length and width are respectively 100~300mm, are highly 40~60mm, using table
The pressure that surface pressure is 400~600MPa is suppressed.The thickness of blank is 36~54mm after hot forging, and three point bending test shows to mould
Property, bending strength reaches 143~230MPa.
Step (2) adds cellulose, paraffin micro mist when mixing or zinc stearate is water-insoluble adds as binder, binder
Dosage total amount is no more than the 0.8% of mixed-powder gross mass, while adds grease and absolute ethyl alcohol does passivator, plays passivation Si
Powder, bonding Fe-Si powder, the effect for strengthening powder flowbility and compact strength, the additive amount total amount of passivator are no more than mixed powder
The 2% of last gross mass.
Support plate described in step (4) uses molybdenum plate, W plates, heat resisting steel, corundum or zirconia ceramics plate.
During high temperature sintering described in step (6), overlapping places sintering plate, and interlayer is laid with MgO powder, and plate tiling is placed,
Tablet weight is placed on plate, prevents from deforming in sintering process.
In addition to Si contents, content of element such as grain size, crystal grain orientation, C etc. also has the magnetic behavior of high silicon steel
Large effect, can subsequently be annealed, the technological means such as normalizing treatment is controlled by by wet hydrogen.
Essence of the invention is by with the addition of certain body in the water atomization Fe powder of the big volumetric portion with good plasticity
Fine Fe-70~80%Si HIGH-PURITY SILICONs iron powder of product ratio, forms Fe-4.5~6.7%Si alloys basis powder.Using powder
Hot forging obtains high green density into slab.Since hot forging is organized as incomplete alloying tissue, except small part is rich in tissue
Outside Si phases, main constituent is yielding Fe phases, therefore subsequently can improve even tissue by multi-pass cold rolling and sintering
Property and compactness, then high-temperature diffusion process, realize the homogenization of Si, so as to obtain the single-phase high silicon steel band of high quality.The party
Method realizes Technics Process Automation, continuous production by technique and equipment Design, and can be mass-produced 0.1~0.5mm thickness,
Density >=7.38g/cm3High silicon steel band.
Brief description of the drawings
Fig. 1 be the embodiment of the present invention 1 powder hotforging after blank three-point bending curve map
Fig. 2 is metallographic structure figure after powder hotforging-cold rolling-sintering of the embodiment of the present invention 2;
Fig. 3 is XRD diffraction curve figures after powder hotforging-cold rolling-sintering of the embodiment of the present invention 2;
Fig. 4 is XRD diffraction curve figures after powder hotforging-cold rolling-high temperature sintering of the embodiment of the present invention 4.
Embodiment
The present invention is described in further detail with reference to the accompanying drawings and detailed description.
Embodiment 1
By the water atomization Fe powder of -100 mesh and the Fe-80%Si high-purity powders of granularity≤10 μm according to 91.625:8.375
Ratio mixes, and forms the mixed-powder of Fe-6.7%Si.The paraffin micro mist of raw material total amount 0.6%, 0.1% machine are added during mixing
Oil.Absolute ethyl alcohol is added according to 200ml/ tons of amount.Using V-arrangement batch mixer by above-mentioned powder mixing 4h.
Square pressed compact is prepared using compression-moulding methods, and pressed compact size is 100 × 100 × 40mm, surface pressing
600MPa, green density 6.47g/cm3。
Molding square billet is heated to 980 DEG C under nitrogen protective effect, keeps the temperature 4h.Using power forging machine, in square dies
Middle hot forging densification, repeatedly final forging temperature is 880 DEG C after forging, and the thickness of blank is about 36mm, and density reaches 6.84g/cm3。
Three point bending test shows plasticity, sees Fig. 1, and bending strength reaches 143MPa.
By above-mentioned hot forged plate cold rolling-sintering, progressively it is thinned.Specifically pressure-annealing schedule is:36mm→24mm→17mm→
12mm → 9.5mm → 7.2mm → 5mm → 3.5mm → 2.4mm → 1.6mm → 1.02mm → 1.02mm → 0.71mm → 0.49mm,
Sintered through 13 cold rollings and 12 times.
Multi-pass cold rolling is thick in 1060 DEG C of heat preservation sintering 2h, plate to after 30~50%, then in vacuum sintering furnace
Degree is thinned to 0.49mm, and density reaches 7.37g/cm3。
1h is sintered in 1320 DEG C of Temperature Vacuums, realizes the full alloyings of Si, forms single-phase alloy, thickness 0.5mm, density reaches
7.38g/cm3, Si contents are 6.7%.
Embodiment 2
By the water atomization Fe powder of -100 mesh and the Fe-70%Si high-purity powders of granularity≤10 μm according to 93.57:6.42 ratio
Example mixing, forms the mixed-powder of Fe-4.5%Si.The zinc stearate of raw material total amount 0.7%, 0.1% machine are added during mixing
Oil.Absolute ethyl alcohol is added according to 400ml/ tons of amount.Using drum mixer by above-mentioned powder mixing 6h.
Square pressed compact is prepared using compression-moulding methods, and pressed compact size is 300 × 300 × 60mm, surface pressing
600MPa, green density 6.64g/cm3。
Molding square billet is heated to 1050 DEG C under nitrogen protective effect, keeps the temperature 2h.Using power forging machine, in square dies
Middle hot forging densification, repeatedly final forging temperature is 950 DEG C after forging, and the thickness of blank is about 54mm, and density reaches 7.16g/cm3。
Three point bending test shows plasticity, and bending strength reaches 230MPa.
By above-mentioned hot forged plate cold rolling-sintering, progressively it is thinned.Specifically pressure-annealing schedule is:54mm→36mm→36mm→
24mm→17mm→12mm→9.5mm→7.2mm→5mm→3.5mm→2.4mm→1.6mm→1.02mm→1.02mm→
0.71mm → 0.49mm → 0.39mm → 0.25mm → 0.17mm → 0.13mm → 0.10mm, i.e., burn through 20 cold rollings and 19 times
Knot.
Multi-pass cold rolling is to after 30~50% total reductions, then is burnt in hydrogen shield sintering furnace in 1160 DEG C of insulations
0.5h is tied, sheet metal thickness is thinned to 0.10mm, and density reaches 7.51g/cm3。
The texture of coarse crystal containing the second phase is formed after sintering, sees Fig. 2.X-ray diffraction Discriminating materials are heterogeneous Fe
(Si) phase, as seen in Figure 3, body-centred cubic several characteristic peaks have obvious separating phenomenon, illustrate there are Si solid solubility it is different 2
Kind Fe phases, wherein must have the Si contents in a kind of Fe phases low, have plastic deformation ability.
4h is sintered in 1250 DEG C of Temperature Vacuums, realizes the full alloyings of Si, forms single-phase alloy, thickness 0.1mm, density reaches
7.52g/cm3, Si contents are 4.5%.
Embodiment 3
By the water atomization Fe powder of -100 mesh and the Fe-76%Si high-purity powders of granularity≤10 μm according to 91.45:8.55 ratio
Example mixing, forms the mixed-powder of Fe-6.5%Si.The paraffin micro mist of raw material total amount 0.4%, 0.2% methyl are added during mixing
Cellulose, 0.1% machine oil.Absolute ethyl alcohol is added according to 400ml/ tons of amount.Above-mentioned powder is mixed using drum mixer
Close 6h.
Square pressed compact is prepared using compression-moulding methods, and pressed compact size is 200 × 200 × 50mm, surface pressing
500MPa, green density 6.49g/cm3。
Molding square billet is heated to 1000 DEG C under nitrogen protective effect, keeps the temperature 2h.Using power forging machine, in square dies
Middle hot forging densification, repeatedly final forging temperature is 920 DEG C after forging, and the thickness of blank is about 46mm, and density reaches 6.86g/cm3。
Three point bending test shows plasticity, and bending strength reaches 140MPa.
By above-mentioned hot forged plate cold rolling-sintering, progressively it is thinned.Specifically pressure-annealing schedule is:46mm→36mm→24mm→
17mm→12mm→9.5mm→7.2mm→5mm→3.5mm→2.4mm→1.6mm→1.02mm→1.02mm→0.71mm→
0.49mm → 0.39mm → 0.27mm, i.e., sinter through 16 cold rollings and 15 times.
Multi-pass cold rolling is to after 30~50% total deformations, then is burnt in nitrogen protective sintering stove in 1120 DEG C of insulations
1h is tied, sheet metal thickness is thinned to 0.27mm, and density reaches 7.39g/cm3。
2h is sintered in 1300 DEG C of Temperature Vacuums, realizes the full alloyings of Si, forms single-phase alloy, thickness 0.27mm, density reaches
To 7.40g/cm3, Si contents are 6.5%,
Embodiment 4
By the water atomization Fe powder of -100 mesh and the Fe-72%Si high-purity powders of granularity≤10 μm according to 91.05:8.95 ratio
Example mixing, forms the mixed-powder of Fe-5.8%Si.The paraffin micro mist of raw material total amount 0.6%, 0.2% machine are added during mixing
Oil.Absolute ethyl alcohol is added according to 400ml/ tons of amount.Using drum mixer by above-mentioned powder mixing 3h.
Square pressed compact is prepared using compression-moulding methods, and pressed compact size is 220 × 220 × 55mm, surface pressing
450MPa, green density 6.52g/cm3。
Molding square billet is heated to 1020 DEG C under nitrogen protective effect, keeps the temperature 2h.Using power forging machine, in square dies
Middle hot forging densification, repeatedly final forging temperature is 940 DEG C after forging, and the thickness of blank is about 52mm, and density reaches 6.89g/cm3。
Three point bending test shows plasticity, and bending strength reaches 169MPa.
By above-mentioned hot forged plate cold rolling-sintering, progressively it is thinned.Specifically pressure-annealing schedule is:52mm→39mm→26mm→
18mm→13mm→10.5mm→8.2mm→5mm→3.2mm→2.4mm→2.0mm→1.3mm→0.90mm→0.63→
0.43mm→0.32mm→0.21mm.Sintered through 17 cold rollings and 16 times.
Multi-pass cold rolling is to after 30~50% total deformations, then is burnt in hydrogen shield sintering furnace in 1150 DEG C of insulations
1h is tied, sheet metal thickness is thinned to 0.21mm, and density reaches 7.44g/cm3。
2h is sintered in 1300 DEG C of Temperature Vacuums, realizes the full alloyings of Si, forms single-phase alloy, thickness 0.21mm, density reaches
To 7.45g/cm3, Si contents are 5.8%, and the XRD analysis figure of its final plate is shown in Fig. 4, is the high silicon steel of single-phase homogeneous.
Claims (7)
1. a kind of method that powder hotforging prepares Fe-6.5%Si soft magnetic materials thin strips, it is characterised in that comprise the following steps:
(1) raw material powder prepares
Using -100 mesh water-atomized iron powders, Fe >=99.0% in water-atomized iron powder, remaining is Si, Mn, P, S and other are inevitable
Impurity, use Si contents as 70~80% HIGH-PURITY SILICON iron powder, particle diameter≤10 μm, major impurity is~0.25%Al ,~
0.08%Ca ,~and 0.02%C, remaining is Fe;
(2) powder mixes
According to the ratio of Fe-4.5~6.7%Si, water atomization Fe powder and Fe-70~80%Si HIGH-PURITY SILICON iron powders are weighed;In inertia
Mixed under protective atmosphere using low energy mixer;
(3) powder hotforging
Square pressed compact is prepared using compression-moulding methods, green density is 6.47~6.64g/cm3;Square billet will be molded before hot forging
980~1050 DEG C are heated under nitrogen protective effect, keeps the temperature 2~4h, repeatedly final forging temperature is 880~950 DEG C after forging, pressure
Base reaches 6.84~7.16g/cm close to full densification, density3;
(4) cold rolling-sintering
By above-mentioned hot forged plate cold rolling-sintering, progressively it is thinned, single pass rolling reduction≤8%, is reached through multi- pass rolling to total reduction
To after 30~50%, then in sintering furnace after 1060~1160 DEG C of 0.5~2h of heat preservation sintering, multiple cold rolling-sintering, plate
Thickness reaches 0.1~0.5mm, and after the completion of Si alloyings, strip density brings up to 7.37~7.51g/cm3;
(5) full alloying high temperature sintering
Vacuum or restitutive protection 1~4h of atmosphere sintering in 1250~1320 DEG C of temperature ranges, it is real under the action of thermal diffusion
The existing full alloyings of Si, form single-phase alloy, obtain the high silicon steel of homogeneous, and the thickness of plate is 0.1~0.5mm after densification sintering,
Density reaches 7.38~7.52g/cm3。
2. the method that powder hotforging as claimed in claim 1 prepares Fe-6.5%Si soft magnetic materials thin strips, it is characterised in that:
The HIGH-PURITY SILICON iron powder of particle diameter≤10 μm is by high-energy ball milling or rushes the acquisition of rotation method.
3. the method that powder hotforging as claimed in claim 1 prepares Fe-6.5%Si soft magnetic materials thin strips, it is characterised in that
The low energy mixer is conical mixer, V-arrangement batch mixer or drum mixer.
4. the method that powder hotforging as claimed in claim 1 prepares Fe-6.5%Si soft magnetic materials thin strips, it is characterised in that:
The square pressed compact prepared in step (3), length and width are respectively 100~300mm, are highly 40~60mm, use surface pressing for
The pressure compacting of 400~600MPa.The thickness of blank is 36~54mm after hot forging, and three point bending test shows plasticity, bending
Intensity reaches 143~230MPa.
5. the method that powder hotforging as claimed in claim 1 prepares Fe-6.5%Si soft magnetic materials thin strips, it is characterised in that:
Step (2) adds cellulose, paraffin micro mist or the water-insoluble binder of zinc stearate when mixing, and the additive amount total amount of binder does not surpass
The 0.8% of mixed-powder gross mass is crossed, while adds grease and absolute ethyl alcohol does passivator, plays passivation Si powder, bonding Fe-Si
The effect of powder, enhancing powder flowbility and compact strength, the additive amount total amount of passivator are no more than mixed-powder gross mass
2%.
6. the method that powder hotforging as claimed in claim 1 prepares Fe-6.5%Si soft magnetic materials thin strips, it is characterised in that:
Support plate described in step (4) uses molybdenum plate, W plates, heat resisting steel, corundum or zirconia ceramics plate.
7. the method that powder hotforging as claimed in claim 1 prepares Fe-6.5%Si soft magnetic materials thin strips, it is characterised in that:
During high temperature sintering described in step (6), overlapping places sintering plate, and interlayer is laid with MgO powder, and plate tiling is placed, on plate
Tablet weight is placed, prevents from deforming in sintering process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711369208.0A CN107900349A (en) | 2017-12-18 | 2017-12-18 | A kind of method that powder hotforging prepares Fe 6.5%Si soft magnetic materials thin strips |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711369208.0A CN107900349A (en) | 2017-12-18 | 2017-12-18 | A kind of method that powder hotforging prepares Fe 6.5%Si soft magnetic materials thin strips |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107900349A true CN107900349A (en) | 2018-04-13 |
Family
ID=61870175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711369208.0A Withdrawn CN107900349A (en) | 2017-12-18 | 2017-12-18 | A kind of method that powder hotforging prepares Fe 6.5%Si soft magnetic materials thin strips |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107900349A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109530675A (en) * | 2018-10-25 | 2019-03-29 | 唐竹胜 | A method of direct-reduction iron powder is formed into profile by short route hot extrusion/rolling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000192186A (en) * | 1998-12-25 | 2000-07-11 | Daido Steel Co Ltd | Manufacture of soft magnetic alloy sheet, and magnetic core member using this sheet |
CN1273611A (en) * | 1998-05-29 | 2000-11-15 | 住友特殊金属株式会社 | Method for producing high silicon steel and silicon steel |
CN1528921A (en) * | 2003-09-25 | 2004-09-15 | 武汉理工大学 | High-silica silicon-steel sheet heat treatment and multiple cold-rolling method |
CN102658367A (en) * | 2012-05-16 | 2012-09-12 | 上海大学 | Method and device for preparing high-silicon silicon steel sheet in static magnetic field with powder sintering method |
CN106808159A (en) * | 2015-11-27 | 2017-06-09 | 安徽中龙节能科技有限公司 | A kind of preparation method of high-silicon silicon steel sheet |
-
2017
- 2017-12-18 CN CN201711369208.0A patent/CN107900349A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1273611A (en) * | 1998-05-29 | 2000-11-15 | 住友特殊金属株式会社 | Method for producing high silicon steel and silicon steel |
JP2000192186A (en) * | 1998-12-25 | 2000-07-11 | Daido Steel Co Ltd | Manufacture of soft magnetic alloy sheet, and magnetic core member using this sheet |
CN1528921A (en) * | 2003-09-25 | 2004-09-15 | 武汉理工大学 | High-silica silicon-steel sheet heat treatment and multiple cold-rolling method |
CN102658367A (en) * | 2012-05-16 | 2012-09-12 | 上海大学 | Method and device for preparing high-silicon silicon steel sheet in static magnetic field with powder sintering method |
CN106808159A (en) * | 2015-11-27 | 2017-06-09 | 安徽中龙节能科技有限公司 | A kind of preparation method of high-silicon silicon steel sheet |
Non-Patent Citations (7)
Title |
---|
傅祖铸编: "《有色金属板带材生产》", 1 April 2009 * |
员文杰: "粉末轧制法制备高硅硅钢片的工艺及过程原理的研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 * |
员文杰等: "粉末轧制法制备Fe-6.5%Si硅钢片的研究", 《粉末冶金技术》 * |
周勇: "铁、硅复合粉末的轧制成型与后续热处理", 《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅰ辑》 * |
张翔: "粉末冶金法制备高硅硅钢片的轧制和热处理工艺研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 * |
李然: "粉末压延技术制备高硅铁硅合金", 《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅰ辑》 * |
莱内尔编: "《粉末冶金原理和应用》", 30 November 1989, 冶金工业出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109530675A (en) * | 2018-10-25 | 2019-03-29 | 唐竹胜 | A method of direct-reduction iron powder is formed into profile by short route hot extrusion/rolling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107829036A (en) | A kind of powder hot-pressing sintering manufacture method of high silicon steel thin belt material | |
CN107900345A (en) | A kind of Powder hot isostatic pressure manufacture method of high silicon steel thin belt material | |
CN108097961A (en) | A kind of method that High temperature diffusion sintering prepares high silicon steel band with Powder hot isostatic pressure | |
CN107900347A (en) | A kind of method that powder hotforging prepares high silicon steel band with High temperature diffusion sintering | |
CN107971494A (en) | A kind of method that powder hot-pressing sintering prepares Fe-6.5%Si soft magnetic materials thin strips | |
CN107971495A (en) | A kind of method that Powder hot isostatic pressure prepares Fe-6.5%Si soft magnetic materials thin strips | |
CN107999757A (en) | A kind of method that powder hot-pressing sintering prepares single-phase Fe-6.5%Si silicon steel | |
CN108097965A (en) | A kind of powder extruding method for making of high silicon steel thin belt material | |
CN108103390A (en) | A kind of method that Powder hot isostatic pressure prepares single-phase Fe-6.5%Si silicon steel | |
CN107900349A (en) | A kind of method that powder hotforging prepares Fe 6.5%Si soft magnetic materials thin strips | |
CN107900348A (en) | A kind of method that powder hotforging prepares single-phase Fe 6.5%Si silicon steel | |
CN107900346A (en) | A kind of method that Powder hot isostatic pressure prepares high silicon steel thin belt material | |
CN107855532A (en) | A kind of method that powder hot-pressing sintering prepares high silicon steel thin belt material | |
CN108044106A (en) | A kind of method that Powder hot isostatic pressure prepares high silicon steel band with High temperature diffusion sintering | |
CN108044107A (en) | A kind of Powder hot isostatic pressure preparation method of Fe-6.5%Si soft magnetic materials thin strip | |
CN107900354A (en) | A kind of method that powder extruding prepares high silicon steel thin belt material | |
CN107999763A (en) | A kind of method that powder hotforging prepares Fe-6.5%Si bands with diffusion-sintering | |
CN108080641A (en) | A kind of powder rolling preparation method of Fe-6.5%Si soft magnetic materials thin strip | |
CN107999761A (en) | A kind of powder hotforging manufacture method of high silicon steel thin belt material | |
CN107999762A (en) | A kind of powder hotforging preparation method of Fe-6.5%Si soft magnetic materials thin strip | |
CN107999760A (en) | A kind of method that diffusion-sintering prepares Fe-6.5%Si bands with powder hotforging | |
CN108044099A (en) | A kind of method that High temperature diffusion sintering prepares high silicon steel band with powder hotforging | |
CN108044098A (en) | A kind of method that powder hotforging prepares high silicon steel thin belt material | |
CN108097966A (en) | A kind of method that High temperature diffusion sintering prepares high silicon steel band with powder warm-rolling | |
CN108044100A (en) | A kind of method that powder rolling prepares Fe-6.5%Si soft magnetic materials thin strips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20180413 |
|
WW01 | Invention patent application withdrawn after publication |